	[image: image6.png]

[image: image7.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G153
WG11 number: m21706

	Title:
	Non-CE6: On intra prediction mode coding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Chuohao Yeo
Hui Li Tan
Yih Han Tan
Zhengguo Li
1 Fusionopolis Way
#21-01 Connexis (South Tower)
Singapore 138632
	
Tel:
Email:
	
+65 6408 2000
chyeo@i2r.a-star.edu.sg

	Source:
	Institute for Infocomm Research

Abstract

This contribution proposes two modifications to current intra prediction mode coding in HM. The first proposed modification is to remove the context for coding the most-probable mode index (mpm_idx) when CABAC is the entropy coder, which reportedly results in an average of 0.0% BD-Rate loss in RD performance for HM4 and other variants of HM4 intra mode coding tested in CE6. The second is a modification of the remaining mode coding that purportedly simplifies the coding by using a binary+FLC binarization in CABAC and a unary+FLC code in CAVLC. This reportedly results in an average of 0.2% and 0.1% BD-Rate gains for AI-HE and AI-LC configurations respectively.
1 Background
In the high-efficiency video coding (HEVC) working draft 4 (WD4), there are a total of 35 intra prediction modes available for Luma coding. These are the Planar prediction, DC prediction, Vertical+x (-8 ≤ x ≤ 8) and Horizontal+x (-7 ≤ x ≤ 8). However, not all modes can be used for all block sizes. The table below summarizes the possible modes available for each block size:

	Block size
	Number of modes
	Description of modes

	4x4
	18
	Planar, DC, Ver+2x (-4 ≤ x ≤ 4), Hor+2x (-3 ≤ x ≤ 2), Hor+8

	8x8
	35
	All

	16x16
	35
	All

	32x32
	35
	All

	64x64
	4
	Planar, DC, Ver, Hor

In particular, notice that for the 4x4 case, the Hor+6 mode is not available, even though the intent of the design seems to be to include all the even (i.e. Ver+2x and Hor+2x) directional prediction modes.

An intra prediction mode is coded as follows. Up to 2 most probable mode (MPM) candidates can be derived from neighboring left (L) and above (A) blocks, as illustrated below:

[image: image1.emf]Source

L

A

If available, the MPM candidates would be the intra prediction mode used by A and L. In the event that 2 MPM candidates cannot be found, (i.e., when A and/or L are not intra coded, A and/or L are in a different slice or outside the image boundaries, A and L have the same intra prediction mode), then the Planar mode and the DC mode would be inserted in that order until 2 MPMs are derived. Therefore, there would always be 2 MPM candidates.

Denote the intra prediction mode of the source block by IntraPredMode
, and the two MPM modes by IntraMPM0Mode and IntraMPM1Mode. First, a flag, prev_intra_luma_pred_flag, is signaled to indicate if IntraPredMode is equal to either IntraMPM0Mode or IntraMPM1Mode. If so, another flag, mpm_idx, is signaled to indicate whether it is IntraMPM0Mode or IntraMPM1Mode. If not, a rem_intra_luma_pred_mode symbol is signaled to indicate which of the remaining intra prediction modes is used.

When context-adaptive binary arithmetic code (CABAC) is used as the entropy coder, prev_intra_luma_pred_flag and mpm_idx are coded using an adaptive context (probability model). On the other hand, rem_intra_luma_pred_mode is binarized using a fixed-length-code (FLC) in the 4x4 and 64x64 case, since only 16 and 2 remaining intra prediction modes are present, respectively. For the 8x8, 16x16 and 32x32 cases, rem_intra_luma_pred_mode​ is binarized using a FLC with a special case for rem_intra_luma_pred_mode​ being equal to 31 or 32, since there are 33 remaining intra prediction modes available. Furthermore, the bins of rem_intra_luma_pred_mode is coded using an adaptive context as well. Therefore, a total of 3 contexts are used for intra mode coding when CABAC is used as the entropy coder.

