	[image: image8.png][image: image9.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
7th Meeting: Geneva, CH, 21-30 November, 2011
	Document: JCTVC-G057


	Title:
	CE3: An Adaptive Interpolation Filtering Technique

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Faouzi Kossentini
Nader Mahdi   
Hsan Guermazi                                                     
Michael Horowitz
	
Tel:
Email:
	faouzi@ebriskvideo.com  nader@ebriskvideo.com
hsan@ebriskvideo.com
michael@ebriskvideo.com


	Source:
	eBrisk Video Inc.


_____________________________
Abstract
In this contribution, an Adaptive Interpolation Filtering (AIF) technique is proposed for interpolation filtering of the luminance samples of video sequences. For each video picture, the encoder first generates two new one-dimensional 8-tap filters: one ½-pel filter and another (¼-pel, ¾-pel) filter, also called a ¼-pel filter. Then, the encoder decides, for each reference picture, whether to use the HM 4.0 [1] default ½-pel filter or the new ½-pel filter, and whether to use the HM 4.0 [1] default ¼-pel filter or the new ¼-pel filter. The encoder then sends the resulting two-bit value of the luma_filter_mode field to the decoder. Compared to HM4.0, the proposed technique yields average BD-rate reductions of 2.5% for LDP/LC, 0.5% for LDP/HE, 0.8% for LD/LC, 0.0% for LD/HE, 0.4% for RA/LC and 0.0% for RA/HE, while maintaining the same average decoding times. The encoding time, however, increases by an average of 4%.
1 Introduction
This contribution describes an Adaptive Interpolation Filtering (AIF) technique for interpolation filtering during the motion compensation part of video encoding/decoding. The proposed technique is applied to the interpolation of the luminance samples of video sequences, as described in the following section. The syntax changes in the WD text are described in Section 3. The simulation results are presented in Section 4. Same visual quality checks are presented in Section 5. Section 6 presents some conclusions.
2 Proposed AIF Technique:
In this section, we present some details on the proposed AIF technique, when applied to the luminance samples of video sequences, including the generation of the two new 8-tap filters, the selection procedure, and the transmission (if needed) of one or both of the newly-generated filters.

2.1 Generation of Filter Coefficients

There are many ways of generating, for each video picture, the coefficients of the two AIF 8-tap filters. The encoder is free to employ any method, as long as the newly-generated filters have the same structure shown in Table 2.

In this contribution, we employ the filter-coefficients estimation method used in [2], as follows:

Step 1: The motion vectors (MVs) are first estimated using the HM4.0 8-tap filters. To reduce encoding complexity, only a fast version of the highest-depth motion estimation algorithm is used to generate the initial MVs.

Step 2: The values of the filter coefficients are estimated (through linear regression) by minimizing the energy of the prediction errors after performing motion-compensated prediction, using the MVs from Step 1.

