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Abstract

In this contribution, an approach to solve the parsing problem related to Merge/AMVP in HM3.0 was proposed. The proposed approach uses fixed list length of Merge/AMVP candidates to decouple Merge/AMVP candidate list derivation and Merge/AMVP indices parsing. Moreover, in order to compensate the coding performance loss caused by the fixed list length, additional Merge/AMVP candidates are assigned to the empty positions in the list, Relative to the HM3.0+bugfix146, experimental results reportedly showed 0.1% BR saving for HE and 0.3% BR saving in the RA scenarios, and 0.2% BR saving for HE and 0.7% BR saving for LC on average in the LD scenarios while achieving the parsing robustness for Merge/AMVP.
Introduction

Parsing problem on temporal motion vector predictor in HM2.0 was reported last meeting [1]. It is caused by dependency between deriving process for Merge/AMVP candidates list and parsing process for Merge/AMVP indices. It also causes performance issue on CABAC/CAVLC.
For example, Figure 1 shows decoding process for Merge indices in HM3.0. CABAC/CAVLC process has to derive Merge candidates list to decode Merge indices by using list size. It causes parsing and performance problem as below.
· When list size is unknown, it becomes impossible to decode Merge indices adequately, and it also becomes impossible to decode all bit streams. For example, when information on co-located block is lost by packet loss, the value of temporal motion predictor becomes incorrect and a list size of Merge candidates list also becomes incorrect by removing duplicate candidates
· CABAC/CAVLC process has to wait until deriving Merge candidates list during decoding bit stream. It is difficult to parallelize deriving process for Merge candidates list and decoding Merge indices to reduce cycles in hardware implementation.
This contribution proposes a modified decoding process for Merge/AMVP indices, in which fixed list sizes are used to decode them, to decouple deriving process for Merge/AMVP candidates list and parsing process for Merge/AMVP indices. Moreover, it proposes additional Merge/AMVP candidates to decrease coding loss by using fixed list size.
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Figure 1: decoding process for Merge indices in HM3.0
0 Proposed Method
0.1 Fixed list size method

To solve paring and performance problem, a proposed method modifies a decoding process for Merge/AMVP indices to use fixed list size, and, it disables adaptive switching method on selecting context for CABAC, and combining coding for CAVLC.
0.1.1 A modified decoding process for Merge/AMVP indices

A proposed decoding process for Merge/AMVP indices is shown in Figure 2. In this process, Merge index is coded in truncated unary codes of fixed maximum length 5. (AMVP index is coded by using fixed maximum length 3). By using fixed list size, it can decouple deriving process for Merge/AMVP candidates list and parsing process for Merge/AMVP indices.
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Figure 2: modified decoding process for Merge indices
0.1.2 Disabling adaptive switching method for CABAC/CAVLC
To avoid the parsing problem, following two adaptive switching methods are disabled in this proposal.