When CAVLC (Context-Adaptive Variable Length Code) is used as the entropy coder, prev_intra_luma_pred_flag and mpm_idx are coded as binary bits. On the other hand, rem_intra_luma_pred_mode is coded using a fixed-length-code (FLC) in the 64x64 case, since only 2 remaining intra prediction modes are present, respectively. For the 4x4, 8x8, 16x16 and 32x32 cases, rem_intra_luma_pred_mode​ is coded using a VLC with 16 entries for 4x4, and 33 entries for 8x8, 16x16 and 32x32. Therefore, 2 additional tables of VLC codeword and codeword lengths are needed for the 16 entries case, and for the 33 entries case.

The decoding tree for the Luma intra prediction mode is shown below:

[image: image2.emf]prev_intra_luma_pred_flag

mpm_idx rem_intra_luma_pred_mode

1

0

IntraMPM1Mode IntraMPM0Mode

if rem_intra_luma_pred_mode< IntraMPM0Mode,

rem_intra_luma_pred_mode

else if IntraMPM0Mode

≤

rem_intra_luma_pred_mode< IntraMPM1Mode–1

rem_intra_luma_pred_mode+ 1

else

rem_intra_luma_pred_mode+ 2

0

1

2 Proposed method

2.1 Removing context for mpm_idx

When CABAC is used as the entropy coder, we propose to remove the context used to code mpm_idx. In other words, this syntax element is coded in bypass mode (assuming an equal probability distribution), which reduces the complexity of binary arithmetic coding (BAC) in this case. Furthermore, one context model and initialization entry can be eliminated.

2.2 Simplifying remaining mode coding

In addition, we also propose an alternative method of coding rem_intra_luma_pred_mode. In our experiments, we noticed that the case where rem_intra_luma_pred_mode == 0 happens much more frequently than other cases, which implies that this event should be coded with a shorter codeword.

2.2.1 CABAC as the entropy coder

When CABAC is used as the entropy coder, we propose first signalling if rem_intra_luma_pred_mode > 0 using a rem_intra_luma_pred_mode_gr0 flag, before coding rem_intra_luma_pred_mode. The decoding tree below summarizes this:

[image: image3.emf]prev_intra_luma_pred_flag

mpm_idx rem_intra_luma_pred_mode_gr0

1

0

IntraMPM1Mode IntraMPM0Mode

0

1

rem_intra_luma_pred_mode_minus1

1

rem_intra_luma_pred_mode = 0

rem_intra_luma_pred_mode=

rem_intra_luma_pred_mode_minus1+ 1

0

if rem_intra_luma_pred_mode< IntraMPM0Mode,

rem_intra_luma_pred_mode

else if IntraMPM0Mode

≤

rem_intra_luma_pred_mode< IntraMPM1Mode–1

rem_intra_luma_pred_mode+ 1

else

rem_intra_luma_pred_mode+ 2

There are several benefits of doing this. First, for the 4x4 case, this would enable us to code 17 remaining modes, thereby including the Hor+6 intra prediction mode. Second, for both the 4x4 case and the 8x8, 16x16 and 32x32 cases, a simple FLC can be used to binarize rem_intra_luma_pred_mode_minus1. Note that for 64x64 blocks, rem_intra_luma_pred_mode_minus1 is inferred to be 0, and no further bits need to be coded. The table below summarizes the number of bins used for rem_intra_luma_pred_mode_minus1 for each block size, as well as the total number of available intra modes.

	Block size
	Number of modes
	Description of modes
	Bins for rem_intra_luma_pred_mode_minus1

	4x4
	19
	Planar, DC, Ver+2x (-4 ≤ x ≤ 4), Hor+2x (-3 ≤ x ≤ 4)
	4

	8x8
	35
	All
	5

	16x16
	35
	All
	5

	32x32
	35
	All
	5

	64x64
	4
	Planar, DC, Ver, Hor
	0

In our proposed method, only prev_intra_luma_pred and rem_intra_luma_pred_mode_gr0 are coded using context models. mpm_idx and rem_intra_luma_pred_mode_minus1 are coded in bypass mode. Therefore, the number of contexts can be reduced from 3 to 2, and at most 2 bins are coded using context models.