2.2 AIF Filter Selection

Figure 1 shows the sub-sample positions (un-shaded blocks with lower-case letters). Only one 1D filter is needed to generate the interpolated values of each of the vertical 1D positions (“di,j”, “hi,j” and “ni,j”) as well as each of the horizontal 1D positions (“ai,j”, “bi,j” and “ci,j”). For each of the remaining positions, a 2D separable filter is required that is a cascade of two 1D filters; one 1D filter for horizontal filtering followed by a second 1D filter for vertical filtering. In HM 4.0, (1) the same ½-pel filter (F_1/2) is used for horizontal filtering of the “bi,j”, ”fii,j”, “ji,j” and “qi,j” positions and vertical filtering of the “hi,j”, “ii,j”, “ji,j” and “ki,j” positions, (2) the same ¼-pel filter (F_1/4) is used for vertical filtering of the “di,j”, “ei,j”, “fi,j” and “gi,j” positions and horizontal filtering of the “ai,j”, “ei,j”, “ii,j” and “pi,j” positions and (3) the same ¾-pel filter (F_3/4) is used for vertical filtering of the “ni,j”, “pi,j”, “qi,j” and “ri,j” positions and horizontal filtering of the “ci,j”, “gi,j”, “ki,j” and “ri,j” positions. Table 1 shows the coefficient values of the F_1/2 and F_1/4 filters. Note that the F_1/4 and F_3/4 filters have the same coefficient values, although in opposite order. Table 2 summarizes the assignment of each of the filters (F_1/2, F_1/4 and F_3/4) to each of the sub-sample positions with respect to the direction of the filtering stage. Table 2 shows the coefficient of the F_1/4 and F_1/2 filters. We adopt the same HM 4.0 filtering structure, except that each of the F_1/2 and F_1/4 filters may be a default or a newly-generated filter (as shown in Table 1). Therefore, for each reference picture list, the encoder sends a one-bit value of use_new_filter_lX flag (X equal 0 or 1) to the decoder to specify whether a new filter may be used for the interpolation of the reference pictures belonging to the subject reference picture list. When use_new_filter_lX is equal to 1, for each reference picture, the encoder sends a two-bit value of the luma_filter_mode field (as shown in Table 3) to the decoder to indicate the result of the default-versus-new decision process. By sending the two-bit value of the luma_filter_mode field and any referenced new 1D filters (0, 1 or 2 new filters), we would have sent all of the filters needed for interpolation filtering at all 15 sub-sample positions.
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Figure 1: Integer samples (shaded blocks with upper-case letters) and fractional sample positions (un-shaded blocks with lower-case letters) for quarter sample luma interpolation

Table 1: Default (HM4.0) & newly-generated 8-tap filters (6-bit)

	¼
	{-1,   4,  -10,  57,   19,    -7,   3,   -1  }

	½
	{-1,   4,  -11,  40,   40,  -11,   4,   -1  }


	¼
	{a0,   a1,   a2,   a3,   a4,   a5,   a6,   a7}

	½
	{b0,   b1,   b2,   b3,   b3,   b2,   b1,  b0} 


Table 2: Vertical/Horizontal filter assignment

	Sub-sample position
	Vertical
	Horizontal

	ai,j
	None
	F_1/4

	bi,j
	None
	F_1/2

	ci,j
	None
	F_3/4

	di,j
	F_1/4
	None

	ei,j
	F_1/4
	F_1/4

	fi,j
	F_1/4
	F_1/2

	gi,j
	F_1/4
	F_3/4

	hi,j
	F_1/2
	None

	ii,j
	F_1/2
	F_1/4

	ji,j
	F_1/2
	F_1/2

	ki,j
	F_1/2
	F_3/4

	ni,j
	F_3/4
	None

	pi,j
	F_3/4
	F_1/4

	qi,j
	F_3/4
	F_1/2

	ri,j
	F_3/4
	F_3/4


Table 3: Luma filter modes
	Luma_filter_mode
	F_1/4
	F_1/2

	0
	Default
	Default

	1
	Default
	AIF (New)

	2
	AIF (New)
	Default

	3
	AIF (New)
	AIF (New)


Empirical data shows that the use of newly-generated (non-default) filters helps very little in non-referenced B-slices (NRB slices). Therefore, the luma_filter_mode fields are always set to zero for NRB slices. This reduces the number of additional computations at the encoder/decoder by essentially 50%.
2.3 Transmission of Filter Coefficients

The coefficients of each newly-generated 8-tap AIF filter are encoded using 6-bit quantization of the differences between the values of the newly-generated filter coefficients and the corresponding values of the HM4.0 filter coefficients. 

