	[image: image4.png]

[image: image5.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G372

	Title:
	Coding order of sign and level minus 3 with CABAC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Cheung Auyeung
1730 N. First Street, MD:3NW
San Jose, CA 95112
USA
	
Tel:
Email:
	
1-408-352-4725
cheung.auyeung@am.sony.com

	
	Teruhiko Suzuki
2-10-1, Osaki, Shinagawa-ku
Tokyo, 141-8610
Japan
	
Tel:
Email:
	
+81-50-3750-2740
teruhikos@jp.sony.com

	Source:
	Sony Electronics Inc., Sony Corporation

Abstract
HM4 encode the coeff_abs_level_minus3 after coeff_sign_flag with CABAC. Instead, this contribution proposes to encode the coeff_sign_flag after coeff_abs_level_minus3 to improve throughput, reduce latency, and reduce the sum of amount of memory needed for internal and interface storage.
1 Introduction
For the coding of level and sign information of the transform coefficients with CABAC, HM4 adopted JCTVC-F130 [1] from TI. As shown in Figure 1, JCTVC-F130 proposed to improve the throughput of CABAC by grouping the bypass coding part of level and sign together, i.e. coeff_abs_level_minus3 (GR-EG) and coeff_sign_flag (s). In particular, for every block of 16 transform coefficients, the coeff_abs_level_minus3 is interleafed with coeff_sign_flag. Also when the coeff_abs_level_minus3 is available, it is encoded before the corresponding coeff_sign_flag.
When the proposal from JCTVC-F130 was integrated into HM4, the coding order of coeff_sign_flag and coeff_abs_level_minus3 were changed from JCTVC-F130. Instead of the order in JCTVC_F130, HM4 encoded all the coeff_sign_flag in a block before coeff_abs_level_minus3 in the block. This change could results in lower throughput, higher latency or more memory usages as demonstrated by the example in Figure 2.

As shown by the example in Figure 2, because of data dependency, the earliest that the decoder can determine the final value of the transform coefficient is in the order of 1 to 8. This order for determining the final value of the transform coefficients is data dependent and, in general, it is out of the order of the coefficient scanning order.

Two approaches can be used to convert the order for finalizing the coefficients to a fixed order to output the coefficients to other hardware components. The first approach does not require full size reordering buffers but it reduces throughput and increase latency. The second approach requires two full size buffers, and it has the advantage that it does not reduce throughput and it also minimizes latency.

In particular, the first approach can be achieved by stalling the CABAC so that the coefficient level can be finalized in the output order, e.g, the scanning order. It requires internal buffer of 3 bits x 1 block to store the intermediate value of coeff_abs_great1_flag, coeff_abs_greater2_flag, and the coeff_sign_flag in one block but it does not require full size buffer to store the final values of the coefficient levels.

The second approach requires two full size 16 bit x 2 block register to store the intermediate and final values of coefficient. While one buffer is used to store the coefficients of the current block, the other buffer is used to output the coefficients of the previous block in the fixed order for interfacing with other logic devices.
b0:coeff_abs_level_greater1_flag (context coded)

b1: coeff_abs_level_greater2_flag (context coded)

GR-EG: coeff_abs_level_minus3 (bypass coded)

s: coeff_sign_flag (bypass coded)

cu_header is all other syntax elements in CU.

[image: image1.emf]HM3

F130

Figure 1: To improve the throughput of CABAC, JCTVC-F130 proposed to encode coeff_abs_level_minus3 (GR-EG) and coeff_sign_flag (s) together. The coeff_sign_flag is encoded after coeff_abs_level_minus3, when the coeff_abs_level_minus3 is available.

[image: image2.emf]1 2 3 4 5 6 7

8 9 10

Order to finalize coeff

6 2 -1 1 1 -1 2 -3 1 4

1 1 0 0 0 0 1 1 0 1

1 0 0

3

0 0 0 0 0 1 0 1 1 0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1

0

1

1

Bitstream

order

Figure 2: An example of CABAC decoding order in HM4 for level and sign.
2 Proposal

To balance throughput, latency, and the sum of internal and reordering memory usage, we propose to encode coeff_abs_level_minus3 before the corresponding coeff_sign_flag. As shown in the example in Figure 3, the coefficient can be finalized in the order of scanning order. In particular, it needs one 16bit x 1 block buffer to store the intermediate value, but it does not need reordering buffer and latency is minimized.

[image: image3.emf]1 2 3 4 5 6 7 8 9 10

Order to finalize coeff

6 2 -1 1 1 -1 2 -3 1 4

1 1 0 0 0 0 1 1 0 1

1 0 0

3

0 0 0 0 0 1 0 1 1 0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1 1

0 1

Figure 3: The coeff_abs_level_minus3 is encoded before coeff_sign_flag so that the coefficients can be finalized in scanning order.
3 Simulation results

The re-ordering of coeff_abs_level_minus3 and coeff_sign_flag were integrated into HM4.0. The simulations were performed in three Microsoft HPC clusters where the common test conditions and reference configurations specified by the Software AhG are followed:
· All intra simulations are performed on AMD Opteron Processor 6136 cluster @ 2.4GHz.

· All RA simulations are performed on Intel Xeon X5690 cluster @ 3.47GHz.

· All LD simulations are performed on Intel Xeon X5680 cluster @ 3.33GHz.
As show in Table 1, the proposed has no impact on BDR-rate.