2.2.2 CAVLC as the entropy coder

When CAVLC is used as the entropy coder, rem_intra_luma_pred_mode is coded using a combination of unary coding and FLC, both of which requires no look-up tables and is simple to implement. Suppose the number of remaining modes is 1+2N , i.e., ranges from [0,2N]. Note that when the number of modes is 19, N=4, and when the number of modes is 35, N=5. In the proposed scheme, a unary code is first used to signal if the remaining mode is in [1,2N-1], 0, or [1+2N-1,2N]. The codeword used is shown explicitly below:

	Range
	Codeword

	[1,2N-1]
	0

	[1+2N-1,2N]
	10

	0
	11

If the range signaled is either [1,2N-1] or [1+2N-1,2N], then a N-1 length FLC is used to signal the index within the signaled range. Of course, if 0 is signaled, no further codeword needs to be sent. Also, if N=0, then only a binary codeword is used to signal if the remaining mode is 0 or 1. The chart below summarizes this alternative scheme.

[image: image5.emf]prev_intra_luma_pred_flag

mpm_idx rem_intra_luma_pred_mode_half

1

0

IntraMPM1Mode IntraMPM0Mode

0

1

rem_intra_luma_pred_mode_eq0

1

rem_intra_luma_pred_mode = 0

rem_intra_luma_pred_mode=

rem_intra_luma_pred_mode_idx+ 1 + 2

N-1

0

if rem_intra_luma_pred_mode< IntraMPM0Mode,

rem_intra_luma_pred_mode

else if IntraMPM0Mode

≤

rem_intra_luma_pred_mode< IntraMPM1Mode–1

rem_intra_luma_pred_mode+ 1

else

rem_intra_luma_pred_mode+ 2

rem_intra_luma_pred_mode_idx

rem_intra_luma_pred_mode_idx

rem_intra_luma_pred_mode=

rem_intra_luma_pred_mode_idx+ 1

1 0

Note that in this proposed scheme, there is also no need to have any VLC tables for the decoding of intra prediction modes, and no mode re-ranking is performed.
2.2.3 Encoder modifications

To fully exploit the change in intra prediction mode coding, the following modifications are needed. First, when 4x4 intra blocks are considered, there are now 19 available intra prediction modes instead of 18. Second, since the event of rem_intra_luma_pred_mode==0 now uses a shorter codeword, it is effectively an additional most probable mode. As in the unified proposal in CE6b [2-7], the Hadamard cost of using this prediction mode is compared with that of the list of prediction modes to be checked, and if it is smaller than any of the prediction mode, that prediction mode is replaced by this additional most probable mode for the full RD cost check.

2.3 Advantages of proposed modifications
Compared to the current intra prediction mode scheme, this proposal has the following advantages:

· Reduce number of CABAC context models to 2

· At most 2 bins are coded with context in CABAC

· A FLC binarization is used for remaining modes in CABAC, without a need for an escape code
· No additional VLC table is needed for CAVLC

· No mode re-ranking is done for CAVLC
3 Experimental results
We have implemented the proposed method in HM 4.0. The proposed method is evaluated on all the HEVC sequences as mandated by the common test conditions, using both Intra High-Efficiency and Intra Low-Complexity encoding configurations [1]. The proposed method is compared against HM 4.0 without the proposed method (the anchor). Each sequence is encoded using 4 QP values (22, 27, 32, 37), and the bitrate and PSNR values are recorded. For comparison, the BD-Rate between the anchor and proposed method is measured, which gives an indication of the coding performance of the proposed method.

3.1 Removing mpm_idx context

We first present results for coding mpm_idx in bypass mode, i.e., removing the context for mpm_idx. The first table shows the results when applied to HM4 (the anchor is HM4):

	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0%
	-0.1%
	0.0%

	Class B
	0.1%
	0.1%
	0.1%

	Class C
	0.0%
	0.0%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%

	Class E
	0.0%
	0.0%
	0.1%

	Overall
	0.0%
	0.0%
	0.0%

	
	0.0%
	0.0%
	0.0%

	Enc Time[%]
	100%

	Dec Time[%]
	99%

The following table shows the results when applied to HM4+CE6b unified proposal (anchor is HM4+CE6b unified proposal) [2-7]:

	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0%
	-0.1%
	-0.1%

	Class B
	0.1%
	0.0%
	0.1%

	Class C
	0.0%
	0.0%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%

	Class E
	0.0%
	0.0%
	0.0%

	Overall
	0.0%
	0.0%
	0.0%

	
	0.0%
	0.0%
	0.0%

	Enc Time[%]
	100%

	Dec Time[%]
	99%

The next table shows the results when applied to HM4+Ce6b unified proposal with LM bug fix (anchor is HM4+CE6b unified proposal+LM bug fix) [2-7]:

