	[image: image5.png]

[image: image6.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G351
WG11 Number: m21913

	Title:
	Modification of ALF classification

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Ehsan Maani, Ali Tabatabai
1730 N 1st Street
San Jose, CA 95112
	Tel:
Email:
	+1-408-352-4710
ehsan.maani@am.sony.com
ali.tabatabai@am.sony.com

	
	Masaru Ikeda
Gate City Osaki West Tower East Tec,
1-11-1, Osaki,

Shinagawa-ku , Tokyo, 141-0032 JAPAN
	Tel:
Email:
	+81-3-5435-3308
Masaru.Ikeda@jp.sony.com

	Source:
	Sony Electronics Inc., Sony Corporation.

Abstract
The classification of ALF is modified to make the process more hardware friendly. More specifically, with the proposed modification, the classification of the 4x4 block and filtering operations of the first pixel can be done at the same time. The classification only uses the top left 3x3 subblock which is also used for filtering of the first pixel.
Classification
HM4.0 recognizes up to 16 classes for a 4x4 luminance block in order to apply the correct loop filter. The classification [1] is based on both direction and Laplacian activity measure. As shown in Fig. 1, the activity measure is computed for 4 different pixel locations within a 4x4 block. The computed values are then averaged to find the class to which a 4x4 block belong to.

[image: image1.png]

Figure. 1 Simplification of feature computation for block-based filter adaptation
This document proposes a change in the way this block-based classification is derived. In the proposed method, different pixels are used to compute the second order derivatives and therefore the direction/activity. Similar to HM4, 4 horizontal and 4 vertical second order derivatives are calculated and then averaged. Figure 2 shows the pixels which are used to compute either the vertical or the horizontal derivatives. Red dotted arrows show the pixels whose values are considered for the derivation of the block classification. As it can be seen these pixels are also used for the filtering of the first pixel of the block. Once the block classification is computed it is used for the rest of the pixels within the block, thus, no additional computation is needed (similar to HM4.0).
[image: image2.png]

Figure 2. Pixels to be used for ALF classification. Only horizontal (vertical) derivatives are computed for red (blue) pixels. Both derivatives are computed for black pixels.

1 Results
Using the HM4.0 software and under common condition, the following results have been obtained for the proposed method.

Table 1. Common conditions results.

	
	All Intra HE
	Random Access HE

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.1%
	0.0%
	0.0%
	0.1%
	-0.1%
	0.0%

	Class B
	0.0%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	Class C
	0.1%
	-0.1%
	-0.1%
	0.1%
	0.0%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	Class E
	0.1%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Overall
	0.1%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	0
	0.1%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	Enc Time[%]
	99.7%
	100.1%

	Dec Time[%]
	98.0%
	98.4%

	
	Low delay B HE
	Low delay P HE

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class B
	0.1%
	-0.1%
	0.0%
	0.1%
	0.0%
	0.1%

	Class C
	0.1%
	0.0%
	-0.1%
	0.2%
	0.2%
	0.2%

	Class D
	0.0%
	0.4%
	0.3%
	0.1%
	-0.1%
	0.0%

	Class E
	0.0%
	0.2%
	0.5%
	0.1%
	0.0%
	-0.6%

	Overall
	0.1%
	0.1%
	0.1%
	0.1%
	0.0%
	0.0%

	0
	0.1%
	0.1%
	0.1%
	0.1%
	0.0%
	-0.1%

	Enc Time[%]
	100.2%
	100.2%

	Dec Time[%]
	99.5%
	99.3%

Table 2. BA only results (anchor and test software both use BA only classification).

	
	All Intra HE
	Random Access HE

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.1%
	0.0%
	0.0%
	0.1%
	0.0%
	0.2%

	Class B
	0.0%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	Class C
	0.1%
	0.0%
	0.0%
	0.1%
	-0.1%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class E
	0.1%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Overall
	0.1%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	0
	0.1%
	0.0%
	0.0%
	0.1%
	0.0%
	0.0%

	Enc Time[%]
	99.7%
	100.2%

	Dec Time[%]
	96.4%
	99.3%

	
	Low delay B HE
	Low delay P HE

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class B
	0.1%
	0.1%
	0.1%
	0.1%
	0.0%
	0.1%