· Adaptive context selection method for inter_pred_flag and ref_idx_lx (CABAC)
( It is changed such that ctxIdx is fixed to 0
· Adaptive combined coding method for inter_pred_flag and ref_idx_lx (CAVLC)
( It is changed such that use_combined_inter_pred_ref is fixed to true in B slice
Upper methods refer neighbor inter_pred_flag and ref_idx_lx. In Merge, motion vector, inter_pred_flag and ref_idx_lx are copied from Merge candidate. When an error occurs, such as packet loss, the temporal motion predictor represents an incorrect value. In this situation, the removal process of duplicated candidates will remove some candidates that were not intended to be removed. As the result, not only the motion vector, but also inter_pred_flag and ref_idx_lx, which is selected by decode Merge index, will be calculated incorrectly. When these incorrect values are used to parse any syntax, this also causes a parsing problem.
Table 1 shows its RD performance and execution time of disabling adaptive switching method relative to HM3.0+bugfix146. It was observed that there is negligible impact for coding efficiency, encoding time and decoding time.
Table 1: The RD performance of disabling adaptive switching method (anchor HM3.0+bugfix146)
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0.1.3 Experimental result for fixed list size method
A fixed list size method was implemented on HM3.0+bugfix146 software and tested for four inter coding configurations [2]. Table 2 shows its RD performance and execution time of the software relative to HM3.0+bugfix. In random access cases, a fixed list size method shows 0.9% BR loss for high efficiency and 1.2% bits low complexity on average. On the other hand, in low delay case, a fixed list size method shows 1.4% BR loss for high efficiency and 1.9% bits for low complexity on average. The difference in the encoding and decoding time is not obvious. 
Table 2: The RD performance of fixed list size method (anchor: HM3.0+bugfix146)
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0.2 Fixed list size method plus proposed candidates
A fixed list size method can solve parsing and performance problem in HM3.0. However, its loss of coding efficiency is large. In this proposal, after removing duplicated candidates, proposed candidates are added following original ones to decrease coding loss by using fixed list size. Figure 3 shows proposed encoding and decoding process. Highlighted processes are changed by this proposal.
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Figure 3: proposed encoding and decoding process
Prediction type of Merge mode is based on Merge candidates. If all Merge candidates are uni-predictive, prediction type of Merge mode can’t select bi-predictive, even though it is a situation which bi-predictive saves a lot of bits. In this proposal, bi-predictive Merge candidates are created by using original Merge candidates. Proposed candidates are divided into there candidates as below.
· Combined bi-predictive Merge candidate (candidate 1)
· Scaled bi-predictive Merge candidate (candidate 2)
· Zero vector Merge/AMVP candidate (candidate 3)
0.2.1 Combined bi-predictive Merge candidate (candidate 1)
Combined bi-predictive Merge candidates are created by combining original Merge candidate. In particular, two candidates in original candidates, which have mvL0 and refIdxL0 or mvL1 and refIdxL1, are used to created bi-predictive Merge candidates. Figure 4 shows an example for combined bi-predictive Merge candidate. In Figure 4, two candidates are included in an original Merge candidates list. Prediction type of one candidate is list 0 uni-predictive, and another one is list 1 uni-predictive. In this situation, mvL0_A and ref0 is picked up from list 0, and mvL1_B and ref0 is picked up from list 1, and then, bi-predictive Merge candidate, which has mvL0_A and ref0 in list 0 and mvL1_B and ref0 in list 1, is created and checked whether it is duplicated or not. If it is not duplicated, it is added into Merge candidates list. The flowchart of derivation process of combined bi-predictive Merge candidate is shown in Figure 5.
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Figure 4: an example for combined Merge candidate
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Figure 5: flowchart of derivation process for combined bi-predictive Merge candidate
0.2.2 Scaled bi-predictive Merge candidate (candidate 2)
Scaled bi-predictive Merge candidates are created by scaling original Merge candidate. In particular, one candidate in original candidates, which have mvLX and refIdxLX, is used to created bi-predictive Merge candidates. Figure 6 shows an example for scale bi-predictive Merge candidate. In Figure 6, two candidates are included in an original Merge candidates list. Prediction type of one candidate is list 0 uni-predictive, and another one is list 1 uni-predictive. In this situation, mvL0_A and ref0 is picked up from list 0, and ref0 is copied to reference index ref0’ in list 1. After that, mvL0’_A is calculated by scaling mvL0_A with ref0 and ref0’.Scaling method is same as the method for temporal motion predictor. And then, bi-predictive Merge candidate, which has mvL0_A and ref0 in list 0 and mvL0’_A and ref0’ in list 1, is created and checked whether it is duplicated or not. If it is not duplicated, it is added into Merge candidates list. The flowchart of derivation process of scaled bi-predictive Merge candidate is shown in Figure 7.
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Figure 6: an example for scaled Merge candidate
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Figure 7: flowchart of derivation process for scaled bi-predictive Merge candidate
0.2.3 Zero vector Merge/AMVP candidate (candidate 3)
Zero vector Merge/AMVP candidates are created by combining zero vectors and reference index which can be referred. Figure 8 shows an example for zero vector Merge candidate and zero vector AMVP candidates. If zero vector candidates are not duplicated, it is added to Merge/AMVP candidates list. The flowchart of derivation process of zero vector Merge/AMVP candidate are shown in Figure 9 and 10.
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Figure 8: an example for zero vector Merge/AMVP candidate
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Figure 9: flowchart of derivation process for zero vector Merge candidate
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Figure 10: flowchart of derivation process for zero vector AMVP candidate
1 Experimental results
A proposed method was implemented on HM3.0+bugfix146 software and tested for four inter coding configurations [2]. Table 3 shows its RD performance and execution time of the software relative to HM3.0+bugfix. In random access cases, proposed method saves 0.1% bits for high efficiency and 0.2% bits low complexity on average. On the other hand, in low delay case, proposed method saves 0.2% bits for high efficiency and 0.7% bits for low complexity on average. The encoding time is 12%-15% increased. The difference in decoding time is not obvious. It was observed that proposed method, which combines fixed list size method with proposed candidates, improves coding efficiency despite it includes coding loss caused by fixed list size.
Table 3: The RD performance of proposed method (anchor: HM3.0+bugfix146)
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Table 4 shows RD performance and execution time for proposed method, for which candidate 1 and 2 are applied, relative to HM3.0+bugfix. In random access cases, proposed method saves 0.5% bits for high efficiency and 0.6% bits low complexity on average. On the other hand, in low delay case, proposed method saves 0.9% bits for high efficiency and 1.1% bits for low complexity on average. The encoding time is 6%-12% increased. The difference in decoding time is not obvious. It was observed that proposed candidate 1 and 2 improve coding efficiency relative to HM3.0.
Table 4: The RD performance of proposed candidates 1 and 2 (anchor HM3.0+bugfix146)
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From Figure 11 to 14 show the BD rate for each sequence of proposed candidate 1 and 2 in random access case and low delay B case for high efficiency and low complexity. It was observed that the proposed candidate 1 and 2 save bits for all sequences.
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Figure 11: BD-Rate of proposed candidate1 and 2 in random access case for high efficiency
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Figure 12: BD-Rate of proposed candidate 1 and 2 in random access case for low complexity
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Figure 13: BD-Rate of proposed candidate1 and 2 in low delay B case for high efficiency
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Figure 14: BD-Rate of proposed candidate 1 and 2 in low delay B case for low complexity
An additional experiment was conducted to address part of concerns raised in cross check report [3]. In this experiment, some limitations were applied to the proposed method as below.
1. combined bi-predictive Merge candidate (candidate1)
· The maximum number of combined bi-predictive Merge candidates is limited to 5.

