	[image: image1.png][image: image2.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, 21-30 November, 2011
	Document: JCTVC- G1035_r1
WG11 Number: m22824

	Title:
	BoG report on resolving deblocking filter description issues

	Status:
	Input Document to JCT-VC

	Purpose:
	Report

	Author(s) or
Contact(s):
	Andrey Norkin

	Email:
	andrey.norkin@ericsson.com

	Source:
	BoG

This contribution summarizes activities of the break out group (BoG) on resolving deblocking filter description issues and deblocking filter parameters signaling.
1 BoG participants
Matthias Narroschke (Matthias.Narroschke@eu.panasonic.com)

Geert Van Der Auwera (geertv@qualcomm.com)

Andrey Norkin (andrey.norkin@ericsson.com)
Tomoo Yamakage (tomoo.yamakage@toshiba.co.jp)

Byeungwoo Jeon (bjeon@skku.edu)

Xun Guo (xun.guo@mediatek.com)

Peisong Chen (peisongchen@yahoo.com)
Seungwook Park (seungwook.park@lge.com)

Il-Koo Kim (secret9th@gmail.com)
Kazuo Sugimoto (Sugimoto.Kazuo@ak.MitsubishiElectric.co.jp)
Kenneth Andersson (kenneth.r.andersson@ericsson.com)

2 Agenda
The following aspects of deblocking filter design has been addressed during the BoG
1. Bs values and tc_offset
2. Bs (internal edges) calculation in the source code and description.
3. High-level parameters signaling

4. Source code issues
3 Discussion
3.1 Bs values, tc_offset and strong filtering (non-normative modifications, produce bit-exact results)
The following contributions address the Bs derivation process.
JCTVC-G175 BS decision tree simplification [S. Park, N. Park, B. Jeon (LGE), X. Guo, J. An, C. Hsu, Y. Huang, S. Lei (MediaTek), G. Auwera, M. Karczewicz (Qualcomm)]

This contribution reports the simplification of BS (boundary strength) decision tree in the deblocking filter. The proposed simplification removes redundant BS values with related conditions. The number of BS values is changed from 5 to 3 and this modification provides the same BD rate and visual quality as HM4.0.
The check for the CU boundary (Bs = 4) is removed. The proposed BS values are 0, 1, 2.
JCTVC-G620 Clean-up of deblocking filter description [A. Norkin (Ericsson)] [late]

Part 1: Removing clipping operations from the deblocking strong filter. Clipping is unnecessary since the output values cannot get outside the input range.

e.g. replace p1’ = Clip1Y((p2 + p1 + p0 + q0 + 2) >> 2) with p1’ = (p2 + p1 + p0 + q0 + 2) >> 2.
Part 2: Check for the CU boundary (Bs = 4) is removed. Decreasing the number of Bs values to 0, 1, 2. This part of the proposal is identical to G175.
JCTVC-G638 Deblocking boundary strength and filtering process simplifications [A. Kotra, M. Narroschke, T. Wedi (Panasonic)]

Part 1. Remove the Bs = 4 and the check for CU boundary. Same as in G620 and G175.
Part 2. Set Bs values to 0, 1 and 3. Remove the tc_offset from the WD text and replace tc_table [Clip3(0, 55, qPL + tc_offset] with tc_table[Clip3(0, 55, qPL + bS-1)]. One participant supports this proposal, one is against.
Part 3. If Bs = 0, do not calculate Tc and Beta when Bs = 0. Suggests this change to the working draft text. Two participants support the proposal. Recommend adopting Part 3 to WD.
Recommendations from BoG:
BoG recommends to remove CU-boundary check from Bs derivation.
It is recommended to change Bs values to Bs = 0, 1, 2. Value 3 from the current WD is replaced by value 2. Values 2 and 1 are replaced by value 1.
The group recommends the WD editors to consider whether the check that Bs is greater than 0 should be moved up in the WD (e.g. 8.6.1.4) since the some derivations, such as tc and beta derivations are not needed when Bs is 0.
Regarding removing clipping operation in strong filtering, it is proposed to check with SW coordinators that it does not create any issues and then remove if it is so..
3.2 Bs (internal edges) calculation in the source code and description
It has been indicated in JCTVC-G176 that the Bs values are derived for all edges on the 4x4 pixel grid, whereas the filtering is done on the 8x8 pixel grid. It is suggested to remove derivation of Bs for inner boundaries on the 4x4 pixel grid and derive only Bs values on 8x8 pixel grid. However, derivation of Bs on 8x8 grid shall be done for 4 pixel edge parts.

Note: There are proposals that require calculation of Bs on some inner 4x4 boundaries (e.g. G383). If G383 proposals is adopted, this part should be defined differently.
BoG suggests to contact WD editors to discuss the exact changes.

3.3 Signaling deblocking filter parameters in slice header

3.4 The BoG recommends removing deblocking parameter alpha from the software (and from WD) since there is no alpha parameter in HEVC deblocking.
3.5 There are three proposals in CE12 and two proposals non-CE proposals that address the issue of parameters signaling in HEVC deblocking.
Parts that have been modified compared to HM4.0 (the table is taken from CE12 summary report G042)
	Proponent
	Mitsubishi (G466)
	Toshiba, Qualcomm (G174)
	Panasonic (G574)

	Number of parameters in slice header
	2
	2
	6

	What parameters are signaled
	Bs intra offset luma

Bs intra offset chroma
	tc offset

beta offset
	1 On/off-flag

5 Weights to delta values of luma filters (3 for strong, 2 for weak)

	Parameters change typically (in the provided software):

every frame/every sequence/same for all sequences in the test set
	same for all sequences and all frames (set in the configuration file)
	same for all sequences and all frames (set in the configuration file)
	Encoder control minimizes MSE for each frame and decides whether to send parameters (frame-wise).

