ISO/IEC 23008-HEVC : 201x (E)

Working draft for Test 3 (C3) experiment

Related modification for Merge modes

8.4.2.1.1 Derivation process for luma motion vectors for merge mode

6. The variable numMergeCand and numOrigMergeCand are set to the number of merging candidates in the mergeCandList and the variable maxNumMergeCand is set to 5.

7. When slice_type is equal to B, the following applies.

· The derivation process for combined bi-predictive merging candidates specified in subclause 8.4.2.1.4 is invoked with mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, numMergeCand, numOrigMergeCand and maxNumMergeCand given as input and the output is assigned to mergeCandList, numMergeCand, the reference indices refIdxL0combCandk and refIdxL1combCandk, the prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk and the motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in mergeCandList. The number of candidates being added numCombMergeCand is set equal to (numMergeCand – numOrigMergeCand). When numCombMergeCand is greater than 0, k ranges from 0 to numCombMergeCand − 1, inclusive.

· The derivation process for non-scaled bi-predictive merging candidates specified in subclause 8.4.2.1.5 is invoked with mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, numMergeCand, numOrigMergeCand and maxNumMergeCand given as input and the output is assigned to mergeCandList, numMergeCand, the reference indices refIdxL0nscaleCandl and refIdxL1nscaleCandl, the prediction list utilization flags predFlagL0nscaleCandl and predFlagL1nscaleCandl, the motion vectors mvL0nscaleCandl and mvL1nscaleCandl of every new candidate nscaleCandl being added in mergeCandList. The number of candidates being added numNscaleMergeCand is set equal to (numMergeCand – numOrigMergeCand – numCombMergeCand). When numNscaleMergeCand is greater than 0, l ranges from 0 to numNscaleMergeCand – 1, inclusive.
8. The derivation process for zero motion vector merging candidates specified in subclause 8.4.2.1.6 is invoked with the mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, the NumMergeCand and the MaxNumMergeCand as the inputs and the output is assigned to mergeCandList, numMergeCand, the reference indices refIdxL0zeroCandm and refIdxL1zeroCandm, the prediction list utilization flags predFlagL0zeroCandm and predFlagL1zeroCandm, the motion vectors mvL0zeroCandm and mvL1zeroCandm of every new candidate zeroCandm being added in mergeCandList. zeroCand is added when numMergeCand is equal to 0. The number of candidates being added numZeroMergeCand is set equal to (numMergeCand – numOrigMergeCand – numCombMergeCand – numNscaleMergeCand). When numZeroMergeCand is greater than 0, m ranges from 0 to numZeroMergeCand – 1, inclusive.

9. The derivation process for offset added motion vector merging candidates specified in subclause 8.4.2.1.x is invoked with the mergeCandList, the reference indices refIdxL0N and refIdxL1N, the prediction list utilization flags predFlagL0N and predFlagL1N, the motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList, the NumMergeCand and the MaxNumMergeCand as the inputs and the output is assigned to mergeCandList, numMergeCand, the reference indices refIdxL0offsetCandn and refIdxL1offsetCandn, the prediction list utilization flags predFlagL0offsetCandn and predFlagL1offsetCandn, the motion vectors mvL0offsetCandn and mvL1offsetCandn of every new candidate offsetCandn being added in mergeCandList. The number of candidates being added numOffsetMergeCand is set equal to (numMergeCand – numOrigMergeCand – numCombMergeCand). When numOffsetMergeCand is greater than 0, n ranges from 0 to numOffsetMergeCand – 1, inclusive.

