	[image: image2.png][image: image3.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G110

	Title:
	Implication of parallelized bitstreams on single core decoder architectures

	Status:
	Input Document to JCT-VC

	Purpose:
	Information

	Author(s) or
Contact(s):
	Wade K. Wan
Broadcom Corporation
5300 California Ave
Irvine, CA 92617

Tim Hellman
Broadcom Corporation
200 Brickstone Square
Suite 401
Andover, MA 01810

	Tel:
Email:

Tel:
Email:
	+1-949-926-6387
wwan@broadcom.com

+1-978-719-1348
timhellman@broadcom.com

	Source:
	Broadcom Corporation

Abstract

There have been several methods proposed and adopted in previous JCT-VC meetings to enable parallelism for multi-core architectures. It is currently unclear if keeping these multiple approaches is necessary in the final HEVC design as they may be redundant and/or could be unified. This contribution suggests that single core decoder architectures may not benefit and in fact, may be penalized by having to support some of these parallelism techniques. As an example of this, this submission reports on the impact of several parallelism techniques on a single core hardware-based design in an effort to aid the effort to better understand the trade-offs between different techniques to enable parallelism.

1 Introduction

It is generally agreed that enabling parallelism in the HEVC design is beneficial to provide more options for different video coding implementations. For this reason, several parallelism techniques have been incorporated into the current working draft (WD4) [1]. These include regular slices (as used in H.264/AVC), entropy slices [2], wavefront parallel processing [3] and tiles [4].
While enabling parallel implementations is a useful property for a codec, it is important to consider the effect on single core decoder architectures. These architectures may not benefit and in fact, may be penalized to different degrees by having to support parallelism techniques.

These multiple approaches have different trade-offs and a discussion of the differences between the techniques and analysis of the impact on implementations can be found in [5]. This contribution attempts to expand on the analysis in [5] which focused on comparing single and multiple core processor solutions by reporting the impact on single core hardware-based designs of several parallelism techniques.

2 Discussion

The impact of the following parallelism techniques on single core hardware-based designs is reported as follows:

· Regular slices (Section 2.1)

· Entropy slices (Section 2.2)

· Wavefront parallel processing (Section 2.3)

· Tiles (Section 2.4)

2.1 Regular Slices
A single core hardware decoder will encounter regular slices in the expected raster order so the extra burden only consists of an additional slice header that needs to be parsed for each slice, and awareness of slice boundaries in processing blocks. The area and complexity impact may be considered to be minor because no addition data buffering or DRAM storage is required. This is because the inherent CU processing order is unchanged, so only control functions that compute neighbors are affected.

Slices can have an impact on hardware decoder performance if the slice rate (number of slices per picture) grows too high. Starting a new slice has a certain amount of overhead (a pipeline ‘hiccup’), so with very many slices this overhead starts to dominate. Also, performance suffers if a large amount of data needs to be reloaded on every slice, such as if large tables are allowed to change on every slice. Either multiple copies of this data need to be stored, which has an area impact, or processing has to be halted during the reload. These issues can generally be addressed with appropriate level limits in the standard, as was done for AVC with its slice rate limit.
It is generally accepted that regular slices have inferior coding efficiency compared to other parallelism techniques due to the prevention of prediction or entropy dependencies across slices as well as the additional bitrate overhead due to the additional slice headers. Therefore, other techniques with improved coding efficiency are desired by parallel implementation designs.
2.2 Entropy Slices

Entropy slices require the CABAC context to be reinitialized at each entropy slice with a reduced overhead compared to regular slices since the slice header is not retransmitted. The impact to a single core hardware decoder can be considered minor unless there are a very large number of entropy slices. Entropy slices only affect CABAC processing, and the number of cycles required to reinitialize the CABAC state is not large, so this overhead is unlikely to present a problem. Still, a slice rate limit for entropy slices is desirable as well. Also, an upper limit on the number of slices per LCU is desirable, as the overhead of many small slices can be considerable.
2.3 Wavefront Parallel Processing

With wavefront processing a ‘snapshot’ of the CABAC probability state is taken at a fixed point in a picture’s LCU row, and that CABAC state is restored at the start of the next row. The idea is to allow parallel entropy encoding and decoding in the same manner as entropy slices, without the CABAC state having to start from scratch at each new row.
The impact of this technique on a single core decoder is on the same order as entropy slices. Additional RAM (512 bytes or so) is needed to store the snapshot, and the processing overhead of doing the snapshot is about the same as doing the re-initialization for entropy slices. This method is inherently slice-rate limited (one per row), so no additional limit should be necessary.