2. scaled bi-predictive Merge candidate (candidate 2)

· It is limited that only candidate, which don't need scaling calculation, are added to Merge candidates list. It needs only sign inversion instead of scaling motion vector. It is called “non-scaled bi-predictive Merge candidate”.
· The maximum number of non-scaled bi-predictive Merge candidates is limited to 1.

3. zero vector Merge candidate (candidate 3)
· The maximum number of zero vector Merge candidates is limited to 2.

The flowchart of derivation process of non-scaled bi-predictive Merge candidate is shown in Figure 15. The highlighted blocks are modified points of Figure 7 to avoid scaling calculation.
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Figure 15: flowchart of derivation process for non-scaled bi-predictive Merge candidate
Table 5 shows RD performance and execution time of the proposed method with limitations. In random access cases, proposed method saves 0.1% bits for high efficiency and 0.2% bits low complexity on average. On the other hand, in low delay case, proposed method saves 0.1% bits for high efficiency and 0.6% bits for low complexity on average. It was observed that proposed method, which the limitations to address part of concerns are applied to, improves coding efficiency despite it includes coding loss caused by fixed list size.

Table 5: The RD performance of proposed method with limitations (anchor: HM3.0+bugfix146)
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2 Conclusion
In this contribution, an approach to solve the parsing problem related to Merge/AMVP in HM3.0 was proposed. The proposed approach reportedly achieved 0.1% BR saving for HE and 0.3% BR saving in the RA scenarios, and 0.2% BR saving for HE and 0.7% BR saving for LC on average in the LD scenarios relative to the HM3.0+bugfix146, while solving the parsing problem of Merge/AMVP. The encoding time is 12%-15% increased relative to HM3.0+bugfix146, but the difference in decoding time is not obvious.
Based on this BD rate gain with solving the parsing problem, it is recommended that the proposed approach for the parsing robustness be adopted in the next version of HM/WD of HEVC as a basis for further study in a CE.
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5 Appendix
Proposed changes on Working Draft 3.0 (to be refined)
1.1 Syntax in tabular form

7.3.7 Prediction unit syntax
	prediction_unit( x0, y0, log2PUWidth, log2PUHeight, PartIdx , 






 InferredMergeFlag ) {
	Descriptor

	
if( skip_flag[ x0 ][ y0 ] ) {
	

	

if( NumMergeCand  >  1 )
	

	


merge_idx[ x0 ][ y0 ]
	ue(v) | ae(v)

	
} else if( PredMode  = =  MODE_INTRA ) {
	

	

if( PartMode == PART_2Nx2N &&



log2PUWidth >= Log2IPCMCUSize )
	

	


pcm_flag
	u(1) | ae(v)

	

if( pcm_flag ) {
	

	


while ( !byte_aligned( ) )
	

	



pcm_alignment_zero_bit
	u(v)

	


for( i = 0; i < 1 << ( log2CUSize << 1 ); i++ )
	

	



pcm_sample_luma[ i ]
	u(v)

	


for( i = 0; i < ( 1 << ( log2CUSize << 1 ) ) >> 1; i++ )
	

	



pcm_sample_chroma[ i ]
	u(v)

	

} else {
	

	


prev_intra_luma_pred_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	


if( prev_intra_luma_pred_flag[ x0 ][ y0 ] )
	

	



if( NumMPMCand > 1 )
	

	




mpm_idx[ x0 ][ y0 ]
	u(1) | ae(v)

	


else
	

	



rem_intra_luma_pred_mode[ x0 ][ y0 ]
	ce(v) | ae(v)

	


if( IntraPredMode[ x0 ][ y0 ] == 2 )
	

	



planar_flag_luma[ x0 ][ y0 ]
	u(1) | ae(v)

	


intra_chroma_pred_mode[ x0 ][ y0 ]
	ue(v) | ae(v)

	


SignaledAsChromaDC = 




( chroma_pred_from_luma_enabled_flag ?





intra_chroma_pred_mode[ x0 ][ y0 ] == 3 :






intra_chroma_pred_mode[ x0 ][ y0 ] == 2 )
	

	


if( IntraPredMode[ x0 ][ y0 ] != 2 && 





IntraPredMode[ x0 ][ y0 ]!=34 && SignaledAsChromaDC )
	

	



planar_flag_chroma[ x0 ][ y0 ]
	u(1) | ae(v)

	

}
	

	
} else { /* MODE_INTER */
	

	

if( !InferredMergeFlag )
	

	


if( entropy_coding_mode_flag || PartMode != PART_2Nx2N )
	