10. The following assignments are made with N being the candidate at position merge_idx[xP][yP] in the merging candidate list mergeCandList (N = mergeCandList[merge_idx[xP][yP]]) and X being replaced by 0 or 1:

mvLX[0] = mvLXN[0]

(8‑88)

mvLX[1] = mvLXN[1]

(8‑89)

refIdxLX = refIdxLXN

(8‑90)

predFlagLX = predFlagLXN

(8‑91)

8.4.2.1.2 Derivation process for combined bi-predictive merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,

· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate derivation process,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
Outputs of this process are

· the merging candidate list mergeCandList,

· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0combCandk and refIdxL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0combCandk and predFlagL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,

· motion vectors mvL0combCandk and mvL1combCandk of every new candidate combCandk being added in mergeCandList during the invokation of this process,

The function RefPicOrderCnt(refidx, LX) specifies the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of the current picture with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-existing”. The variable PicOrderCnt specifies the PicOrderCnt of the current picture.

[Ed. (BB): PicOrderCnt(.) needs to be defined. Currently the Decoding process for picture order count is not described]
When numOrigMergeCand is greater than 1 and less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables combIdx and combCnt are set to 0, the variable combStop is set to false and the following steps are repeated until combStop is equal to true.

1. The variables l0CandIdx and l1CandIdx are derived using combIdx as specified in Table 8‑11.

2. The following assignments are made with l0Cand being the candidate at position l0CandIdx and l1Cand being the candidate at position l1CandIdx in the merging candidate list mergeCandList (l0Cand = mergeCandList[l0CandIdx] , l1Cand = mergeCandList[l1CandIdx]).

3. When all of the following conditions are true,

1. predFlagL0l0Cand = = 1

2. predFlagL1l1Cand = = 1

3. RefPicOrderCnt(refIdxL0l0Cand, L0) != RefPicOrderCnt(refIdxL1l1Cand, L1) | | mvL0l0Cand != mvL1l1Cand

the following applies.
4. When no candidate in mergeCandList has the same list0 motion vector and reference index as l0Cand and the same list1 motion vector and reference index as l1Cand, the candidate combCandk with k equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = combCandk) and the reference indices, the prediction list utilization flags and the motion vectors of combCandk are dervied as follows and numMergeCand is incremented by 1.

refIdxL0combCandk = refIdxL0l0Cand

(8‑92)

refIdxL1combCandk = refIdxL1l1Cand

(8‑93)

predFlagL0combCandk = 1

(8‑94)

predFlagL1combCandk = 1

(8‑95)

mvL0combCandk[0] = mvL0l0Cand[0]

(8‑96)

mvL0combCandk[1] = mvL0l0Cand[1]

(8‑97)

mvL1combCandk[0] = mvL1l1Cand[0]

(8‑98)

mvL1combCandk[1] = mvL1l1Cand[1]

(8‑99)

numMergeCand = numMergeCand + 1
(8‑100)
5. The variable combCnt is incremented by 1.

4. The variable combIdx is incremented by 1.

5. When combIdx is equal to (numOrigMergeCand * (numOrigMergeCand − 1)) or to 3 or numMergeCand is equal to maxNumMergeCand or combCnt is equal to 53, combStop is set to true.

Table 8‑11 – Specification of l0CandIdx and l1CandIdx

	combIdx
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	l0CandIdx
	0
	1
	0
	2
	1
	2
	0
	3
	1
	3
	2
	3

	l1CandIdx
	1
	0
	2
	0
	2
	1
	3
	0
	3
	1
	3
	2

8.4.2.1.5 Derivation process for non-scaled bi-predictive merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,

· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the number of elements numOrigMergeCand within the mergeCandList after the spatial and temporal merge candidate derivation process,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0nscaleCandl and refIdxL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0nscaleCandl and predFlagL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

· motion vectors mvL0nscaleCandl and mvL10nscaleCandl of every new candidate nscaleCandl being added in mergeCandList during the invokation of this process,

The function RefPicOrderCnt(refidx, LX) specifies the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of the current picture with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-existing”. The variable PicOrderCnt specifies the PicOrderCnt of the current picture.

[Ed. (BB): PicOrderCnt(.) needs to be defined. Currently the Decoding process for picture order count is not described]
When numOrigMergeCand is greater than 0 and numMergeCand is less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables origIdx and nscaleCnt are set to 0, the variable nscaleStop is set to false and the following steps are repeated until nscaleStop is equal to true.