	Modifications of Bs
	Yes
	No
	No

	Modification of deblocking decisions
	
	
	

	Modification of filtering operations
	No
	No
	yes

	Remarks
	
	
	An additional encoder control minimizing MSE for subjectively important samples have been provided before the meeting (see section 3.5)

JCTVC-G291 Transform Dependent Deblocking Filter Parameter Adjustment in Slice Level [G. Van der Auwera, M. Karczewicz (Qualcomm)]

This contribution proposes to adjust the Tc and Beta parameters of the deblocking filter by enabling signaling of control data in the slice header. It is proposed to adjust Tc depending on the transform size and on intra or inter type of the blocks. The deblocking_filter_control_present_flag is proposed in the SPS to control the presence of the deblocking filter adjustment parameters in the slice header. There are BD-rate gains of -0.3% for all-intra HE and -0.1% for random access HE test conditions, other configurations similar to the anchor. The proponent advocates importance of these parameters for subjective visual quality.
Different tc offsets are sent for blocks of different size. The control parameters are signaled in the slice header. Similar to proposal G174 but with sending additional parameters.
Results: -0.3/-0.1, -0.1/0.0, 0.1/0.1 for HE-AI / LC-AI, HE-RA / LC-RA, HE-LD / LC-LD.
JCTVC-G619 Non-CE12: deblocking parameters signalling in slice header [A. Norkin, R. Sjöberg, K. Andersson, J. Enhorn (Ericsson)]

The document is a proposal for signaling deblocking filter parameters in the slice header. It is proposed to signal three deblocking parameters that control which pixels are being filtered and one clipping parameter that determines the largest possible modification of the pixels in the weak filtering mode.

The proposal sends a flag and four parameters in the slice header:
slice_tc_offset_div2

slice_beta_offset

slice_side_beta_offset_div4

slice_nat_edge_offset_div2

The encoder that makes a rough estimation of the parameters frame-wise on SSD has been implemented. BD-rate results are: -0.1% on AI, -0.4% on LDB HE and -0.3% on the rest of standard configurations.

Results: -0.1/-0.1, -0.3/-0.3, -0.4/-0.3 for HE-AI / LC-AI, HE-RA / LC-RA, HE-LD / LC-LD.
Recommendation: BoG recommends adopting paramemters tc_offset_div2 and beta_offset_div2 as a minimal set of control parameters for HEVC deblocking filter. BoG suggests looking into G174 for details.
BoG recommends sending the following deblocking parameters in slice header and APS.
The following syntax is proposed for APS and slice.

APS parameters
	aps_rbsp() {
	Descriptor

	
aps_id
	ue(v)

	
aps_sample_adaptive_offset_flag
	u(1)

	
aps_adaptive_loop_filter_flag
	u(1)

	
aps_deblocking_filter_flag
	u(1)

	
if(aps_sample_adapt
ive_offset_flag || aps_adaptive_loop_filter_flag) {
	

	

aps_cabac_use_flag
	u(1)

	

if(aps_cabac_use_flag) {
	

	

aps_cabac_init_idc
	ue(v)

	

aps_cabac_init_qp_minus26
	se(v)

	

}
	

	
}
	

	
if(aps_sample_adaptive_offset_flag) {
	

	

sao_data_byte_count
	u(8)

	

byte_align()
	

	

sao_param()
	

	

byte_align()
	

	
}
	

	
if(aps_adaptive_loop_filter_flag) {
	

	

alf_data_byte_count
	u(8)

	

byte_align()
	

	

alf_param()
	

	
}
	

	
if (aps_deblocking_filter_flag){
	u(1)

	

disable_deblocking_filter_flag
	u(1)

	

 if (!disable_deblocking_filter_flag) {
	

	

beta_ offset_div2
	se(v)

	

tc_ offset_div2
	se(v)

	
}
	

	
rbsp_trailing_bits()
	

	}
	

	
	

Slice header parameters

	
first_slice_in_pic_flag
	u(1)

	
if(first_slice_in_pic_flag == 0)
	

	

slice_address
	u(v)

	
if(!entropy_slice_flag) {
	

	

slice_qp_delta
	se(v)

	}
	

	[Ed. (BB): coded as absolute value slice_qp in HM software, should be implemented together with pic_init_qp_minus26]}
	

	
inherit_dbl_params_from_APS_flag
	u(1)

	if (!inherit_dbl_params_from_APS_flag){
	

	
disable_deblocking_filter_flag
	u(1)

	
if (!disable_deblocking_filter_flag) {
	

	

beta_offset_div2
	se(v)

	

tc_offset_div2
	se(v)

	
}
	

	}
	

	[Ed. (BB): Although it was agreed to use AVC-like deblocking control syntax, WD and HM should be changed to make use of the AVC-like syntax.]
	

4 Recommended cleaning of source code

BoG recommends to make the following changes in the source code:
Remove the source code under macro-definition PARALLEL_DEBLK_DECISION
Change Bs values as indicate in this BoG report
Remove check for CU-boundary

Move “if(Bs)” condition for deblocking filtering before tc and beta calculation
Consider removing 4x4 inside Bs calculations
Remove clipping of strong filter operation
Possibly remove other macros that are not turned on (“dead source code”). Circulate a list for macro removal in CE12.
5 Recommended deblocking filter description in WD
5.1.1 Deblocking filter process
A conditional filtering process shall be performed on a treeblock basis after the completion of the picture construction process prior to deblocking filter process for the entire decoded picture (as specified in subclauses XXX and YYY) [Ed.: (WJ) those subclauses seem not defined yet], with all treeblocks in a picture processed in order of increasing treeblock addresses.

Each treeblock is processed on a coding unit basis with the same order as decoding process. For each coding unit, vertical edges are filtered first, starting with the edge on the left-hand side of the coding unit proceeding through the edges towards the right-hand side of the coding unit in their geometrical order. Then, the horizontal edges are filtered starting with the edge on the top of the coding unit proceeding through the edges towards the bottom of the coding unit in their geometrical order.