	



merge_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	

if( merge_flag[ x0 ][ y0 ]  &&  NumMergeCand  >  1 ) {
	

	


merge_idx[ x0 ][ y0 ]
	ue(v) | ae(v)

	

} else {
	

	


if( slice_type  = =  B ) {
	

	



if(!entropy_coding_mode_flag &&






use_combined_inter_pred_ref( x0, y0 ) ) {
	

	




combined_inter_pred_ref_idx
	ue(v)

	




if( combined_inter_pred_ref_idx == MaxPredRef )
	

	





inter_pred_flag[ x0 ][ y0 ]
	ue(v)

	



} else
	

	




inter_pred_flag[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


if( inter_pred_flag[ x0 ][ y0 ]  = =  Pred_LC ) {
	

	



if( num_ref_idx_lc_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







 use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_lc_minus4[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_lc[ x0 ][ y0 ]
	ae(v)

	



}
	

	



mvd_lc[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_lc[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( LcToLx )  >  1 )
	

	




mvp_idx_lc[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


else { /* Pred_L0 or Pred_BI */
	

	



if( num_ref_idx_l0_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_l0_minusX[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_l0_minusX[ x0 ][ y0 ]
	ue(v) | ae(v)

	



}
	

	



mvd_l0[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l0[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L0 )  >  1 )
	

	




mvp_idx_l0[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


if( inter_pred_flag[ x0 ][ y0 ]  = =  Pred_BI ) {
	

	



if( num_ref_idx_l1_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_l1_minusX[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	



}
	

	



mvd_l1[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l1[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L1 )  >  1 )
	

	




mvp_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	

}
	

	
}
	

	}
	


1.2 Semantics
7.4.7 Prediction unit semantics
combined_inter_pred_ref_idx specifies the values of inter_pred_flag and ref_idx_lX with X being 0, 1 or c. When it is not present, it shall be inferred to be equal to 0. [Ed. (WJ): needs to be improved]

The variables NumPredRefLC, NumPredRefL0 and NumPredRefL1 are specified as

NumPredRefLC = Min( 4, num_ref_idx_lc_active_minus1 + 1 )
(7‑18)
NumPredRefL0 = Min( 2, num_ref_idx_l0_active_minus1 + 1 )
(7‑18)
NumPredRefL1 = Min( 2, num_ref_idx_l1_active_minus1 + 1 )
(7‑18)
The variable MaxPredRef is specified as

· If num_ref_idx_lc_active_minus1 is greater than 0, the following applies.
MaxPredRef = NumPredRefLC + NumPredRefL0 * NumPredRefL1
(7‑18)
· Otherwise (combined list is not used), the following applies.
MaxPredRef = NumPredRefL0 + NumPredRefL0 * NumPredRefL1
(7‑18)
The function use_combined_inter_pred_ref( x, y ) is specified as follows: [Ed. (WJ): move to syntax function section?]


use_combined_inter_pred_ref ( x, y ) = 
check_inter_pred_ref_neighbour( x-1, y ) &&











check_inter_pred_ref_neighbour( x, y-1 ) &&











check_inter_pred_ref_neighbour( x-1, y-1 )

The function check_inter_pred_ref_neighbour( x, y ) is specified as follows: [Ed. (WJ): move to syntax function section?]


if x or y is outside current slice, check_inter_pred_ref_neighbour( x, y ) = true


else if ( num_ref_idx_lc_active_minus1 <= 0 && ref_idx_l0[ x ][ y ] < 2 && ref_idx_l1[ x ][ y ] < 2 )



check_inter_pred_ref_neighbour( x, y ) = true


else if ( num_ref_idx_lc_active_minus1 > 0 && inter_pred_flag[ x ][ y ] != PredLC &&




 ref_idx_l0[ x ][ y ] < 2 && ref_idx_l1[ x ][ y ] < 2 )



check_inter_pred_ref_neighbour( x, y ) = true


else if ( num_ref_idx_lc_active_minus1 > 0 && inter_pred_flag[ x ][ y ] == PredLC && ref_idx_lc[ x ][ y ] < 4 )



check_inter_pred_ref_neighbour( x, y ) = true


else



check_inter_pred_ref_neighbour( x, y ) = false
8.2
Slice decoding process
9.3.1.1 Initialisation process for context variables
Table 7‑1 – Association of ctxIdx and syntax elements for each slice type in the initialisation process
	
	Syntax element
	ctxIdxTable
	Slice Type

	
	