	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0%
	-0.1%
	0.0%

	Class B
	0.1%
	0.1%
	0.1%

	Class C
	0.0%
	0.0%
	0.0%

	Class D
	0.0%
	0.0%
	0.0%

	Class E
	0.0%
	0.1%
	0.1%

	Overall
	0.0%
	0.0%
	0.0%

	
	0.0%
	0.0%
	0.0%

	Enc Time[%]
	100%

	Dec Time[%]
	99%

In all of these 3 cases, we see that coding mpm_idx in bypass mode has no significant coding loss.

These results have been cross-checked and reported in JCTVC-G254.
3.2 Simplifying remaining mode coding
Next, we show the results of applying the overall scheme (simplifying remaining mode coding + coding mpm_idx in bypass mode) to HM4, with HM4 as the anchor:

	
	All Intra HE
	All Intra LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.2%
	0.0%
	0.0%
	0.0%
	0.1%
	0.1%

	Class B
	-0.1%
	0.0%
	0.1%
	0.0%
	0.0%
	0.0%

	Class C
	-0.2%
	0.0%
	0.0%
	0.0%
	0.0%
	0.0%

	Class D
	-0.2%
	-0.1%
	-0.1%
	-0.1%
	-0.1%
	-0.1%

	Class E
	-0.3%
	-0.1%
	-0.1%
	-0.1%
	0.1%
	0.2%

	Overall
	-0.2%
	0.0%
	0.0%
	-0.1%
	0.0%
	0.0%

	
	-0.2%
	0.0%
	0.0%
	-0.1%
	0.0%
	0.0%

	Enc Time[%]
	99%
	100%

	Dec Time[%]
	98%
	98%

Here, the proposal gives 0.2% and 0.1% BD-Rate gains for AI-HE and AI-LC configurations respectively. Note that this is despite the proposed method simplifying the encoding of the intra mode in CABAC by reducing the number of contexts, increasing the number of bins coded in bypass mode, and avoiding the special case (of rem_intra_luma_pred_mode​ being 31 or 32) for block sizes of 8x8, 16x16 and 32x32, and in CAVLC by replacing a look-up table based VLC with a simple combination of unary coding and FLC.
This result has been cross-checked and reported in JCTVC-G106.

4 Conclusions

In this contribution, we have proposed two simplifications. The first is to code mpm_idx in bypass mode in CABAC. The second is a method for coding the remaining intra prediction mode by using a binary+FLC binarization in CABAC, and a unary+FLC code in CAVLC. The experimental results show that coding mpm_idx in bypass mode has no significant coding loss, and that the simplification in remaining mode coding brings 0.2% and 0.1% BD-Rate gains for AI-He and AI-LC configurations respectively. We recommend adopting the two simplifications in the next HEVC test model.

5 References

[1] F. Bossen, “Common conditions and software reference configurations,” in JCTVC-F900, Torino, Italy, Jul., 2011.

[2] A. Tabatabai et al., “CE6: Intra Coding Improvements,” in JCTVC-F906, Torino, Italy, Jul., 2011.
[3] T.-D. Chuang, C.-Y. Chen, M. Guo, X. Guo, Y.-W. Huang, S. Lei, “Luma Intra Prediction Mode Coding”, JCTVC- F062, Torino, July 2011.
[4] W.-J. Chien, X. Wang, M. Karczewicz, “Parsing friendly intra mode coding”, JCTVC- F459, Torino, July 2011.
[5] E. Maani, A. Tabatabai, “Unifying binarizations of Intra modes in HE and LC”, JCTVC- F091, Torino, July 2011.
[6] J. Park, B. Jeon, “CAVLC coding for Intra Pred mode”, JCTVC- F106, Torino, July 2011.
[7] E. Francois, S. Pautet, C. Gisquet, “Modified Intra Mode Coding”, JCTVC- F269, Torino, July 2011.
6 Patent rights declaration(s)
Institute for Infocomm Research may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 Appendix – Proposed Text
7.1 Context removal for mpm_idx

Changes to Section 7.3.7 on prediction unit syntax:
mpm_idx[x0][y0] is coded as u(1) for both CABAC and CAVLC.
In other words, change from:
	

mpm_idx[x0][y0]
	u(1) | ae(v)

to:
	

mpm_idx[x0][y0]
	u(1)

Note that entries for mpm_idx are currently missing from the context tables (Table 9-20) and binarization description (Table 9-46) in JCTVC-F803_d5.