Sample values above of the current coding unit that may have already been modified by the filtering of horizontal edges of deblocking filter process operation on previous coding unit shall be used as inputs to the deblocking filter process on the current coding unit and may be further modified during the filtering of the current coding unit. Sample values to the left of the current coding unit shall be used as inputs to the deblocking filter process on the current coding unit and may be further modified during the filtering of the current coding unit. Sample values to the left of the current coding unit may be modified by the filtering of vertical edge and may be further modified by the filtering of horizontal edges.

Sample values modified during filtering of vertical edges are used as input for the filtering of the horizontal edges. For sample values modified by both filtering of horizontal edges and filtering of vertical edges, filtering of horizontal edges is applied after filtering of vertical edges.

The deblocking filter process shall be applied to all prediction unit edges and transform unit edges of a picture, except edges at the boundary of the picture, any edges for which the deblocking filter process is disabled by disable_deblocking_filter_flag and any edges coinside with slice boundaries when loop_filter_across_slice_flag is equal to 0. For the transform units and prediction units with edges smaller than 8 samples in either vertical or horizontal direction, only the edges lying on the 8x8 sample grid are filtered.

When disable_deblocking_filter_flag is not equal to 1, the deblocking filter process is invoked as the following ordered steps for each coding unit with the same order as decoding process.

1. The coding unit size nS is set equal to 1 << log2CUSize.

2. The variables FilterInternalEdgesFlag, FilterLeftCuEdgeFlag and FilterTopCuEdgeFlag are derived as follows.

· The variable FilterInternalEdges is set equal to 1.

· If the left boundary of current coding unit is the left boundary of the picture or if the left boundary of current coding unit is the left boundary of the slice and loop_filter_across_slice_flag is equal to 0, the variable FilterLeftCuEdgeFlag is set equal to 0, otherwise set equal to 1.

· If the top boundary of current coding unit is the top boundary of the picture or if the top boundary of current coding unit is the top boundary of the slice and loop_filter_across_slice_flag is equal to 0, the variable FilterTopCuEdgeFlag is set equal to 0, otherwise set equal to 1.

3. All elements of two-dimensional array of size (nS)x(nS), horEdgeFlags and verEdgeFlags are initialized to zero.

4. The derivation process of transform unit boundary specified in subclause 8.6.1.1 are invoked with the luma location (xB, yB) set equal to (0, 0), the transform unit width log2TrafoWidth set equal to log2CUSize, the transform unit height log2TrafoHeight set equal to log2CUSize and the variable trafoDepth set equal to 0 as the inputs and the modified horEdgeFlags and verEdgeFlags as outputs.

5. The derivation process of prediction unit boundary specified in subclause 8.6.1.2 are invoked with the coding unit size log2CUSize and the prediction partition mode PartMode as inputs, and the modified horEdgeFlags and verEdgeFlags as outputs.

6. The derivation process of the boundary filtering strength specified in subclause 8.6.1.3 is invoked with the luma location (xC, yC), the coding unit size log2CUSize, horEdgeFlags and verEdgeFlags as inputs and an array of size (2)x(nS)x(nS), bS as output.

7. The filtering process for coding unit specified in subclause 8.6.1.4 are invoked with the luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, the coding unit size log2CUSize and the array bS as inputs and the modified reconstructued picture as output.

5.1.1.1 Derivation process of transform unit boundary

Inputs of this process are:

–
a luma location (xB, yB) specifying the top-left luma sample of the current block relative to the top‑left luma sample of the current coding unit,

–
a variable log2TrafoWidth specifying the width of the current block,

–
a variable log2TrafoHeight specifying the height of the current block,

–
a variable trafoDepth.

Outputs of this process are:

–
two-dimensional arrays of (nS)x(nS), horEdgeFlags and verEdgeFlags.

Depending on split_transform_flag[xB][yB][trafoDepth], the following applies:

–
If split_transform_flag[xB][yB][trafoDepth] is equal to 1, the following ordered steps apply:

1. The variables xB1, yB1, xB2, yB2, xB3 and yB3 are derived as follows.

· If InterTUSplitDirection is equal to 2, the following applies.

· The variable xB1 is set equal to xB + ((1 << log2TrafoWidth) >> 1).

· The variable yB1 is set equal to yB.

· The variable xB2 is set equal to xB.

· The variable yB1 is set equal to yB + ((1 << log2TrafoHeight) >> 1).

· The variable xB3 is set equal to xB1.

· The variable yB3 is set equal to yB2.

· The variable log2TrafoWidth1 is set equal to log2TrafoWidth − 1.

· The variable log2TrafoHeight1 is set equal to log2TrafoHeight − 1.

· Otherwise (InterTUSplitDirection is equal to 0 or 1), the following applies.

· The variable xB1 is set equal to xB + ((1 << (log2TrafoWidth)) >> 2) * InterTUSplitDirection.

· The variable yB1 is set equal to yB + ((1 << (log2TrafoHeight)) >> 2) * (1 − InterTUSplitDirection).

· The variable xB2 is set equal to xB1 + ((1 << (log2TrafoWidth)) >> 2) * InterTUSplitDirection.

· The variable yB2 is set equal to yB1 + ((1 << (log2TrafoHeight)) >> 2) * (1 − InterTUSplitDirection).

· The variable xB3 is set equal to xB2 + ((1 << (log2TrafoWidth)) >> 2) * InterTUSplitDirection.

· The variable yB3 is set equal to yB2 + ((1 << (log2TrafoHeight)) >> 2) * (1 − InterTUSplitDirection).

· The variable log2TrafoWidth1 is set equal to (log2TrafoWidth − 2) * InterTUSplitDirection.

· The variable log2TrafoHeight1 is set equal to (log2TrafoHeight − 2) * (1 − InterTUSplitDirection).

2. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location (xB, yB), the variable log2TrafoWidth set equal to log2TrafoWidth1, the variable log2TrafoHeight set equal to log2TrafoHeight1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
3. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location (xB1, yB1), the variable log2TrafoWidth set equal to log2TrafoSizeWidth1, the variable log2TrafoHeight set equal to log2TrafoHeight1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
4. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location (xB2, yB2), the variable log2TrafoWidth set equal to log2TrafoSizeWidth1, the variable log2TrafoHeight set equal to log2TrafoHeight1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
5. The deriviation process of transform unit boundary as specified in this subclause is invoked with the luma location (xB3, yB3), the variable log2TrafoWidth1 set equal to log2TrafoSizeWidth1, the variable log2TrafoHeight set equal to log2TrafoHeight1 and the variable trafoDepth1 set equal to trafoDepth + 1 as inputs and the outputs are the modified versions of two arrays, horEdgeFlags and verEdgeFlags.
–
Otherwise (split_transform_flag[xB][yB][trafoDepth] is equal to 0), the following applies:

· If yB is equal to zero, horEdgeFlags[xB + k][yB] is set equal to FilterTopCuEdgeFlag, otherwise horEdgeFlags[xB + k][yB] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2TrafoWidth) – 1.
· If xB is equal to zero, verEdgeFlags[xB][yB + k] is set equal to FilterLeftCuEdgeFlag, otherwise verEdgeFlags[xB][yB + k] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2TrafoHeight) – 1.
5.1.1.2 Derivation process of prediction unit boundary

Inputs of this process are:

–
a variable log2CUSize specifying the coding unit size,

–
a prediction partition mode PartMode.

Outputs of this process are:

–
two-dimensional arrays of (nS)x(nS), horEdgeFlags and verEdgeFlags.

Depending on PartMode, the following applies:

–
If PartMode is equal to PART_2NxN or PART_NxN, horEdgeFlags[k][1 << (log2CUSize – 1)] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.
–
If PartMode is equal to PART_Nx2N or PART_NxN, verEdgeFlags[1 << (log2CUSize – 1)][k] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.
–
If PartMode is equal to PART_2NxnU, horEdgeFlags[k][(1 << (log2CUSize – 1)) – (1 << (log2CUSize – 2))] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.

–
If PartMode is equal to PART_2NxnD, horEdgeFlags[k][(1 << (log2CUSize – 1)) + (1 << (log2CUSize – 2))] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.
–
If PartMode is equal to PART_nLx2N, verEdgeFlags[(1 << (log2CUSize – 1)) – (1 << (log2CUSize – 2))][k] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.

–
If PartMode is equal to PART_nRx2N, verEdgeFlags[(1 << (log2CUSize – 1)) + (1 << (log2CUSize – 2))][k] is set equal to FilterInternalEdgesFlag for k = 0.. (1 << log2CUSize) – 1.
5.1.1.3 Derivation process of boundary filtering strength

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top-left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit,

–
a two-dimensional arrays of size (nS)x(nS), horEdgeFlags and verEdgeFlags.

Output of this process is an array of size (2)x(nS)x(nS), bS specifying the boundary filtering strength.

Let (xEk, yEj) with k = 0..nE-1 and j = 0..nE-1
specify a set of edge sample locations where nE is set equal to ((1 << log2CUSize) >> 3), xE0 = 0, yE0 = 0, xEk+1 = xEk + 8 and yEj+1 = yEj + 8.

For (xEk, yEj) with k = 0..nE-1 and j = 0..nE-1, the following applies.
· If horEdgeFlags[xEk][yEj] is equal to 1,

For (xEk+j, yEj) with j = 0,1, the following applies.

· Set sample p0 = recPicture[xC + xEk][yC + yEj – 1] and q0 = recPicture[xC + xEk][yC + yEj].

· The variable filterDir is set equal to 1.

· Otherwise, if verEdgeFlags[xEk][yEj] is equal to 1,

For (xEk, yEj +j) with j = 0,1, the following applies.

· Set sample p0 = recPicture[xC + xEk – 1][yC + yEj] and q0 = recPicture[xC + xEk][yC + yEj].

· The variable filterDir is set equal to 0.

· Depending on the value of filterDir, the variable bS[filterDir][xEk][yEj] is derived as follows.

·
·
· Otherwise, if the following condition is true, the variable bS[filterDir][xEk][yEj] is set equal to 2.

· The sample p0 or q0 is in a coding unit coded with intra prediction mode

· Otherwise, if the block edge is also a transform unit edge and the following condition is true, the variable bS[filterDir][xEk][yEj] is set equal to 1.

· The sample p0 or q0 is in a transform unit which contains non-zero transform coefficient level.

· Otherwise, if any of the following conditions are true, the variable bS[filterDir][xEk][yEj] is set equal to 1.

· The prediction unit containing sample p0 has different reference pictures or a different number of motion vectors with the prediction unit containing the sample q0.

NOTE – The determination of whether the reference pictures used for the two prediction are the same or different is based on which pictures are referenced, without regard to whether a prediction is formed using an index into list 0 or an index into list 1, and also without regard to whether or not the index position within a reference picture list is different or not.

· One motion vector is used to predict the prediction unit containing sample p0, one motion vector is used to predict the prediction unit containing sample q0, and the absolute difference between the horizontal or vertical component of the motion vector used is greater than or equal to 4 in units of quarter luma samples.

· [Ed.: (WJ) needs to be checked again whether this condition covers all 2-motion cases] Two motion vectors are used to predict the prediction unit containing sample p0, two motion vectors are used to predict the prediction unit containing sample q0, and at least one of the motion vector pairs corresponding the same reference pictures and the different boundary samples p0 and q0 satisfies the following condition:

1. The absolute difference between the horizontal or vertical component of a motion vector used in the prediction of the two prediction units is greater than or equal to 4 in units of quarter luma samples.