3 Proposed WD Text Changes (highlighted in GREEN)

3.1 Slice header syntax

	slice_header( ) {
	Descriptor

	
...
	ue(v)

	

    ref_pic_list_modification( )
	

	

    ref_pic_list_combination( )
	

	

    if( nal_ref_idc != 0 ) {
	

	


      dec_ref_pic_marking( )
	

	             if( slice_type  = =  P  | |  slice_type  = =  B ){
	

	                aif_param()
	

	             }
	

	         }
	

	     }
	

	

if( entropy_coding_mode_flag  &&  slice_type  !=  I)
	

	


cabac_init_idc
	ue(v)

	    ...
	

	}
	


3.2 Adaptive interpolation filter parameter syntax

	aif_param( ) {
	Descriptor

	
use_new_filter_flag
	u(1)

	     if (use_new_filter_flag) {
	

	        use_new_filter_l0
	u(1)

	     
 if (use_new_filter_l0) {
	

	     
     for ( i = 0 ; i < num_ref_idx_l0_active_minus1+1 ; i++ ){
	

	                luma_filter_mode_l0[i]
	u(2)

	            if((luma_filter_mode_l0[i] == 1) || (luma_filter_mode_l0 [i] == 3)){
	

	         
          fetch_filter_h = TRUE
	

	             
  }   
	

	            if((luma_filter_mode_l0 [i] == 2) || (luma_filter_mode_l0 [i] == 3)){
	

	         
          fetch_filter_q = TRUE
	

	                 }
	

	             }
	

	        }
	

	         if (slice_type == B) {
	

	           use_new_filter_l1
	u(1)

	     
    if (use_new_filter_l1) {
	

	     
        for ( i = 0 ; i < num_ref_idx_l1_active_minus1+1 ; i++ ){
	

	                   luma_filter_mode_l1[i]
	u(2)

	               if((luma_filter_mode_l1[i] == 1) || (luma_filter_mode_l1[i] == 3)){
	

	         
             fetch_filter_h = TRUE
	

	             
    }   
	

	              if((luma_filter_mode_l1 [i] == 2) || (luma_filter_mode_l1 [i] == 3)){
	

	         
             fetch_filter_q = TRUE
	

	                  }
	

	               }
	

	           }
	

	        }
	

	         if (fetch_filter_h == TRUE){
	

	            for (i =0; i < 4 ; i ++ ) {
	

	              Luma_diff_filter_coef_h[i]
	se(v)

	            }
	

	         }
	

	         if (fetch_filter_q == TRUE){
	

	            for (i=0; i < 8 ; i ++ ) {
	

	              Luma_diff_filter_coef_q[i]
	se(v)

	            }
	

	         }
	

	     }
	

	 }
	


3.3 Adaptive interpolation filter parameter semantics

use_new_filter_flag specifies whether adaptive interpolation filter applies or not for the current slice.

use_new_filter_l0 specifies whether adaptive interpolation filter applies or not for list0 reference picture(s).
luma_filter_mode_l0[i] specifies the mode of the adaptive interpolation filter for each list0 reference picture, as shown in Table x-xx. The value of luma_filter_mode_l0 shall be in the range of 0 to 3, inclusive.

use_new_filter_l1 specifies whether adaptive interpolation filter applies or not for list1 reference picture(s).

luma_filter_mode_l1[i] specifies the mode of the adaptive interpolation filter for each list1 reference picture, as shown in Table x-xx. The value of luma_filter_mode_l1 shall be in the range of 0 to 3, inclusive.

Luma_diff_filter_coef_h specifies the predicted array of the 1/2-pel of luma filter coefficients.

Luma_diff_filter_coef_q specifies the predicted array of the 1/4-pel of luma filter coefficients.

Table x-xx – Relationship between luma_filter_mode_flag and the filter type for half and quarter positions
	luma_filter_mode_lX
	1/2
	1/4

	0
	D
	D

	1
	N
	D

	2
	D
	N

	3
	N
	N


D: Default; N: New/AIF
X: List0 or List1
3.4 Derivation of the interpolation filter coefficients process

This process is invoked at the beginning of the decoding process for each P, SP, or B slice and when nal_ref_idc is not equal to 0.