	Class C
	0.1%
	-0.1%
	-0.1%
	0.2%
	0.2%
	0.2%

	Class D
	0.0%
	-0.2%
	0.2%
	0.1%
	-0.1%
	0.0%

	Class E
	0.1%
	0.0%
	0.2%
	0.1%
	0.0%
	-0.6%

	Overall
	0.1%
	0.0%
	0.1%
	0.1%
	0.0%
	0.0%

	0
	0.1%
	-0.1%
	0.0%
	0.1%
	0.0%
	-0.1%

	Enc Time[%]
	100.2%
	100.2%

	Dec Time[%]
	98.6%
	99.3%

2 Conclusion

In this document a simple modification of ALF classification is proposed. This modification allows the classification and filtering operations to be performed sequentially for the first pixel of the block, while the rest of the pixels only need filtering and use the same classification.
3 Patent rights declaration(s)
Sony Electronics Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

References
[1] “CE8 Subtest 1: Block-based filter adaptation with features on subset of pixels”, JVTVC-F301, Torino, Italy, Jul. 2011

4 Appendix
4.1 Semantic: Derivation process for filter index array for Luma samples
Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.
Output of this process is the two-dimensional filter index array of (nS)x(nS), fIdx.

A variable nS is set equal to (1 << log2CUSize).

The boundary padding process specified in subclause 8.6.3.1 is invoked with the luma location (xC, yC), the size of coding unit log2CUSize and the chroma component index cIdx set equal to 0, and the output is assigned to the luma sample array s’’. [Ed. (WJ): s’’ is now a picture-size array, but actually CU size + appropriate margin is enough]

The filter index array fIdx is specified in the follows:

· When alf_region_adaptation_flag is equal to 1, the following ordered steps apply.

1. The variables xIdx and yIdx are derived as

regionTab[16] = { 0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8 }
(8‑474)

offset = 1 << (Log2MaxCUSize – 1)

(8‑474)

xInterval = (((PicWidthInSamplesL + offset) >> Log2MaxCUSize) + 1) >> 2
(8‑474)

yInterval = (((PicHeightInSamplesL + offset) >> Log2MaxCUSize) + 1) >> 2
(8‑474)

xIdx = Min(3, Floor((xC + x) / (xInterval << Log2MaxCUSize)))
(8‑474)

yIdx = Min(3, Floor((yC + y) / (yInterval << Log2MaxCUSize)))
(8‑474)

2. The filter index fIdx[x, y] with x, y = 0..(nS)-1 is derived as

fIdx[x][y] = regionTab[(yIdx << 2) + xIdx]

(8‑474)

· Otherwise (alf_region_flag is equal to 0), the following ordered steps apply.

1. The variables varTempH[x][y], varTempV[x][y] and varTemp1[x][y] with x, y = 0, 2, 4,...(nS) is derived as

varTempH[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x-1, yC+y] – s’’[xC+x+1, yC+y] |
(8‑474)

varTempV[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x, yC+y-1] – s’’[xC+x, yC+y+1] |
(8‑474)

2. The variables varTempH1[x, y], varTempV1[x, y], and varTemp3[x, y] with x, y = 0..((nS) – 1)>>2 are derived as

varTempH1[x][y] = (i(j varTempH[(x << 2) + i][(y << 2) + j],
[image: image3.wmf](,){(0,0),(0,1),(1,1),(2,1)}

ij

Î

 (8‑474)

varTempV1[x][y] = (i(j varTempV[(x << 2) + i][(y << 2) + j],
[image: image4.wmf](,){(0,0),(1,0),(1,1),(1,2)}

ij

Î

 (8‑474)

varTemp3[x][y] = (varTempH1[x][y] + varTempV1[x][y]) >> 2 (8‑474)
3. The variable direction is derived as

· If varTempV1[x >> 2][y >> 2] is greater than varTempH1[x >> 2][y >> 2] << 1,

direction = 1

· Otherwise, if varTempH1[x >> 2][y >> 2] is greater than varTempV1[x >> 2][y >> 2] << 1,

direction = 2

· Otherwise,

direction = 0

4. The variable avgvar is derived as

varTab[16] = { 0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4 }
(8‑475)

avgVar = Clip3(0, 15, (varTemp3[x >> 2][y >> 2] * 1024) >> (3 + BitDepthY))
(8‑475)

5. The filter index fIdx[x, y] with x, y = 0..(nS)-1 is derived as

fIdx[x][y] = Clip3(0, 4, varTab[avgVar]) + 5 * direction

Page: 4
Date Saved: 2011-11-10

_1382257691.unknown

_1382257857.unknown