· Otherwise, the variable bS[filterDir][xEk][yEj] is set equal to 0.

5.1.1.4 Filtering process for coding unit

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a variable log2CUSize specifying the coding unit size,

–
an array bS specifying the boundary filtering strength.

Output of this process is:

–
modified reconstruction of the picture.

The filtering process for luma edges in the current coding unit consists of the following ordered steps:

1. The variable nD is set equal to 1 << (log2CUSize – 3).

2. All elements of the three-dimensional array of size (2)x(nD)x(nD), dEdge are initialized to zero.

3. All elements of the three-dimensional array of size (2)x(nD)x(1<<log2CUSize), dSample are initialized to zero.

4. All elements of the three-dimensional array of size (2)x(nD)x(nD), bStrength ae initialized to zero.

5. For xDk set equal to xC+(k << 3), k=0..nD – 1, the following applies:

· For yDm set equal to yC+(m << 3), m=0..nD – 1, the following ordered steps apply:

a. Boundary filtering strength bSVer is derived as follows:

bSVer = Max(bS[0][xDk][yDm + i]) for i = 0..7
(8‑428)
b. bStrength[1][k][m] is set equal to bSVer.

c. Decision process for luma block edge in subclause 8.6.1.4.1 is invoked with the luma location of the coding unit (xC, yC), the luma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 1, and the boundary filtering strength bSVer as inputs and the decision dEdge[1][k][m] and an array dS of size (8) as outputs.

d. dSample[1][k][(m<<3)+i] is set equal to dS[i] for i=0..7.

e. Boundary filtering strength bSHor is derived as follows:

bSHor = Max(bS[1][xDk + i][yDm]) for i = 0..7
(8‑428)
f. bStrength[0][k][m] is set equal to bSHor.

g. Decision process for luma block edge in subclause 8.6.1.4.1 is invoked with the luma location of the coding unit (xC, yC), the luma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 0, the boundary filtering strength bSHor as inputs, the decision dEdge[0][k][m] and an array dS of size (8) as outputs.

h. dSample[0][m][(k<<3)+i] is set equal to dS[i] for i=0..7.

6. For xDk set equal to xC+(k << 3), k=0..nD - 1, the following applies:

· For yDm set equal to yB+(m << 3), m=0..nD – 1, the following ordered steps apply:

a. dS[i] is set equal to dSample[1][k][(m<<3)+i] for i=0..7.

b. Filtering process for luma block edge in subclause 8.6.1.4.2 is invoked with the luma location of the coding unit (xC, yC), the luma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 1, the boundary filtering strength bStrength[1][k][m], the decision dEdge[1][k][m], and the array of size (8), dS as inputs and the modified luma picture buffer as outputs.

7. For yDm set equal to yC+(m << 3), m=0..nD - 1, the following applies:

· For xDk set equal to xC+(k << 3), k=0..nD – 1, the following ordered steps apply:

a. If xDk is equal to 0, the parameter xPOS is set equal to 1. If xDk is equal to xB+((nD – 1) << 3) xPOS is set equal to 2. Otherwise xPOS is set to 0.

b. dS[i] is set equal to dSample[0][m][(k << 3) + i] for i = 0..7.

c. Filtering process for luma block edge in subclause 8.6.1.4.2 is invoked with the luma location of the coding unit (xC, yC), the luma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 0, the boundary filtering strength bStrength[0][k][m], the decision dEdge[0][k][m], and the array of size (8), dS, xPOS, dSL[m][], dEL[m], bSL[m], and tCL[m], as inputs and the modified luma picture buffer as output.

· The elements of the two dimensional array of size (3)x(nD), dSL are set as follows. dSL[m][0], dSL[m][1], and dSL[m][2], are set equal to dS[5], dS[6] and dS[7].

· The elements of the array of size (nD), dEL are set as follows. dEL[m] is set equal to dEdge[0][k][m].

· The elements of the array of size (nD), bSL are set as follows. bSL[m] is set equal to bStrength[0][k][m].

· The elements of the array of size (nD), tC are set as follows. tCL[m] is set equal to tc.

The filtering process for chroma edges in the current coding unit consists of the following ordered steps:

1. The variable nD is set equal to 1 << (Max(log2CUSize, 4) – 4).

2. For xDk set equal to (xC / 2)+(k << 3), k=0..nD – 1, the following applies:

· For yDm set equal to (yC / 2)+(m << 2), m=0..nD*2 – 1, the following ordered steps apply:

a. Boundary filtering strength bSVer is derived as follows:

bSVer = bS[0][xDk*2][yDm*2]

(8‑430)

b. Filtering process for chroma block edge in subclause 8.6.1.4.3 is invoked with the chroma location of the coding unit (xC/2, yC/2), the chroma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 1, a chroma component index cIdx set equal to 1 and the boundary filtering strength bSVer as inputs and the modified chroma picture buffer as output.

c. Filtering process for chroma block edge in subclause 8.6.1.4.3 is invoked with the chroma location of the coding unit (xC/2, yC/2), the chroma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 1, a chroma component index cIdx set equal to 2 and the boundary filtering strength bSVer as inputs and the modified chroma picture buffer as output.