Inputs to this process are:

–
the luma_filter_mode_lX[refIdxLX] field,

–
the predicted filter coefficients arrays luma_diff_filter_coef_h and luma_diff_filter_coef_q.

Outputs of this process are:

–
filter coefficients arrays lumaFH_lX[refIdxLX] and lumaFQ_lX[refIdxLX].

The lumaFH and lumaFQ arrays are derived as follows,

–
If the luma_filter_mode_lX[refIdxLX] is equal to 1or the luma_filter_mode_lX[refIdxLX] is equal to 3,

         lumaFH_lX[refIdxLX] [0] = luma_diff_filter_coef_h[0] – 1

         lumaFH_lX[refIdxLX] [1] = luma_diff_filter_coef_h[1] + 4 

         lumaFH_lX[refIdxLX] [2] = luma_diff_filter_coef_h[2] – 11 

         lumaFH_lX[refIdxLX] [3] = luma_diff_filter_coef_h[3] + 40

         lumaFH_lX[refIdxLX] [4] = luma_diff_filter_coef_h[3] + 40

         lumaFH_lX[refIdxLX] [5] = luma_diff_filter_coef_h[2] – 11

         lumaFH_lX[refIdxLX] [6] = luma_diff_filter_coef_h[1] + 4

        lumaFH_lX[refIdxLX] [7] = luma_diff_filter_coef_h[0] – 1

–
Otherwise, if the luma_filter_mode_lX[refIdxLX] is equal to 2 or the luma_filter_mode_lX[refIdxLX] is equal to 3,

        lumaFQ_lX[refIdxLX] [0] = luma_diff_filter_coef_q[0]  – 1

        lumaFQ_lX[refIdxLX] [1] = luma_diff_filter_coef_q[1]  + 4 

        lumaFQ_lX[refIdxLX] [2] = luma_diff_filter_coef_q[2]  – 10 

        lumaFQ_lX[refIdxLX] [3] = luma_diff_filter_coef_q[3]  + 57 

        lumaFQ_lX[refIdxLX] [4] = luma_diff_filter_coef_q[4]  + 19 

        lumaFQ_lX[refIdxLX] [5] = luma_diff_filter_coef_q[5]  – 7 

        lumaFQ_lX[refIdxLX] [6] = luma_diff_filter_coef_q[6]  + 3

        lumaFQ_lX[refIdxLX] [7] = luma_diff_filter_coef_q[7]  – 1

3.5 Luma sample interpolation process

Inputs to this process are:

–
a luma location in full-sample units ( xIntL, yIntL ),

–
a luma location in fractional-sample units ( xFracL, yFracL ),

–
the luma reference sample array refPicLXL,

–
filter coefficients arrays lumaFH_lX[refIdxLX] and lumaFQ_lX[refIdxLX],

–
a reference index refIdxLX,

Output of this process is a predicted luma sample value predSampleLXL[ xL, yL ]
…
…
–
The samples labelled a0,0, b0,0, c0,0, d0,0, h0,0, and n0,0 shall be derived by applying the 8-tap filter to the nearest integer position samples:
–
The filer coefficient arrays FH and FQ are derived as follows:

     FH = lumaFH_lX[refIdxLX]

     FQ = lumaFQ_lX[refIdxLX]