1. The following assignments are made with origCand being the candidate at position origIdx in the merging candidate list mergeCandList (origCand = mergeCandList[origIdx]).

2. The following is applied one time with X being 0 and Y being 1. When nscaleCnt is less than 1 and numMergeCand is less than maxNumMergeCand, it is applied a second time with X being 1 and Y being 0.

1. When all of the following conditions are true,

· refIdxLXorigCand >= 0

· RefPicOrderCnt(refIdxLXorigCand, LX) != RefPicOrderCnt(refIdxorigCandLX, LY)
· abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LX)) = =
abs(PicOrderCnt − RefPicOrderCnt(refIdxLXorigCand, LY))
· refIdxLXorigCand < num_ref_idx_lY_active_minus1 + 1

the following applies.

· When no candidate in mergeCandList has a list0 motion vector equal to listX motion vector of origCand, a list1 motion vector equal to the listX motion vector of origCand multiplied by 1 and list0 and list1 reference indices equal to the listX reference index of origCand, the candidate nscaleCandl with l equal to (numMergeCand − numInputMergeCand)is added at the end of mergeCandList (mergeCandList[numMergeCand] = nscaleCandl) and the reference indices, the prediction list utilization flags and the motion vectors of nscaleCandl are dervied as follows and numMergeCand is incremented by 1.

refIdxL0nscaleCandl = refIdxLXorigCand

(8‑92)

refIdxL1nscaleCandl = refIdxLXorigCand

(8‑93)

predFlagL0nscaleCandl = 1

(8‑94)

predFlagL1nscaleCandl = 1

(8‑95)

mvL0nscaleCandl[0] = mvLXorigCand[0]

(8‑96)

mvL0nscaleCandl[1] = mvLXorigCand[1]

(8‑97)

mvL1nscaleCandl[0] = − mvLXorigCand[0]

(8‑98)

mvL1nscaleCandl[1] = − mvLXorigCand[1]

(8‑99)

numMergeCand = numMergeCand + 1
(8‑100)
· The variable nscaleCnt is incremented by 1.

3. The variable origIdx is incremented by 1.
4. When origIdx is equal to numOrigMergeCand or numMergeCand is equal to maxNumMergeCand or nscaleCnt is equal to 1, nscaleStop is set to true.

8.4.2.1.7 Derivation process for zero motion vector merging candidates

Inputs of this process are

· a merging candidate list mergeCandList,

· reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

· prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,

· motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

· the number of elements numMergeCand within mergeCandList,
· the maximum number of elements maxNumMergeCand within the mergeCandList.
Outputs of this process are

· the merging candidate list mergeCandList,
· the number of elements numMergeCand within mergeCandList.
· reference indices refIdxL0zeroCandm and refIdxL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,

· prediction list utilization flags predFlagL0zeroCandm and predFlagL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,

· motion vectors mvL0zeroCandm and mvL10zeroCandm of every new candidate zeroCandm being added in mergeCandList during the invokation of this process,
If numMergeCand is equal to 0 the zeroCand is derived as follows
The variable numRefIdx is derived as follows.

· If slice_type is equal to P, numRefIdx is set to 0num_ref_idx_l0_active_minus1 + 1
· Otherwise (slice_type is equal to B), numRefIdx is set to 0min(num_ref_idx_l0_active_minus1 + 1, num_ref_idx_l1_active_minus1 + 1)
When numMergeCand is less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variables zeroIdx and zeroCnt are set to 0, the variable zeroStop is set to false and the following steps are repeated until zeroStop is equal to true.
1. For the derivation of the reference indices, the prediction list utilization flags and the motion vectors of the zero motion vector merging candidate, the following applies.