	
	I
	P
	B

	slice_header()
	alf_cu_flag
	Table 9‑5
	0   2
	3..5
	6..8

	coding_tree()
	split_coding_unit_flag
	Table 9‑6
	0...2
	3..5
	6..8

	coding_unit()
	skip_flag
	Table 9‑7
	
	0..2
	3..5

	
	cu_qp_delta
	Table 9‑8
	0..3
	4..7
	8..11

	
	pred_type
	Table 9‑9
	0
	1..4
	5..9

	prediction_unit()
	prev_intra_luma_pred_flag
	Table 9‑10
	0
	1
	2

	
	rem_intra_luma_pred_mode
	Table 9‑11
	0
	1
	2

	
	intra_chroma_pred_mode
	Table 9‑12
	0..3
	4..7
	8..11

	
	merge_flag
	Table 9‑13
	
	0..2
	3..5

	
	merge_idx
	Table 9‑14
	
	0..3
	4..7

	
	inter_pred_flag
	Table 9‑15
	
	
	0..2

	
	ref_idx_lc, ref_idx_l0, ref_idx_l1
	Table 9‑16
	
	0..5  0, 4
	6..11 6, 10

	
	mvd_l0[ ][ ][ 0 ]
	Table 9‑17
	
	0..6
	14..20

	
	mvd_lc[ ][ ][ 0 ], mvd_l1[ ][ ][ 0 ]
	Table 9‑17
	
	
	14..20

	
	mvd_l0[ ][ ][ 1 ]
	Table 9‑17
	
	7..13
	21..27

	
	mvd_lc[ ][ ][ 1 ], mvd_l1[ ][ ][ 1 ]
	Table 9‑17
	
	
	21..27

	
	mvp_idx_lc, mvp_idx_l0, mvp_idx_l1
	Table 9‑18
	
	0..1
	2..3

	transform_tree()
	no_residual_data_flag
	Table 9‑19
	
	0..3
	4..7

	
	split_transform_flag
	Table 9‑20
	0..3
	4..7
	8..11

	
	cbf_luma
	Table 9‑21
	0..3
	4..7
	8..11

	
	cbf_cb
	Table 9‑22
	0..3
	4..7
	8..11

	
	cbf_cr
	Table 9‑23
	0..3
	4..7
	8..11

	residual_coding()
	last_significant_coeff_x
	Table 9‑24
	0..40
	41..81
	82..122

	
	last_significant_coeff_y
	Table 9‑25
	0..40
	41..81
	82..122







	Table 9‑28





	Table 9‑29

	0..79
	80..159
	160..239

	
	coeff_abs_level_greater2_flag
	Table 9‑30
	0..79
	80..159
	160..239


Table 9‑28 – Values of variable m and n for inter_pred_flag ctxIdx

	Initialisation variables
	inter_pred_flag ctxIdx

	
	0
	1
	2

	m
	-2
	-5
	-9

	n
	58
	70
	85


Table 9‑29 – Values of variable m and n for ref_idx_lc, ref_idx_l0, ref_idx_l1 ctxIdx
	Initialisation variables
	ref_idx_lc, ref_idx_l0, ref_idx_l1 ctxIdx

	
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	m
	-6
	-10
	-8
	-17
	1
	0
	-9
	-9
	-9
	-12
	-18
	0

	n
	59
	75
	75
	96
	59
	64
	55
	71
	76
	86
	55
	64


9.3.3.1 Derivation process for ctxIdx
	Table 7‑2 – Assignment of ctxIdxInc to binIdx for all ctxIdxTable and ctxIdxOffset values

	Syntax element
	ctxIdxTable, 
ctxIdxOffset
	binIdx

	
	
	0
	1
	2
	3
	>=4

	alf_cu_flag
	Table 9‑5
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	3
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	6
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	split_coding_unit_flag
	Table 9‑6
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	3
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	6
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	skip_flag
	Table 9‑7
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	3
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	cu_qp_delta
	Table 9‑8
	0
	0
	2
	3
	3
	3

	
	
	4
	0
	2
	3
	3
	3

	
	
	8
	0
	2
	3
	3
	3

	pred_type
	Table 9‑9
	0
	0
	na
	na
	na
	na

	
	
	1
	0
	1
	2
	3
	na

	
	
	5
	0
	1
	2
	3
	4

	prev_intra_luma_pred_flag
	Table 9‑10
	0
	0
	na
	na
	na
	na

	
	
	1
	0
	na
	na
	na
	na

	
	
	2
	0
	na
	na
	na
	na

	rem_intra_luma_pred_mode
	Table 9‑11
	0
	0
	0
	0
	0
	0

	
	
	1
	0
	0
	0
	0
	0

	
	
	2
	0
	0
	0
	0
	0

	intra_chroma_pred_mode
	Table 9‑12
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	3
	3
	na

	
	
	4
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	3
	3
	na

	
	
	8
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	3
	3
	na

	merge_flag
	Table 9‑13
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	3
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	merge_idx
	Table 9‑14
	0
	0,1,2,3
(subclause 9.3.3.1.1.2)
	0,1,2,3
(subclause 9.3.3.1.1.2)
	0,2,3
(subclause 9.3.3.1.1.2)
	3
	na

	
	