3. For yDm set equal to (yC / 2)+(m << 3), m=0..nD – 1, the following applies:

· For xDk set equal to (xC / 2)+(k << 2), k=0..nD*2 – 1, the following ordered steps apply:

a. If xDk is equal to 0, the parameter xPOS is set equal to 1. If xDk is equal to xB+((nD*2 – 1) << 2) xPOS is set equal to 2. Otherwise xPOS is set to 0.

b. Boundary filtering strength bSHor is derived as follows:

bSHor = bS[1][xDk*2][yDm*2]

(8‑431)

c. Filtering process for chroma block edge in subclause 8.6.1.4.3 is invoked with the chroma location of the coding unit (xC/2, yC/2), the chroma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 0, a chroma component index cIdx set equal to 1 and the boundary filtering strength bSHor, xPOS, bSL[m] and tCL[m] as inputs and the modified chroma picture buffer as output.

d. Filtering process for chroma block edge in subclause 8.6.1.4.3 is invoked with the chroma location of the coding unit (xC/2, yC/2), the chroma location of the block (xDk, yDm), a variable verticalEdgeFlag set equal to 0, a chroma component index cIdx set equal to 2 and the boundary filtering strength bSHor, xPOS, bSL[m] and tCL[m] as inputs and the modified chroma picture buffer as output.

5.1.1.4.1 Decision process for luma block edge

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location (xB, yB) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

Output of this process is:

–
variables dE, dEp1 and dEq1 containing decisions,

–
one-dimensional array of size (8), dS containing decisions.

Let s’ represent the luma sample array recPictureL of the current picture.

A variables β is specified as Table 8‑13 with luma quantization parameter Clip3(0, 51, qPL + (beta_ offset_div2<<1)) as input.

A variable tC is specified as follows:

–
If bS is greater than 0, the variable tC is specified specified as Table 8‑13 with luma quantization parameter Clip3(0, 55, qPL + 2 * (Bs-1) + (tc_offset_div2<<1)) as input,

Depending on verticalEdgeFlag, the following applies:

–
If verticalEdgeFlag is equal to 1, the following ordered steps apply:

1. The sample values pi,k and qi,k with i = 0..3 and k = 2,5 are derived as follows:

qi,k = s’[xC + xB +i, yC + yB + k]

(8‑447)

pi,k = s’[xC + xB – i – 1, yC + yB + k]

(8‑448)
2. The variables dp, dq and d are derived as follows:

dp = | p2,2 – 2*p1,2 + p0,2 | + | p2,5 – 2*p1,5 + p0,5 |

(8‑449)

dq = | q2,2 – 2*q1,2 + q0,2 | + | q2,5 – 2*q1,5 + q0,5 |

(8‑449)

d = dp + dq

(8‑449)

3. The variables dE, dEp1 and dEq1 are set equal to 0.
4. If bS is not equal to 0 and d is less than β, the following ordered steps apply:

a. for each sample location (xC + xB, yC + yB + k), k = 0..7, the following ordered steps apply:

a. The decision process for a luma sample specified in subclause 8.6.1.4.4 is invoked with sample values pi,k, qi,k with i = 0..3, the boundary filtering strength bS and the variables d, β and tC as inputs and a decision dSam as output.

b. The variable dS[k] is set equal to dSam
b. The variable dE is set equal to 1.
c. If dp is less than (β + (β >> 1)) >> 3, the variable dEp1 is set equal to 1.

d. If dq is less than (β + (β >> 1)) >> 3, the variable dEq1 is set equal to 1.

–
Otherwise (verticalEdgeFlag is equal to 0), the following ordered steps apply:

1. The sample values pi,k and qi,k with i = 0..3 and k = 2,5 are derived as follows:

qi,k = s’[xC + xB +k, yC + yB + i]

(8‑435)

pi,k = s’[xC + xB +k, yC + yB – i – 1]

(8‑436)
2. The variables dp, dq and d are derived as follows:

dp = | p2,2 – 2*p1,2 + p0,2 | + | p2,5 – 2*p1,5 + p0,5 |

(8‑437)

dq = | q2,2 – 2*q1,2 + q0,2 | + | q2,5 – 2*q1,5 + q0,5 |

(8‑437)

d = dp + dq

(8‑437)

3. The variables dE, dEp1 and dEq1 are set equal to 0.
4. If bS is not equal to 0 and d is less than β, the following ordered steps apply:

a. For each sample location (xC + xB + k, yC + yB), k = 0..7, the following ordered steps apply:

a. The decision process for a luma sample specified in subclause 8.6.1.4.4 is invoked with sample values pi,k, qi,k with i = 0..3, the boundary filtering strength bS and the variables d, β and tC as inputs and a decision dSam as output.

b. The variable dS[k] is set equal to dSam.

b. The variable dE is set equal to 1.
c. If dp is less than (β + (β >> 1)) >> 3, the variable dEp1 is set equal to 1.

d. If dq is less than (β + (β >> 1)) >> 3, the variable dEq1 is set equal to 1.

5.1.1.4.2 Filtering process for luma block edge

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location (xB, yB) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

–
variables dE, dEp1 and dEq1 containing decisions,

–
one-dimensional array of size (8), dS containing decisions,

–
a variable bSL,

–
a variable tCL,

Output of this process is:

–
modified reconstruction of the picture.

Let s’ represent the luma sample array recPictureL of the current picture.

Depending on pcm_flag, a variable β is specified as follows:

–
If pcm_flag is equal to 1, the variables β is specified as Table 8‑11 with luma quantization parameter 0 as input.

–
Otherwise, the variables β is specified as Table 8‑11 with luma quantization parameter qPL as input.