1. If all of the following conditions are true,

· slice_type is equal to P

· no candidate in mergeCandList has a list0 motion vector equal to (0,0) and reference index equal to zeroIdx or (zeroCnt is equal to 2 and zeroIdx is equal to 0),

the candidate zeroCandm with m equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = zeroCandm) and the reference indices, the prediction list utilization flags and the motion vectors of zeroCandm are dervied as follows and numMergeCand is incremented by 1.
refIdxL0zeroCandm = 0zeroIdx
(8‑110)

refIdxL1zeroCandm = −1
(8‑111)
predFlagL0zeroCandm = 1
(8‑112)

predFlagL1zeroCandm = 0
(8‑113)
mvL0zeroCandm[0] = 0
(8‑114)

mvL0zeroCandm[1] = 0
(8‑115)

mvL1zeroCandm[0] = 0
(8‑116)

mvL1zeroCandm[1] = 0
(8‑117)
numMergeCand = numMergeCand + 1
(8‑118)
2. Otherwise if all of the following conditions are true,

· slice_type is equal to B

· no candidate in mergeCandList has a list0 motion vector equal to (0,0), a list0 reference index equal to zeroIdx, a list1 motion vector equal to (0,0) and a list1 reference index equal to zeroIdx or (zeroCnt is equal to 2 and zeroIdx is equal to 0)

the candidate zeroCandm with m equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = zeroCandm) and the reference indices, the prediction list utilization flags and the motion vectors of zeroCandm are dervied as follows and numMergeCand is incremented by 1.
If slice_type is equal to B the zeroCand is derived as follows
refIdxL0zeroCandm = zeroIdx
(8‑119)
refIdxL1zeroCandm = 0zeroIdx
(8‑120)

predFlagL0zeroCandm = 1
(8‑121)
predFlagL1zeroCandm = 1
(8‑122)

mvL0zeroCandm[0] = 0
(8‑123)

mvL0zeroCandm[1] = 0
(8‑124)
mvL1zeroCandm[0] = 0
(8‑125)

mvL1zeroCandm[1] = 0
(8‑126)

numMergeCand = numMergeCand + 1
(8‑127)
2. The variables zeroCnt and zeroIdx are modifed as follows.

3. If zeroIdx is equal to numRefIdx or zeroCnt is equal to 2, zeroIdx is set to 0.

4. Otherwise (zeroIdx is less than and zeroCnt is less than 2), zeroIdx and zeroCnt are incremented by 1.

3. When numMergeCand is equal to maxNumMergeCand, zeroStop is set to true.

8.4.2.1.x Derivation process for offset added motion vector merging candidates

Inputs of this process are

–
a merging candidate list mergeCandList,

–
reference indices refIdxL0N and refIdxL1N of every candidate N being in mergeCandList,

–
prediction list utilization flags predFlagL0N and predFlagL1N of every candidate N being in mergeCandList,

–
motion vectors mvL0N and mvL1N of every candidate N being in mergeCandList,

–
the number of elements numMergeCand within mergeCandList,

–
the maximum number of elements maxNumMergeCand within the mergeCandList.

Outputs of this process are

–
the merging candidate list mergeCandList with a number of element equal to numMergeCand
–
reference indices refIdxL0offsetCandl and refIdxL10offsetCandl of every new candidate offsetCandl being added in mergeCandList during the invocation of this process,

–
prediction list utilization flags predFlagL0offsetCandl and predFlagL10offsetCandl of every new candidate offsetCandl being added in mergeCandList during the invocation of this process,

–
motion vectors mvL0offsetCandl and mvL10offsetCandl of every new candidate offsetCandl being added in mergeCandList during the invocation of this process,

When numMergeCand is less than maxNumMergeCand, the variable numInputMergeCand is set to numMergeCand, the variable offsetStop is set to false and the following steps are repeated until offsetStop is equal to true.