7.2 Remaining mode coding simplification

The PU syntax is as described in 7.1.
Changes to Table 8-2:

Table 8‑2 – Specification of intraPredModeNum
	log2PUSize
	intraPredModeNum

	2
	18 19

Changes to 9.2.4.6:

9.2.4.6 Parsing process for rem_intra_luma_pred_mode

This process is invoked when entropy_coding_mode_flag is equal to 0 for parsing syntax element rem_intra_luma_pred_mode in subclause 7.3.7.

Inputs to this process are bits from slice data, a variable log2CUSize specifying the size of the current coding unit and a variable array intraModeTable.
Outputs of this process are the syntax element rem_intra_luma_pred_mode and value-updated intraModeTable.

The variable log2PUSize is derived as follows.

–
If PartMode is equal to PART_NxN, log2PUSize is set equal to log2CUSize – 1,

–
Otherwise, log2PUSize is set equal to log2CUSize.

Table 9-xx specifies the number of bits cNumBits depending on log2PUSize.
Table 9-xx – Specification of cNumBits

	log2PUSize
	cNumBits

	2
	5

	3
	6

	4
	6

	5
	6

	6
	1

The value of rem_intra_luma_pred_mode is derived as follows.

–
Based on log2PUSize, the value of a variable intraPredModeNum indicating the number of intra prediction modes for the given size of prediction unit is obtained according to Table 8‑2.
–
If intraPredModeNum is equal to 4, read one bit and assign its value to rem_intra_luma_pred_mode. No further step is carried out. Othewise,

–
Othewise, the value of rem_intra_luma_pred_mode is obtained as follows the values of variable k and vlcNum are obtained as follows
· Read one bit and assign its value to rem_intra_luma_pred_mode_half.
· If rem_intra_luma_pred_mode_half is equal to 0, read cNumBits – 2 bits and assign its value to rem_intra_luma_pred_mode_idx. rem_intra_luma_pred_mode is set equal to rem_intra_luma_pred_mode_idx + 1.

· Otherwise, read one bit and assign its value to rem_intra_luma_pred_mode_eq0.

· If rem_intra_luma_pred_mode_eq0 is equal to 0, read cNumBits – 2 bits and assign its value to rem_intra_luma_pred_mode_idx. rem_intra_luma_pred_mode is set equal to rem_intra_luma_pred_mode_idx + 1 + (1 << (cNumBits – 2)).
· Otherwise, rem_intra_luma_pred_mode is set equal to 0.
· If intraPredModeNum is equal to 18, set vlcNum and k equal to 20 and 0, respectively.
· If intraPredModeNum is equal to 35, set vlcNum and k equal to 21 and 1, respectively.
· The parsing process described in subclause 9.2.1 is invoked with vlcNum as input and the variable codeNum as output.
· The value of rem_intra_luma_pred_mode is set equal to intraModeTable[k][codeNum].
· The value of a variable counterNum is set to 0. The variable array intraModeTable[k] is updated by invoking process in subclause 9.2.3 with intraModeTable[k], codeNum and counterNum as inputs.
Tables 9-5 and 9-6 (for vlcNum=20 and vlcNum=21 respectively) is removed.

Section 9.2.2.5 on initialization process for intraModeTable is removed.

Changes to Table 9-46:

	Table 9‑46 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset

	Syntax element
	
	Type of binarization
	maxBinIdxCtx
	ctxIdxTable
	ctxIdxOffset

	rem_intra_luma_pred_mode
	I
	prefix and suffix as specified in subclause 9.3.2.8
	prefix: 0

suffix: na
	prefix: Table 9‑27

suffix: na
	prefix: 0

suffix: na, (uses Decode Bypass)

	
	P
	
	prefix: 0

suffix: na
	prefix: Table 9‑27

suffix: na
	prefix: 1

suffix: na, (uses Decode Bypass)

	
	B
	
	prefix: 0

suffix: na
	prefix: Table 9‑27

suffix: na
	prefix: 2

suffix: na, (uses Decode Bypass)

Changes to Section 9.3.2.8:

9.3.2.8 Binarization process for rem_intra_luma_pred_mode

Input to this process is a request for the syntax element rem_intra_luma_pred_mode and a variable log2PUSize specifying the size of the current prediction unit cNumBins.