	4
	0,1,2,3
(subclause 9.3.3.1.1.2)
	0,1,2,3
(subclause 9.3.3.1.1.2)
	0,2,3
(subclause 9.3.3.1.1.2)
	3
	na

	inter_pred_flag
	Table 9‑15
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	ref_idx_l0
	Table 9‑16
	0
	0,1,2,3
(subclause 9.3.3.1.1.1)
	4
	4
	4
	4

	ref_idx_l0, ref_idx_l1, ref_idx_lc
	Table 9‑16
	6
	0,1,2,3
(subclause 9.3.3.1.1.1)
	4
	4
	4
	4

	mvd_l0[ ][ ][ 0 ]
	Table 9‑17
	0
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	4
	5
	6

	mvd_l0[ ][ ][ 1 ]
	Table 9‑17
	7
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	4
	5
	6

	mvd_l0[ ][ ][ 0 ], mvd_lc[ ][ ][ 0 ], mvd_l1[ ][ ][ 0 ]
	Table 9‑17
	15
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	4
	5
	6

	mvd_l0[ ][ ][ 1 ], mvd_lc[ ][ ][ 1 ], mvd_l1[ ][ ][ 1 ]
	Table 9‑17
	21
	0,1,2
(subclause 9.3.3.1.1.1)
	3
	4
	5
	6

	mvp_idx_l0
	Table 9‑18
	0
	0
	1
	1
	1
	1

	mvp_idx_l0, mvp_idx_l1, mvp_idx_lc
	Table 9‑18
	2
	0
	1
	1
	1
	1

	no_residual_data_flag
	Table 9‑19
	0
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	4
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	split_transform_flag
	Table 9‑20
	0
	cuDepth + trafoDepth 
	na
	na
	na
	na

	
	
	4
	cuDepth + trafoDepth
	na
	na
	na
	na

	
	
	8
	cuDepth + trafoDepth
	na
	na
	na
	na

	cbf_luma
	Table 9‑21
	0
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	4
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	8
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	cbf_cb
( PredMode   = =  MODE_INTRA )
	Table 9‑22
	0
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	4
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	8
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	cbf_cb
( PredMode  !=  MODE_INTRA )
	Table 9‑22
	0
	trafoDepth
	na
	na
	na
	na

	
	
	4
	trafoDepth
	na
	na
	na
	na

	
	
	8
	trafoDepth
	na
	na
	na
	na

	cbf_cr
( PredMode  = =  MODE_INTRA )
	Table 9‑23
	0
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	4
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	
	
	8
	0,1,2,3
(subclause 9.3.3.1.1.1)
	na
	na
	na
	na

	cbf_cr
( PredMode  !=  MODE_INTRA )
	Table 9‑23
	0
	trafoDepth
	na
	na
	na
	na

	
	
	4
	trafoDepth
	na
	na
	na
	na

	
	
	8
	trafoDepth
	na
	na
	na
	na


9.3.3.1.1 Assignment process of ctxIdxInc using neighbouring syntax elements

Subclause 9.3.3.1.1.1 specifies the derivation process of ctxIdxInc for the syntax elements alf_cu_flag, split_coding_unit_flag, skip_flag, merge_flag, intra_chroma_pred_mode, inter_pred_flag, ref_idx_lc, ref_idx_l0, ref_idx_l1, mvd_l0, mvd_l1, mvd_lc, no_residual_data_flag, cbf_luma, cbf_cb and cbf_cr.
9.3.3.1.1.1 Derivation process of ctxIdxInc using left and above syntax elements
Input to this process is the luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture.

Output of this process is ctxIdxInc.

Let the luma location ( xL, yL ) specify a location covered by the prediction unit to the left of the top-left luma sample of the current prediction unit with xL = xP − MinPuSize and yL = yP, the variable availableL is derived as follows. 
1. If the prediction unit covering location ( xL, yL ) is available, availableL is set equal to 1.

2. Otherwise (the prediction unit covering location ( xL, yL ) is not available), availableL is set equal to 0.

Let the luma location ( xA, yA ) specify a location covered by the prediction unit above the top-left luma sample of the current prediction unit with xA = xP and yA = yP − MinPuSize, the variable availableA is derived as follows. If the prediction unit covering location ( xA, yA ) is available, availableA is set equal to 1.

· Otherwise (the prediction unit covering location ( xA, yA ) is not available), availableA is set equal to 0

The assignment of ctxIdxInc for the syntax elements alf_cu_flag, split_coding_unit_flag, skip_flag, merge_flag, intra_chroma_pred_mode, inter_pred_flag, ref_idx_lc, ref_idx_l0, ref_idx_l1, mvd_lc, mvd_l0, mvd_l1, no_residual_data_flag, cbf_luma, cbf_cb and cbf_cr is specified in Table 9‑50 – Specifcation of ctxIdxInc using left and above syntax elements.