1. The following assignment is made with origCand being the candidate at position 0 in the merging candidate list mergeCandList (origCand = mergeCandList[0]).
2.
If predFlagL0origCand is equal to 1 and predFlagL1origCand is equal to 1, the candidate offsetCandn with n equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = offsetCandn) and the reference indices, the prediction list utilization flags and the motion vectors of offsetCandn are derived as follows and numMergeCand is incremented by 1 when it is added. The offsetCandn is derived as

refIdxL0offsetCandn = refIdxL0origCand

(8 92)

refIdxL1offsetCandn = refIdxL1origCand

(8 93)

predFlagL0offsetCandn = 1

(8 94)

predFlagL1offsetCandn = 1

(8 95)

If the current picture lies between two reference pictures, the followings offsetCandn are added with n equal to 0..4.

 If (n & 1) is equal to 1 the variable nL1 is set equal to n-1 otherwise nL1 is set equal to n+1

mvL0offsetCandn [0] = mvL0origCand [0] + mvoffsetVal[0][n]

(8 83)

mvL0offsetCandn [1] = mvL0origCand [1] + mvoffsetVal[1][n]

(8 84)

mvL1offsetCandn [0] = mvL1origCand [0] + mvoffsetVal[0][nL1]

(8 83)

mvL1offsetCandn [1] = mvL1origCand [1] + mvoffsetVal[1][nL1]

(8 84)

The variable mvoffsetVal is defined in table 8.12
Otherwise (if the current picture lies in the same direction from two reference pictures), the followings are added with n equal to 0..4.

mvL0offsetCandn [0] = mvL0origCand [0] + mvoffsetVal[0][n]

(8 83)

mvL0offsetCandn [1] = mvL0origCand [1] + mvoffsetVal[1][n]

(8 84)

mvL1offsetCandn [0] = mvL1origCand [0]

(8 83)

mvL1offsetCandn [1] = mvL1origCand [1]

(8 84)

4.
Else if predFlagL0origCand is equal to 1 and predFlagL1origCand is equal to 0, the candidate offsetCandn with n equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = offsetCandn) and the reference indices, the prediction list utilization flags and the motion vectors of offsetCandn are dervied as follows and numMergeCand is incremented by 1 when it is added. N can be equal to 0..4.
refIdxL0offsetCandn = refIdxL0origCand

(8 92)

refIdxL1offsetCandn = refIdxL1origCand

(8 93)

predFlagL0offsetCandn = 1

(8 94)

predFlagL1offsetCandn = 0

(8 95)
mvL0offsetCandn [0] = mvL0origCand [0] + mvoffsetVal[0][n]

(8 83)

mvL0offsetCandn [1] = mvL0origCand [1] + mvoffsetVal[1][n]

(8 84)

mvL1offsetCandn [0] = 0

(8 83)

mvL1offsetCandn [1] = 0

(8 84)

5.
Otherwise(predFlagL0origCand is equal to 0 and predFlagL1origCand is equal to 1), the candidate offsetCandn with n equal to (numMergeCand − numInputMergeCand) is added at the end of mergeCandList (mergeCandList[numMergeCand] = offsetCandn) and the reference indices, the prediction list utilization flags and the motion vectors of offsetCandn are dervied as follows and numMergeCand is incremented by 1 when it is added. N can be equal to 0..4.
refIdxL0offsetCandn = refIdxL0origCand

(8 92)

refIdxL1offsetCandn = refIdxL1origCand

(8 93)

predFlagL0offsetCandn = 0

(8 94)

predFlagL1offsetCandn = 1

(8 95)
mvL0offsetCandn [0] = 0

(8 83)

mvL0offsetCandn [1] = 0

(8 84)

mvL1offsetCandn [0] = mvL1origCand [0] + mvoffsetVal[0][n]

(8 83)

mvL1offsetCandn [1] = mvL1origCand [1] + mvoffsetVal[0][n]

(8 84)

7.
If several merging candidates have the motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList and numMergeCand is decremented by the number of candidates which are removed.