a0,0 = ( FQ[0]*A−3,0 + FQ[1]*A−2,0 + FQ[2]*A−1,0 + FQ[3]*A0,0 +
 FQ[4]*A1,0 + FQ[5]*A2,0 + FQ[6]*A3,0 + FQ[7]*A4,0 ) >> shift1
(8‑99)
b0,0 = ( FH[0]*A−3,0 + FH[1]*A−2,0 + FH[2]*A−1,0 + FH[3]*A0,0 +
 FH[3]*A1,0 + FH[2]*A2,0 + FH[1]*A3,0 + FH[0]*A4,0 ) >> shift1
(8‑100)
c0,0 = ( FQ[7]*A−3,0 + FQ[6]*A−2,0 + FQ[5]*A−1,0 + FQ[4]*A0,0 +
 FQ[3]*A1,0 + FQ[2]*A2,0 + FQ[1]*A3,0 + FQ[0]*A4,0 ) >> shift1
(8‑101)
d0,0 = ( FQ[0]*A0,−3 + FQ[1]*A0,−2 + FQ[2]*A0,−1 + FQ[3]*A0,0 +
 FQ[4]*A0,1 + FQ[5]*A0,2 + FQ[6]*A0,3 + FQ[7]*A0,4 ) >> shift1
(8‑102)
h0,0 = ( FH[0]*A0,−3 + FH[1]*A0,−2 + FH[2]*A0,−1 + FH[3]*A0,0 + FH[3]*A0,1 + FH[2]*A0,2 + FH[1]*A0,3 + FH[0]*A0,4 ) >> shift1
(8‑103)
n0,0 = ( FQ[7]A0,−3 + FQ[6]*A0,−2 + FQ[5]*A0,−1 + FQ[4]*A0,0 +
 FQ[3]*A0,1 + FQ[2]*A0,2 + FQ[1]*A0,3 + FQ[0]*A0,4 ) >> shift1
(8‑104)
–
The samples labelled e0,0, f0,0, g0,0, i0,0, j0,0, k0,0, p0,0, q0,0 and r0,0 shall be derived by applying the 8-tap filter to the samples a0,i, b0,i and c0,i where i = −3..4 in vertical direction:

e0,0 = ( FQ[0]*a0,−3 + FQ[1]*a0,−2 + FQ[2]*a0,−1 + FQ[3]*a0,0 +
 FQ[4]*a0,1 + FQ[5]*a0,2 + FQ[6]*a0,3 + FQ[7]*a0,4 ) >> shift2
(8‑108)
f0,0 = ( FH[0]*a0,−3 + FH[1]*a0,−2 + FH[2]*a0,−1 + FH[3]*a0,0 +
 FH[3]*a0,1 + FH[2]*a0,2 + FH[1]*a0,3 + FH[0]*a0,4 ) >> shift2
(8‑109)
g0,0 = ( FQ[7]*a0,−3 + FQ[6]*a0,−2 + FQ[5]*a0,−1 + FQ[4]*a0,0 +
 FQ[3]*a0,1 + FQ[2]*a0,2 + FQ[1]*a0,3 + FQ[0]*a0,4 ) >> shift2
(8‑110)
i0,0 = ( FQ[0]*b0,−3 + FQ[1]*b0,−2 + FQ[2]*b0,−1 + FQ[3]*b0,0 +
 FQ[4]*b0,1 + FQ[5]*b0,2 + FQ[6]*b0,3 + FQ[7]*b0,4 ) >> shift2
(8‑111)
j0,0 = ( FH[0]*b0,−3 + FH[1]*b0,−2 + FH[2]*b0,−1 + FH[3]*b0,0 +
 FH[3]*b0,1 + FH[2]*b0,2 + FH[1]*b0,3 + FH[0]*b0,4 ) >> shift2
(8‑112)
k0,0 = ( FQ[7]*b0,−3 + FQ[6]*b0,−2 + FQ[5]*b0,−1 + FQ[4]*b0,0 +
 FQ[3]*b0,1 + FQ[2]*b0,2 + FQ[1]*b0,3 + FQ[0]*b0,4 ) >> shift2
(8‑113)
p0,0 = ( FQ[0]*c0,−3 + FQ[1]*c0,−2 + FQ[2]*c0,−1 + FQ[3]*c0,0 +
 FQ[4]*c0,1 + FQ[5]*c0,2 + FQ[6]*c0,3 + FQ[7]*c0,4 ) >> shift2
(8‑114)
q0,0 = ( FH[0]*c0,−3 + FH[1]*c0,−2 + FH[2]*c0,−1 + FH[3]*c0,0 +
 FH[3]*c0,1 + FH[2]*c0,2 + FH[1]*c0,3 + FH[0]*c0,4 ) >> shift2
(8‑115)
r0,0 = ( FQ[7]*c0,−3 + FQ[6]*c0,−2 + FQ[5]*c0,−1 + FQ[4]*c0,0 +
 FQ[3]*c0,1 + FQ[2]*c0,2 + FQ[1]*c0,3 + FQ[0]*c0,4 ) >> shift2
(8‑116)
…
…
4 Experimental Results