Table 9‑50– Specifcation of ctxIdxInc using left and above syntax elements

	Syntax element
	condL
	condA
	ctxIdxInc

	alf_cu_flag
	alf_cu_flag[ xL ][ yL ]
	alf_cu_flag[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA )

	split_coding_unit_flag
	cuDepth[ xL ][ yL ]  >  cuDepth[ xP ][ yP ]
	cuDepth[ xA ][ yA ]  >  cuDepth[ xP ][ yP ]
	( condL && availableL ) + ( condA && availableA )

	skip_flag
	skip_flag[ xL ][ yL ]
	skip_flag[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA )

	merge_flag
	merge_flag[ xL ][ yL ]
	merge_flag[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA )

	intra_chroma_pred_mode
	IntraPredMode[ xL ][ yL ]  = =  4
	IntraPredMode [ xA ][ yA ]  = =  4
	( condL && availableL ) + ( condA && availableA )

	inter_pred_flag
	inter_pred_flag[ xL ][ yL ]
	inter_pred_flag[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA )

	ref_idx_lc
	ref_idx_lc[ xL ][ yL ]  >  0
	ref_idx_lc[ xA ][ yA ]  >  0
	( condL && availableL ) + ( condA && availableA ) << 1

	ref_idx_l0
	ref_idx_l0[ xL ][ yL ]  >  0
	ref_idx_l0[ xA ][ yA ]  >  0
	( condL && availableL ) + ( condA && availableA ) << 1

	ref_idx_l1
	ref_idx_l1[ xL ][ yL ]  >  0
	ref_idx_l1[ xA ][ yA ]  >  0
	( condL && availableL ) + ( condA && availableA ) << 1

	mvd_lc
	mvd_lc[ xL ][ yL ]  >  16
	mvd_lc[ xA ][ yA ]  >  16
	( condL && availableL ) + ( condA && availableA ) 

	mvd_l0
	mvd_l0[ xL ][ yL ]  >  16
	mvd_l0[ xA ][ yA ]  >  16
	( condL && availableL ) + ( condA && availableA ) 

	mvd_l1
	mvd_l1[ xL ][ yL ]  >  16
	mvd_l1[ xA ][ yA ]  >  16
	( condL && availableL ) + ( condA && availableA ) 

	no_residual_data_flag
	no_residual_data_flag[ xL ][ yL ]
	no_residual_data_flag[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA ) << 1

	cbf_luma
	cbf_luma[ xL ][ yL ]
	cbf_luma[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA ) << 1

	cbf_cb
	cbf_cb[ xL ][ yL ]
	cbf_cb[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA ) << 1

	cbf_cr
	cbf_cr[ xL ][ yL ]
	cbf_cr[ xA ][ yA ]
	( condL && availableL ) + ( condA && availableA ) << 1


8.4.2.1.1
Derivation process for luma motion vectors for merge mode

This process is only invoked when PredMode is equal to MODE_ INTER and merge_flag [ xP ][ yP ] is equal to 1, where ( xP, yP ) specify the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture.

Inputs of this process are

· a luma location ( xP, yP ) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,

· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are

–
the luma motion vectors mvL0 and mvL1,

–
the reference indices refIdxL0 and refIdxL1,

–
the prediction list utilization flags predFlagL0 and predFlagL1.

The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the prediction utilization flags predFlagL0 and predFlagL1 are derived as specified by the following ordered steps:

1. The derivation process for merging candidates from neighboring prediction unit partitions in subclause 8.4.2.1.4 is invoked with luma location ( xP, yP ), the width and the height of the prediction unit nPSW and nPSH and the partition index PartIdx as inputs and the output is assigned to the availability flags availableFlagN, the motion vectors mvL0N and mvL1N, the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N with N being replaced by A, B, C or D.

2. The derivation process of reference indices for temporal merging candidate in subclause 8.4.2.1.3 is invoked with luma location ( xP, yP ), nPSW, nPSH as the inputs and the output is directly assigned to refIdxLX.

3. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location ( xP, yP ), refIdxLX as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector mvLXCol. The variables availableFlagCol and predFlagLXCol (with X being 0 or 1, respectively) are derived as specified below.

availableFlagCol = availableFlagL0Col || availableFlagL1Col
(8‑71)

predFlagLXCol = availableFlagLXCol
(8‑72)

4. The merging candidate list, mergeCandList, is constructed of which elements are given as specified order:

1. A, if availableFlagA is equal to 1

2. B, if availableFlagB is equal to 1

3. Col, if availableFlagCol is equal to 1

4. C, if availableFlagC is equal to 1

5. D, if availableFlagD is equal to 1

5. If merging candidates have the same motion vectors and the same reference indices, the redundant merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.
6. The variable NumMergeCand and NumOriginalMergeCand are set to the number of merging candidates in the mergeCandList. And the variable MaxNumMergeCand is set to 5.
7. If slice_type is equal to B and the variable NumMergeCand is greater than one and is less than MaxNumMergeCand, the merging candidate list modification process for combined bi-predictive merging candidate in subclause x.x.x.x.x.x is invoked with the mergeCandList, the NumMergeCand, the NumOriginalMergeCand and the MaxNumMergeCand as the inputs and with the outputs being the mergeCandList and the NumMergeCand.
8. If slice_type is equal to B, and the variable NumMergeCand is less than MaxNumMergeCand, the merging candidate list modification process for non-scaled bi-predictive merging candidate in subclause x.x.x.x.x.x is invoked with the mergeCandList, the NumMergeCand, the NumOriginalMergeCand and the MaxNumMergeCand as the inputs and with the outputs being the mergeCandList and the NumMergeCand.
9. If the variable NumMergeCand is less than MaxNumMergeCand, the merging candidate list modification process for zero vector merging candidate in subclause x.x.x.x.x.x is invoked with the mergeCandList, the NumMergeCand and the MaxNumMergeCand as the inputs and with the outputs being the mergeCandList and the NumMergeCand.
10. If the number of elements NumMergeCand within the mergeCandList is equal to 1, mergeIdx is set equal to 0, otherwise, mergeIdx is set equal to merge_idx[ xP][ yP ].