8.
When numMergeCand is equal to maxNumMergeCand, offsetStop is set to true.
Table 8‑12 – Specification of mvoffsetVal according to offset candidate n
	n
	0
	1
	2
	3

	mvoffsetVal[0]
	-8
	8
	0
	0

	l1CandIdx[1]
	0
	0
	-8
	8

Related modification for AMVP predictor offset

8.4.2.1.7 Derivation process for luma motion vector prediction

Inputs to this process are

· a luma location (xP, yP) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,

· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).

Output of this process is

· the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The motion vector predictor mvpLX is derived in the following ordered steps.

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in subclause 8.4.2.1.6 is invoked with luma location (xP, yP), the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as inputs and the availability flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B as the output.

2. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location (xP, yP) , the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol.

3. The motion vector predictor candidate list, mvpListLX, is constructed as follows.

1. mvLXA, if availableFlagLXA is equal to 1

2. mvLXB, if availableFlagLXB is equal to 1

3. mvLXCol, if availableFlagLXCol is equal to 1

4. When motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.

5. When mvpListLX is empty, a zero motion vector is added as follows.

mvpListLX[0][0] = 0
(8‑128)
mvpListLX[0][1] = 0
(8‑129)
6. The variable numMVPCandLX is set to the number of elements within the mvpListLX and maxNumMVPCand is set to 2.

7. The motion vector predictor list is modifed to contain exactly maxNumMVPCand motion vector predictor candidates as follows.

1. If numMVPCandLX is less than maxNumMVPCand equal to 0, the derivation process for zero motion vector predictor candidates specified in subclause 8.4.2.1.10 is invoked with mvpListLX and numMVPCandLX given as input and the output is assigned to mvpListLX and numMVPCandLX. And then the derivation process for the offset predictor specified in subclause 8.4.2.1.11 is invoked with mvpListLX and numMVPCandLX given as input and the output is assigned to mvpListLX and numMVPCandLX.
2. Otherwise if numMVPCandLX is less than maxNumMVPCand, the derivation process for the offset predictor specified in subclause 8.4.2.1.11 is invoked with mvpListLX and numMVPCandLX given as input and the output is assigned to mvpListLX and numMVPCandLX.
3. Otherwise (numMVPCandLX is equal to or greater than maxNumMVPCand), all motion vector predictor candidates mvpListLX[idx] with idx greater than maxNumMVPCand − 1 are removed from the list.

8. The motion vector of mvpListLX[mvp_idx_lX[xP, yP]] is assigned to mvpLX.
8.4.2.1.10 Derivation process for zero motion vector predictor candidates
Inputs of this process are

· a motion vector predictor list mvpListLX,

· the number of elements numMVPCandLX within mvpListLX.
Outputs of this process are

· the motion vector predictor list mvpListLX,
· the number of elements numMVPCandLX within mvpListLX.
When numMVPCandLX is equal to 0 no motion vector in mvpListLX is equal to (0,0), the zero motion vector predictor candidate is added at the end of mvpListLX and numMVPCandLX is incremented by 1 as follows.

mvpListLX[numMVPCandLX][0] = 0
(8‑150)
mvpListLX[numMVPCandLX][1] = 0
(8‑151)

 numMVPCandLX = numMVPCandLX + 1

8.4.2.1.11 Derivation process for offset vector predictor candidate

Inputs of this process are

· a motion vector predictor list mvpListLX,

· the number of elements numMVPCandLX within mvpListLX.
Outputs of this process are

· the motion vector predictor list mvpListLX,
· the number of elements numMVPCandLX within mvpListLX.
When numMVPCandLX is equal to 1 the offset motion vector predictor candidate is added at the end of mvpListLX and numMVPCandLX is incremented by 1 as follows.

mvpListLX[numMVPCandLX][0] = mvpListLX[0][0] - 8
(8‑150)
mvpListLX[numMVPCandLX][1] = mvpListLX[0][1]
(8‑151)
numMVPCandLX = numMVPCandLX + 1
(8‑152)

Draft ITU-T Rec. H.HEVC (201x E)
110