The simulation experiments were conducted following the testing conditions in JCTVC-F900 [3]. 

The proposed AIF technique was compared to the HM4.0 technique. The coding efficiency (BD-Rate) numbers were obtained for the Low Delay P, Low Delay and Random Access configurations, and they are shown in Table 4. The detailed BD-Rate results for the Luminance pictures are also shown in Table 5. A summary of the complexity results (runtime, number of operations and memory bandwidth) are shown in Table 6; 

The encoding/decoding times were estimated using a PC with the following configuration:

- CPU: Intel Core 2 Quad Q8300 @2.50 GHz.

- RAM: 4 Go

- OS:  Windows XP Professional.

It is clear, from the tables, that the proposed AIF method achieves coding efficiency gains over the HM4.0 fixed filtering technique, especially for the LC configurations. It is also important to note that the proposed AIF technique performs very well (by an average of more than 2%) for the new test video sequences (i.e., Nebuta and SteamLocomotive).

The required additional complexity at the encoder and/or decoder can be quite small. Except for the decoding of at most two new filters (the ¼-pel and ¾-pel AIF filters employ the same coefficients, though in opposite order), for each video picture/slice, there is no additional decoder complexity. Moreover, except for the encoding of the AIF filters for each video picture/slice, the added complexity at the encoder side depends on the application at hand. For example, the new technique can be used to generate special filters for each slice, picture, group of pictures or even a set of video sequences that have similar characteristics (e.g., in a special application space).

As shown in Tables 4, even when we generate such filters on-line on a slice basis, the average additional encoding times needed for the generation, selection and application procedures are only 5% for LDP, 6% for LDP/LC, 4% for LD, 5% LD/LC, 2% for RA and 2% for RA/LC. 

Table 4: Simulation Results
	
	Low delay P HE
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	 
	 
	 
	 
	 
	 

	Class B
	-0.6%
	-0.7%
	-0.7%
	-3.2%
	-0.9%
	-1.3%

	Class C
	-0.4%
	-0.5%
	-0.4%
	-1.0%
	-0.3%
	-0.2%

	Class D
	-0.2%
	-0.1%
	-0.6%
	-0.5%
	-0.2%
	-0.4%

	Class E
	-0.9%
	0.2%
	-0.4%
	-6.0%
	-1.3%
	-1.0%

	Overall
	-0.5%
	-0.3%
	-0.5%
	-2.5%
	-0.7%
	-0.7%

	 
	-0.5%
	-0.3%
	-0.6%
	-2.5%
	-0.7%
	-0.8%

	Enc Time[%]
	105%
	106%

	Dec Time[%]
	98%
	97%

	Mult[%]
	-6%
	-6%

	Adds[%]
	-7%
	-7%

	Access[%]
	0%
	0%

	MemBand(2D) Ave.[%]
	-1%
	0%

	MemBand(2D) Max.[%]
	5%
	7%

	MemBand(1D) Ave.[%]
	-1%
	0%

	MemBand(1D) Max.[%]
	4%
	7%


	
	Low delay B HE
	Low delay B LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	 
	 
	 
	 
	 
	 