4 Summary

This contribution illustrated that the coding order of HM4 could result in higher latency or more memory requirements. To balance throughput, latency, and memory requirements, this contribution proposes to encode coeff_abs_level_minus3 in a block before coeff_sign_flag in the block.
	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.00%
	0.00%
	0.00%

	Class B
	0.00%
	0.00%
	0.00%

	Class C
	0.00%
	0.00%
	0.00%

	Class D
	0.00%
	0.00%
	0.00%

	Class E
	0.00%
	0.00%
	0.00%

	Overall
	0.00%
	0.00%
	0.00%

	
	0.00%
	0.00%
	0.00%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

	
	
	
	

	
	Random Access HE

	
	Y
	U
	V

	Class A
	0.00%
	0.00%
	0.00%

	Class B
	0.00%
	0.00%
	0.00%

	Class C
	0.00%
	0.00%
	0.00%

	Class D
	0.00%
	0.00%
	0.00%

	Class E
	
	
	

	Overall
	0.00%
	0.00%
	0.00%

	
	0.00%
	0.00%
	0.00%

	Enc Time[%]
	100%

	Dec Time[%]
	100%

	
	
	
	

	
	Low delay B HE

	
	Y
	U
	V

	Class A
	
	
	

	Class B
	0.00%
	0.00%
	0.00%

	Class C
	0.00%
	0.00%
	0.00%

	Class D
	0.00%
	0.00%
	0.00%

	Class E
	0.00%
	0.00%
	0.00%

	Overall
	0.00%
	0.00%
	0.00%

	
	0.00%
	0.00%
	0.00%

	Enc Time[%]
	100%

	Dec Time[%]
	101%

Table 1: There is no impact on the BDR with this proposal.
5 References

[1] Vivienne Sze, Madhukar Budagavi, “Parallel Context Processing of Coefficient Level”, JCTVC-F130, 6th Meeting: Torino, IT, 14-22 July, 2011.

6 Patent rights declaration(s)
Sony Electronics Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 Appendix: Proposed WD text based on JCTVC-F803-v7
7.3.10 Residual coding CABAC syntax

	residual_coding_cabac(x0, y0, log2TrafoSize, trafoDepth, scanIdx, cIdx) {
	Descriptor

	
last_significant_coeff_x
	ae(v)

	
last_significant_coeff_y
	ae(v)

	
numCoeff = 0
	

	
xC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][numCoeff][0]
	

	
yC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][numCoeff][1]
	

	
while((xC != last_significant_coeff_x) || (yC != last_significant_coeff_y)) {
	

	

numCoeff++
	

	

xC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][numCoeff][0]
	

	

yC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][numCoeff][1]
	

	
}
	

	
for(n = numCoeff − 1; n >= 0; n− −) {
	

	

xC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][n][0]
	

	

yC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][scanIdx][n][1]
	

	

significant_coeff_flag[xC][yC]
	ae(v)

	
}
	

	
numLastSubset = numCoeff >> 4
	

	
for(i = numLastSubset − 1; i >= 0; i− −) {
	

	

offset = i << 4
	

	

for(n = 15; n >= 0; n− −) {
	

	

xC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][0][n + offset][0]
	

	

yC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][0][n + offset`][1]
	

	

if(significant_coeff_flag[xC][yC])
	

	

coeff_abs_level_greater1_flag[n]
	ae(v)

	

}
	

	

for(n = 15; n >= 0; n− −) {
	

	

if(coeff_abs_level_greater1_flag[n])
	

	

coeff_abs_level_greater2_flag[n]
	ae(v)

	

}
	

	

for(n = 15; n >= 0; n− −) {
	

	

if(coeff_abs_level_greater2_flag[n])
	

	

coeff_abs_level_minus3[n]
	ae(v)

	

}
	

	

for(n = 15; n >= 0; n− −) {
	

	

xC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][0][n + offset][0]
	

	

yC = ScanOrder[log2TrafoSize − 2][log2TrafoSize − 2][0][n + offset`][1]
	

	

if(significant_coeff_flag[xC][yC]) {
	

	

coeff_sign_flag[n]
	ae(v)

	

transCoeffLevel[x0][y0][trafoDepth][cIdx][n + offset] =

(coeff_abs_level_minus3[n] + 3) * (1 − 2 * coeff_sign_flag[n])
	

	

} else
	

	

transCoeffLevel[x0][y0][trafoDepth][cIdx][n + offset] = 0
	

	

}
	

	
}
	

	}
	

Page: 6
Date Saved: 2011-11-08

_1382130923.ppt

1

2

3

4

5

6

7

8

9

10

Order to finalize coeff

Bitstream

order

6

2

-1

1

1

-1

2

-3

1

4

1

1

0

0

0

0

1

1

0

1

1

0

0

3

0

0

0

0

0

1

0

1

1

0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1

0

1

1

6 2 -1 1 1 -1 2 -3 1 4

1 1 0 0 0 0 1 1 0 1

1 0 0

3

0 0 0 0 0 1 0 1 1 0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1

0

1

1

_1382135854.ppt

1

2

3

4

5

6

7

8

9

10

Order to finalize coeff

6

2

-1

1

1

-1

2

-3

1

4

1

1

0

0

0

0

1

1

0

1

1

0

0

3

0

0

0

0

0

1

0

1

1

0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1

1

0

1

6 2 -1 1 1 -1 2 -3 1 4

1 1 0 0 0 0 1 1 0 1

1 0 0

3

0 0 0 0 0 1 0 1 1 0

coeff level

coeff_abs_greater1_flag

coeff_abs_greater2_flag

coeff_abs_level_minus3

coeff_sign_flag

1 1

0 1

_1382129008.ppt

HM3

F130