A variable tC is specified as follows:

–
If bS is greater than 0, the variable tC is specified as Table 8‑11 with luma quantization parameter Clip3(0, 55, qPL + 2*(Bs-1) + (tc_ offset_div2<<1)) as input,

Depending on verticalEdgeFlag, the following applies:

–
If verticalEdgeFlag is equal to 1, the following ordered steps apply:

1. The sample values pi,k and qi,k with i = 0..3 and k = 0..7 are derived as follows:

qi,k = s’[xC + xB +i, yC + yB + k]

(8‑432)

pi,k = s’[xC + xB – i – 1, yC + yB + k]

(8‑433)

2. If dE is not equal to 0, for each sample location (xC + xB, yC + yB + k), k = 0..7, the following ordered steps apply:

a. The filtering process for a luma sample specified in subclause 8.6.1.4.5 is invoked with sample values pi,k, qi,k with i = 0..3, the decision dS[k], variables dEp1 and dEq1, the boundary filtering strength bS and the variable tC as inputs and the number of filtered samples nDp and nDq from each side of the block boundary, and the filtered sample values pi’ and qj’ as outputs.

b. The filtered sample values pi’ and qj’ with i = 0..nDp – 1, j = 0..nDq – 1 replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB +j, yC + yB + k] = qj’

(8‑435)

s’[xC + xB – i – 1, yC + yB + k] = pi’

(8‑436)

–
Otherwise (verticalEdgeFlag is equal to 0), the following ordered steps apply:

1. If xPOS is equal to 1, the parameters ks and ke are set to -3 and 4 respectively. If xD is equal to 2, the parameters ks and ke are set to 0 and 4 respectively. Otherwise ks and ke are set to 0 and 7 respectively.

2. The sample values pi,k and qi,k with i = 0..3 and k = ks..ke are derived as follows:

qi,k = s’[xC + xB +k, yC + yB + i]

(8‑437)

pi,k = s’[xC + xB +k, yC + yB – i – 1]

(8‑438)
3. If xPOS is less than 0 and dEL is not equal to 0, for each sample location (xC + xB + k, yC + yB), k = -3..-1, the following ordered steps apply:

a. The filtering process for a luma sample specified in subclause 8.6.1.4.5 is invoked with sample values pi,k, qi,k with i = 0..3, decision dSL[k+3], variables dEp1 and dEq1, the boundary filtering strength bSL and the variable tCL as inputs and the number of filtered samples nDp and nDq from each side of the block boundary and the filtered sample values pi’ and qj’ as outputs.

b. The filtered sample values pi’ and qj’ with i = 0..nDp – 1, j = 0..nDq – 1 replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB +k, yC + yB + j] = qj’

(8‑459)

s’[xC + xB +k, yC + yB – i – 1] = pi’

(8‑460)

5. If dE is not equal to 0, for each sample location (xC + xB + k, yC + yB), k = 0.. ke , the following ordered steps apply:

a. The filtering process for a luma sample specified in subclause 8.6.1.4.5 is invoked with sample values pi,k, qi,k with i = 0..3, decision dS[k], variables dEp1 and dEq1, the boundary filtering strength bS and the variable tC as inputs and the number of filtered samples nDp and nDq from each side of the block boundary and the filtered sample values pi’ and qj’ as outputs.

b. The filtered sample values pi’ and qj’ with i = 0..nDp – 1, j = 0..nDq – 1 replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB +k, yC + yB + j] = qj’

(8‑461)

s’[xC + xB +k, yC + yB – i – 1] = pi’

(8‑462)
5.1.1.4.3 Filtering process for chroma block edge

[Ed.: (WJ) cIdx cannot be 0 here]

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture,

–
a luma location (xB, yB) specifying the top-left chroma sample of the current block relative to the top left chroma sample of the current coding unit,

–
a variable verticalEdgeFlag,

–
a variable bS specifying the boundary filtering strength,

–
a variable cIdx specifying the chroma component index.

–
a variable xPOS,

–
a variable bSL,

–
a variable tCL
Output of this process is:

–
modified reconstruction of the picture.

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture.

–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture.

A variable tC is specified as follows:

–
If bS is greater than 0, the variable tC is specified as Table 8‑13 with luma quantization parameter Clip3(0, 55, qPL + 2*(Bs-1) + tc_offset_div2<<1) as input,

Depending on verticalEdgeFlag, the following applies:

–
If verticalEdgeFlag is equal to 1, for each sample location (xC + xB, yC + yB + k), k = 0..3, the following ordered steps apply:

1. The sample values pi and qi with i = 0..1 are derived as follows:

qi = s’[xC + xB +i, yC + yB + k]

(8‑442)

pi = s’[xC + xB – i – 1, yC + yB + k]

(8‑443)
2. If bS is greater than 1, the following ordered steps apply:

a. The filtering process for a sample specified in subclause 8.6.1.4.6 is invoked with sample values pi, qi, with i = 0..1, the boundary filtering strength bS and the variable tC as inputs and the filtered sample values p0’ and q0’ as outputs.

b. The filtered sample values p0’ and q0’ replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB , yC + yB + k] = q0’

(8‑444)

s’[xC + xB – 1, yC + yB + k] = p0’

(8‑445)
–
Otherwise (verticalEdgeFlag is equal to 0), the following ordered steps apply:

1. If xPOS is equal to 1, the parameters ks and ke are set to -1 and 2 respectively. If xD is equal to 2, the parameters ks and ke are set to 0 and 2 respectively. Otherwise ks and ke are set to 0 and 3 respectively.
2. The sample values pi and qi with i = 0..1 and k = ks..ke are derived as follows:

qi = s’[xC + xB +k, yC + yB + i]

(8‑446)

pi = s’[xC + xB +k, yC + yB – i – 1]

(8‑447)
3. If xPOS is less than 0, and if bSL, is greater than 1, for each sample location (xC + xB - 1, yC + yB), the following ordered steps apply:
a. The filtering process for a sample specified in subclause 8.6.1.4.6 is invoked with sample values pi, qi, with i = 0..1, the boundary filtering strength bSL and the variable tCL as inputs and the filtered sample values p0’ and q0’ as outputs.

b. The filtered sample values p0’ and q0’ replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB +k, yC + yB] = q0’

(8‑452)

s’[xC + xB +k, yC + yB – i – 1] = pi’

(8‑445)
4. If bS is greater than 1, for each sample location (xC + xB + k, yC + yB), k = 0.. ke, the following ordered steps apply:

c. The filtering process for a sample specified in subclause 8.6.1.4.6 is invoked with sample values pi, qi, with i = 0..1, the boundary filtering strength bS and the variable tC as inputs and the filtered sample values p0’ and q0’ as outputs.

d. The filtered sample values p0’ and q0’ replace the corresponding samples inside the sample array s’ as follows:

s’[xC + xB +k, yC + yB] = q0’

(8‑448)

s’[xC + xB +k, yC + yB – 1] = p0’

(8‑449)
5.1.1.4.4 Decision process for a luma sample
[Ed: (WJ) no filtering when bS is equal to 0]

Inputs of this process are:

–
sample values, pi and qi with i = 0..2,

–
a variable bS specifying the boundary filtering strength,

–
variables d, β and tC.