2.4 Tiles

Tiles is a coding technique comprised of partitioning a picture with vertical and horizontal boundaries to form rectangular segments containing an integer number of LCUs. These LCUs can then be processed in raster scan order within a tile and the tiles are processed in raster scan order within a picture.
[image: image1.png]
Figure 1 - Example of Tiles partitioning, using 3 columns and 3 rows, from [4]
Two variants of the tiles coding technique were adopted with a flag (tile_boundary_independence_idc) to control whether tile-crossing coding dependencies are permitted or not. The flag is defined in [4] as:
tile_boundary_independence_idc equal to 1 indicates that all neighbouring treeblocks not contained within the same tile as the treeblock being decoded are marked as not available. Otherwise, tile_boundary_independence_idc equal to 0 indicates that availability of treeblocks is not affected by tile boundaries. Further, tile_boundary_independence_idc equal to 1 indicates that the initialisation process for the entropy decoder is invoked when decoding the first treeblock in a tile.
Exactly what this flag controls is unclear, however. In the meeting notes [5], this sentence appears in the discussion of JCTVC-F335: “Loop filtering crosses the tile boundaries. Is there a flag proposed for that? Currently, no (just applied always across tile boundaries).” Loop filtering thus seems to be unaffected by the flag.
Allowing any dependencies across vertical tile boundaries presents an extraordinary difficulty for a single core hardware decoder. Single core decoders are designed to process in raster-LCU order. Top and left neighbor information is needed for various processing stages: vector and spatial mode generation, spatial prediction and all the filters. This information is stored (often in on-chip buffers) for the row of LCUs above the present one, and for the LCU immediately to the left. The amount of storage needed is determined by the maximum image width supported, and is unchanged by any of the previously described parallel processing methods.
The introduction of vertical tile boundaries with dependencies destroys this neighbor storage paradigm, for now long-term storage must be found for all the horizontally adjacent neighbors on the boundary. For example, in figure 1, data from LCUs 4, 8 and 12 must be stored until LCUs 13, 19 and 25 are decoded, and likewise for LCUs 18, 24 and 30. In the worst case (all vertical boundaries), the decoder will have to store neighbor data for a whole vertical column of LCUs.
The decoder implementer has 2 choices:

1. Provide special on-chip storage to be used only for decoding streams with tiles

2. Store the neighbor data in DRAM

Choice 1 is undesirable, as the amount of on-chip storage is large. Functions that require neighbor data are often designed to minimize the amount of top-context data that’s needed. This is not the case with ‘left’ neighbor data, as the extent of this data is limited by the height of the LCU. This storage would represent a significant area increase.

Choice 2 is also undesirable, as it adds DRAM interfaces to portions of the design that did not need them before, thereby significantly increasing complexity, and adds to the bandwidth requirements of the decoder.

It is interesting to note that most of these same difficulties are present with arbitrary slice ordering in AVC, which prevented many decoders from implementing it.
Tile coding only works for a single core hardware decoder design if all tile crossing dependencies are forbidden. In that case, each tile can be decoded as if it were a separate picture, which would present little difficulty to support. It was suggested in [5] that perhaps the major effect would be an additional delay for single core decoders would be needed to support this variant of tiles. This is highly undesirable because there are usage modes where decoding delay must be minimized.

3 Conclusions
There appears a need to further study and understand the implications of the different techniques considered to enable parallelism in the HEVC codec design. This contribution attempts to describe the impact on single core hardware decoder designs to support these methods with the following conclusions:
· Entropy slices have minor impact to these designs as they do not require significant additional architecture. However, a slice rate limit should be defined (as in AVC), as well as a cap on the number of slices per LCU.
· Wavefront parallel processing results in an additional context to be stored. The cost of this extra context is fairly low.
· The support of tiles in these designs is very dependent on whether inter-tile coding dependencies are permitted.

· If these dependencies are not permitted, tone can see how a single core hardware design can support tiles by processing each tile in a picture-like fashion without significant additional implementation burden.

· If these dependencies are permitted, there are significant issues with how the general tile methodology can be mapped efficiently in a single core hardware design.

4 References
[1]
T. Wiegand, B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, “WD4: Working Draft 4 of High-Efficiency Video Coding,” Document of Joint Collaborative Team on Video Coding, JCTVC-F803, Oct. 2011.
[2]
A. Segall, T. Yamamoto, J. Zhao, Y. Kitaura, Y. Yasugi, and T. Ikai (Sharp), “Video coding technology proposal by Sharp,” JCTVC Document JCTVC-A105, Dresden, DE, April 2010.
[3]
C. Gordon, F. Henry, S. Pateux (Orange FT), “Wavefront Parallel Processing for HEVC Encoding and Decoding,” JCT-VC Document JCTVC-F274, Torino, IT, July, 2011.

[4]
A. Fuldseth (Cisco), M. Horowitz, S. Xu (eBrisk Video), A. Segall (Sharp), M. Zhou (TI), “Tiles,” JCT-VC Document JCTVC-F335, Torino, IT, July, 2011.

[5] V. Sze, M. Budagavi, M. Zhou (TI), “Analysis of Multi-core Processing approaches,” JCT-VC Document JCTVC-F135, Torino, IT, July, 2011.

[6] G. Sullivan, J.R Ohm, “Meeting report of the sixth meeting of the Joint Collaborative Team on Video Coding (JCT-VC) Torino, IT, 14-22 July 2011”, JCT-VC Document JCTVC-F_Notes, Torino, IT, July 2011
5 Patent rights declaration(s)
Broadcom Corporation may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1