Output of this process is the binarization of the syntax element.
Table 9-xx specifies the number of bins cNumBins depending on log2PUSize.
Table 9-xx – Specification of cNumBins

	log2PUSize
	cNumBins

	2
	5

	3
	6

	4
	6

	5
	6

	6
	1

The binarization for rem_intra_luma_pred_mode is given as follows. by Table 9‑49.
· If rem_intra_lum_pred_mode is equal to 0, the bin string of the syntax element consists of a prefix bin string and suffix bin string as follows.
· The prefix bin string is 0.

· The suffix bin string is empty.

· Otherwise, the bin string of the syntax element consists of a prefix bin string and suffix bin string as follows.
· The prefix bin string is 1.

· The suffix bin string is derived by the FL binarization process as specified in subclause 9.3.2.5 with the symbol value of rem_intra_luma_pred_mode – 1 and cMax = (1 << (cNumBins – 1)) - 1 as input and the bin string as output.

Changes to Table 9-51:

	Table 9‑51 – Assignment of ctxIdxInc to binIdx for all ctxIdxTable and ctxIdxOffset values

	Syntax element
	ctxIdxTable,
ctxIdxOffset
	binIdx

	
	
	0
	1
	2
	3
	>=4

	rem_intra_luma_pred_mode
	Table 9‑27
	0
	0
	na
	na
	na
	na

	
	
	1
	0
	na
	na
	na
	na

	
	
	2
	0
	na
	na
	na
	na

� In this writeup, italics denote variables with semantic meanings, while bold denote syntax elements that are coded in the bitstream. Bold variables when written in italics imply that the values of the decoded syntax elements are to be used.

Page: 11
Date Saved: 2011-11-08

_1381775362.vsd
prev_intra_luma_pred_flag

mpm_idx

rem_intra_luma_pred_mode

1

0

IntraMPM1Mode

IntraMPM0Mode

if rem_intra_luma_pred_mode < IntraMPM0Mode,
	rem_intra_luma_pred_mode
else if IntraMPM0Mode ≤ rem_intra_luma_pred_mode < IntraMPM1Mode – 1
	rem_intra_luma_pred_mode + 1
else
	rem_intra_luma_pred_mode + 2

0

1

_1382300791.vsd
prev_intra_luma_pred_flag

mpm_idx

rem_intra_luma_pred_mode_gr0

1

0

IntraMPM1Mode

IntraMPM0Mode

if rem_intra_luma_pred_mode < IntraMPM0Mode,
	rem_intra_luma_pred_mode
else if IntraMPM0Mode ≤ rem_intra_luma_pred_mode < IntraMPM1Mode – 1
	rem_intra_luma_pred_mode + 1
else
	rem_intra_luma_pred_mode + 2

0

1

rem_intra_luma_pred_mode_minus1

1

rem_intra_luma_pred_mode = 0

rem_intra_luma_pred_mode = rem_intra_luma_pred_mode_minus1 + 1

0

_1382300236.vsd
prev_intra_luma_pred_flag

mpm_idx

rem_intra_luma_pred_mode_half

1

0

IntraMPM1Mode

IntraMPM0Mode

0

1

rem_intra_luma_pred_mode_eq0

1

rem_intra_luma_pred_mode = 0

rem_intra_luma_pred_mode = rem_intra_luma_pred_mode_idx + 1 + 2N-1

0

if rem_intra_luma_pred_mode < IntraMPM0Mode,
	rem_intra_luma_pred_mode
else if IntraMPM0Mode ≤ rem_intra_luma_pred_mode < IntraMPM1Mode – 1
	rem_intra_luma_pred_mode + 1
else
	rem_intra_luma_pred_mode + 2

rem_intra_luma_pred_mode_idx

rem_intra_luma_pred_mode_idx

rem_intra_luma_pred_mode = rem_intra_luma_pred_mode_idx + 1

1

0

_1381775360.vsd
Source

L

A