Output of this process is:

–
a variable dSam containing a decision
When the variable bS is not equal to 0, the following applies:

–
If d is less than (β >> 2), | p3 – p0 | + | q0 – q3 | is less than (β >> 3) and | p0 – q0 | is less than (5*tC + 1) >> 1, dSam is set equal to 1.

–
Otherwise, dSam is set equal to 0.

5.1.1.4.5 Filtering process for a luma sample

Inputs of this process are:

–
sample values, pi and qi with i = 0..3,

–
a variable dSam containing a decision,

–
variables dEp1 and dEq1 containing decisions to filter pixels p1 and q1 respectively,

–
a variable tC.

Output of this process is:

–
number of filtered samples nDp and nDq,

–
filtered sample values, pi’ and qj’ with i = 0..nDp – 1, j = 0..nDq – 1
Depending on dSam, the following applies:

–
When the variable dSam is equal to 1, the following strong filtering applies while nDp and nDq are set equal to 3:

p0’ = (p2 + 2*p1 + 2*p0 + 2*q0 + q1 + 4) >> 3
(8‑450)

p1’ = (p2 + p1 + p0 + q0 + 2) >> 2

(8‑451)

p2’ = (2*p3 + 3*p2 + p1 + p0 + q0 + 4) >> 3

(8‑452)

q0’ = (p1 + 2*p0 + 2*q0 + 2*q1 + q2 + 4) >> 3
(8‑453)

q1’ = (p0 + q0 + q1 + q2 + 2) >> 2

(8‑454)

q2’ = (p0 + q0 + q1 + 3*q2 + 2*q3 + 4) >> 3

(8‑455)

–
Otherwise, the following weak filtering applies while nDp and nDq are set equal to 0:

(= (9 * (q0 – p0) – 3 * (q1 – p1) + 8) >> 4

(8‑456)

· When abs(() is less than tc*10, the following ordered steps apply:

1. The filtered sample values p0’ and q0’ are specified as follows:

(= Clip3(-tc, tc, ()

(8‑456)

p0’ = Clip1Y(p0 + ()

(8‑457)

q0’ = Clip1Y(q0 - ()

(8‑458)

2. If dEp1 is equal to 1, the filtered sample value pi’ is specified as follows:

(p = Clip3(-(tc >> 1), tc >> 1, (((p2 + p0 + 1) >> 1) – p1 + () >>1)
(8‑458)

pi’ = Clip1Y(p1 + (p)

(8‑458)

3. If dEq1 is equal to 1, the filtered sample value qi’ is specified as follows:

(q = Clip3(-(tc >> 1), tc >> 1, (((q2 + q0 + 1) >> 1) – q1 – () >>1)
(8‑458)

qi’ = Clip1Y(q1 + (q)

(8‑458)

4. nDp is set equal to dEp1+1 and nDq is set equal to dEq1+1.

Each of the filtered sample values, pi’ with i = 0..nDp-1, is substituted by the corresponding input sample value pi if all of the following conditions are true.

–
pi is a sample of an I_PCM block.

–
pcm_loop_filter_disable_flag value is equal to 1.

Similarly, each of the filtered sample values, qj’ with j = 0..nDq-1, is substituted by the corresponding input sample value qj if all of the following conditions are true.

–
qj is a sample of an I_PCM block.

–
pcm_loop_filter_disable_flag value is equal to 1.

[Ed. (WJ): for PCM case, deblocking filter applies first and the filtered pixels are restored. Rather than this, it’s better to skip the filtering itself for PCM samples since first filtering is actually not needed.]

Table 8‑15 – Derivation of threshold variables β and tC from input Q
	Q
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18

	β
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7
	8

	tC
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	1

	Q
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37

	β
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36

	tC
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4

	Q
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	

	β
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
	64
	64
	64
	64
	

	tC
	5
	5
	6
	6
	7
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	

5.1.1.4.6 Filtering process for a chroma sample

[Ed: (WJ) no filtering when bS is equal or less than 2]

Inputs of this process are:

–
sample values, pi and qi with i = 0..1,

–
a variable bS specifying the boundary filtering strength.

–
a variable tC.

Output of this process is:

–
The filtered sample values, p0’ and q0’.

When the variable bS is greater than 1, the filtered sample values p0’ and q0’ are derived by

(= Clip3(-tC, tC, ((((q0 – p0) << 2) + p1 – q1 + 4) >> 3))
(8‑461)

p0’ = Clip1C(p0 + ()

(8‑462)

q0’ = Clip1C(q0 - ()

(8‑463)

The filtered sample value, p0’ is substituted by the corresponding input sample value p0 if all of the following conditions are true.

–
p0 is a sample of an I_PCM block.

–
pcm_loop_filter_disable_flag value is equal to 1.

Similarly, the filtered sample value, q0’ is substituted by the corresponding input sample value q0 if all of the following conditions are true.

–
q0 is a sample of an I_PCM block.

–
pcm_loop_filter_disable_flag value is equal to 1.

[Ed. (WJ): for PCM case, deblocking filter applies first and the filtered pixels are restored. Rather than this, it’s better to skip the filtering itself for PCM samples since first filtering is actually not needed.]

�Should be modified to derive Bs only on 8x8 grid although for every 4-pel edge

Page: 3
Date Saved: 2011-11-28