	Class B
	0.0%
	-0.2%
	-0.1%
	-0.8%
	-0.1%
	-0.3%

	Class C
	-0.1%
	-0.1%
	0.1%
	-0.5%
	0.3%
	0.1%

	Class D
	0.1%
	0.5%
	0.4%
	-0.1%
	0.4%
	0.2%

	Class E
	0.1%
	0.7%
	1.2%
	-1.9%
	0.6%
	0.0%

	Overall
	0.0%
	0.2%
	0.3%
	-0.8%
	0.3%
	0.0%

	 
	0.0%
	0.1%
	0.3%
	-0.8%
	0.3%
	0.0%

	Enc Time[%]
	104%
	105%

	Dec Time[%]
	98%
	98%

	Mult[%]
	-7%
	-6%

	Adds[%]
	-9%
	-7%

	Access[%]
	-1%
	0%

	MemBand(2D) Ave.[%]
	-1%
	-1%

	MemBand(2D) Max.[%]
	8%
	8%

	MemBand(1D) Ave.[%]
	-1%
	-1%

	MemBand(1D) Max.[%]
	7%
	7%


	
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.6%
	-0.9%
	-1.3%
	-1.7%
	-0.2%
	-1.1%

	Class B
	0.2%
	-0.1%
	0.0%
	0.0%
	-0.2%
	-0.3%

	Class C
	0.1%
	-0.1%
	0.0%
	0.0%
	0.0%
	0.0%

	Class D
	0.2%
	0.1%
	0.1%
	0.2%
	-0.1%
	-0.1%

	Class E
	 
	 
	 
	 
	 
	 

	Overall
	0.0%
	-0.2%
	-0.3%
	-0.4%
	-0.1%
	-0.4%

	 
	0.0%
	-0.2%
	-0.2%
	-0.4%
	-0.1%
	-0.3%

	Enc Time[%]
	102%
	102%

	Dec Time[%]
	99%
	99%

	Mult[%]
	-5%
	-5%

	Adds[%]
	-7%
	-6%

	Access[%]
	-1%
	-1%

	MemBand(2D) Ave.[%]
	-1%
	-1%

	MemBand(2D) Max.[%]
	4%
	7%

	MemBand(1D) Ave.[%]
	-1%
	-1%

	MemBand(1D) Max.[%]
	5%
	6%


Table 5: Detailed Luminance (Y) BD-Rate Results
	 
	Sequences
	RA
	RA LC
	LD
	LD LC
	LD P
	LD P LC

	S01
	Traffic
	0.2%
	-0.7%
	 
	 
	 
	 

	S02
	PeopleOnStreet
	0.5%
	-0.2%
	 
	 
	 
	 

	S0X
	Nebuta
	-2.1%
	-3.6%
	 
	 
	 
	 

	S0Y
	SteamLocomotive
	-0.9%
	-2.2%
	 
	 
	 
	 

	S03
	Kimono
	0.2%
	-0.2%
	0.2%
	-1.0%
	0.1%
	-3.8%

	S04
	ParkScene
	0.8%
	1.1%
	0.1%
	-0.1%
	-0.1%
	-1.1%

	S05
	Cactus
	0.2%
	0.0%
	0.1%
	-0.8%
	-0.1%
	-2.1%

	S06
	BasketballDrive
	-0.1%
	-0.2%
	0.0%
	-0.4%
	-0.4%
	-2.2%

	S07
	BQTerrace
	-0.4%
	-0.7%
	-0.7%
	-2.0%
	-2.4%
	-7.0%

	S08
	BasketballDrill
	0.0%
	-0.1%
	-0.4%
	-1.0%
	-0.5%
	-0.8%

	S09
	BQMall
	0.3%
	0.3%
	0.1%
	-0.1%
	-0.3%
	-1.5%

	S10
	PartyScene
	0.1%
	-0.1%
	0.0%
	-0.3%
	-0.3%
	-0.4%

	S11
	RaceHorses
	0.0%
	-0.2%
	-0.1%
	-0.4%
	-0.3%
	-1.5%

	S12
	BasketballPass
	0.3%
	0.3%
	0.0%
	-0.1%
	-0.1%
	-1.0%

	S13
	BQSquare
	0.1%
	0.0%
	-0.2%
	-0.5%
	-0.4%
	-0.5%

	S14
	BlowingBubbles
	0.2%
	0.2%
	0.2%
	0.0%
	-0.4%
	-0.4%

	S15
	RaceHorses
	0.5%
	0.3%
	0.2%
	0.0%
	0.2%
	-0.3%

	S16
	Vidyo1
	 
	 
	0.4%
	-0.4%
	-0.9%
	-3.3%

	S17
	Vidyo3
	 
	 
	-0.4%
	-4.0%
	-1.2%
	-10.4%

	S18
	Vidyo4
	 
	 
	0.2%
	-1.4%
	-0.8%
	-4.4%

	Average
	Class A
	-0.6%
	-1.7%
	 
	 
	 
	 

	
	Class B
	0.2%
	0.0%
	0.0%
	-0.8%
	-0.6%
	-3.2%

	
	Class C
	0.1%
	0.0%
	-0.1%
	-0.5%
	-0.4%
	-1.0%

	
	Class D
	0.2%
	0.2%
	0.1%
	-0.1%
	-0.2%
	-0.5%

	
	Class E
	 
	 
	0.1%
	-1.9%
	-0.9%
	-6.0%

	
	ALL
	0.0%
	-0.4%
	0.0%
	-0.8%
	-0.5%
	-2.5%


Table 6: Summary of the Complexity Results
	Gain Ave.[%]
	-0.70%
	-0,15%
	-0,27%

	Gain Min. [%]
	-10.38%
	-3,80%
	-4,21%


	Gain Max.[%]
	1.10%
	1,32%
	2,10%

	Enc Time[%]
	104.15%

	Dec Time[%]
	98.00%

	Mult Ave.[%]
	-6%

	Mult Worst[%]
	0%

	Adds Ave.[%]
	-7%

	Adds Worst[%]
	0%

	Access[%]
	0%

	MemBand(2D) Ave.[%]
	-1%

	MemBand(2D) Max.[%]
	6%

	MemBand(2D) Worst[%]
	0%

	MemBand(1D) Ave.[%]
	-1%

	MemBand(1D) Max.[%]
	6%

	MemBand(1D) Worst[%]
	0%


5 Visual quality check

One part of CE3 is visual quality test. Under common test conditions, the proposed method for interpolation filters shows almost same visual quality than that of the anchor [HM 4.0]; 
Fig 1. 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (HM4.0)

[image: image2.png]
Fig 2. 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (G057)

[image: image3.png]
It was noticed that if SAO is disabled in the LD(P)-LC test case, then in some cases, one may see ringing artifacts. Fig. 3-4 illustrate this. We may notice that the proposed method improves the visual quality in this test case.

Fig 3. 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (HM4.0+SAO OFF)

[image: image4.png]
Fig 4. 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (G057+SAO OFF)
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	Zoom on the 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (HM4.0+SAO OFF)
	Zoom on the 100th frame of PartyScene encoded with QP=37, LD(P)-LC. (G057 + SAO OFF)


6. Conclusion and recommendation

The proposed technique provides an average of 0.7% in Y BD-Rate reduction when applied to the luminance samples, relative to the HM 4.0 fixed filtering technique, while also requiring essentially less decoding complexity. Additionally, the proposed interpolation technique shows better visual quality than the anchor when SAO is disabled. The additional encoder complexity can vary greatly, depending on the video application. In some cases, the new filters can be decided off-line, and the encoder will only need to encode and transmit at most two filters per slice. In other cases, the encoder will generate the coefficients as part of a pre-analysis phase. Even when we generate such filters on-line on a slice basis, the average additional encoding complexity needed for the generation, selection and application procedures is only ~4%. Therefore, we suggest that the proposed technique be adopted to the next HM.
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