11. The following assignments are made with N being the candidate at position mergeIdx in the merging candidate list mergeCandList ( N = mergeCandList[ mergeIdx ] ) and X being replaced by 0 or 1:

mvLX[ 0 ] = mvLXN[ 0 ]　　　(8‑73)

mvLX[ 1 ] = mvLXN[ 1 ]　　　(8‑74)
refIdxLX = refIdxLXN　　　　(8‑75)

predFlagLX = predFlagLXN　　(8‑76)

12. If all availability flags availableFlagN (with N being replaced by A, B, Col, C, or D) are equal to 0, mergeIdx is set equal to 0 and the variables mvLX, refIdxLX and predFlagLX (with X being replaced by 0 or 1) are inferred as follows.
If slice_type is equal to P, the following applies.

mvLX[ 0 ] = 0
(8‑77)

mvLX[ 1 ] = 0
(8‑78)

refIdxL0 = 0

(8‑79)

refIdxL1 = -1
(8‑80)

predFlagL0 = 1
(8‑81)

prefFlagL1 = 0
(8‑82)

Otherwise ( slice_type is equal to B ), the following applies.

mvLX[ 0 ] = 0
(8‑83)

mvLX[ 1 ] = 0
(8‑84)

refIdxL0 = 0

(8‑85)

refIdxL1 = 0

(8‑86)

predFlagL0 = 1
(8‑87)
prefFlagL1 = 1
x.x.x.x.x.x
Merging candidate list modification process for combined bi-predictive merging candidate
Inputs of this process are
· the merging candidate list mergeCandList
· the number of elements NumMergeCand within the mergeCandList
· the NumOriginalMergeCand
· the MaxNumMergeCand
Outputs of this process are
· the merging candidate list mergeCandList

· the number of elements NumMergeCand within the mergeCandList
The combined bi-predictive merging candidate is derived and then added to the mergeCandList by the following ordered steps:
1. Variables idx1, idx2 and PruningCnt are set as the following. The additional mergeCandList[ idx2 ] (which element of the mergeCandList is hereafter referred as C in the following steps) is then derived by the step 2 and 3 specified below..
· idx1 = 0
· idx2 = NumMergeCand
· PruningCnt = 0
2. Variables i and j are set to the values in the Table x-xx which is referred by the value of variable idx1. 
3. If both of mergeCandList[ i ]( which element of the mergeCandList is hereafter referred as A in the following steps) and mergeCandList[ j ]( which element of the mergeCandList is hereafter referred as B in the following steps) are available, the motion vector and the reference index of the additional mergeCandList[ idx2 ] are set by the following steps.
· If predFlagL0A is not equal to predFlagL0B or predFlagL1A is not equal to predFlagL1B or both of inter_pred_flagA and inter_pred_flagB are equal to Pred_Bi, the following applies.
a. mvL0C[ 0 ] = mvL0A[ 0 ]
b. mvL0C[ 1 ] = mvL0A[ 1 ]

c. mvL1C[ 0 ] = mvL1B[ 0 ]

d. mvL1C[ 1 ] = mvL1B[ 1 ]

e. refIdxL0C = refIdxL0A

f. refIdxL1C = refIdxL1B

· If either RefPicOrderCnt( currPic, refIdxL0C, L0 ) is not equal to RefPicOrderCnt( currPic, refIdxL1C, L1) or mvL0C is not equal to mvL1C, the following applies.
a. If none of the candidates in mergeCandList has the same motion vector and the same reference index as mergeCandList[ idx2 ], the following applies.
· predFlagL0C = 1

· prefFlagL1C = 1

· idx2 = idx2 + 1
b. PruningCnt = PruningCnt + 1
4. idx1 = idx1 + 1
5. If idx1 is less than NumOriginalMergeCand ( (NumOriginalMergeCand − 1), idx2 is less than the MaxNumMergeCand and PruningCnt is less than 5, go back to the step 2.
6. The number of elements NumMergeCand within the mergeCandList is set to the value of idx2.
Table x-xx – Assignment for the values of variable i and j referred by variable idx1
	idx1
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11

	i
	0
	1
	0
	2
	1
	2
	0
	3
	1
	3
	2
	3

	j
	1
	0
	2
	0
	2
	1
	3
	0
	3
	1
	3
	2


x.x.x.x.x.x
Merging candidate list modification process for scaled bi-predictive merging candidate
Inputs of this process are
· the merging candidate list mergeCandList
· the number of elements NumMergeCand within the mergeCandList
· the NumOriginalMergeCand
· the MaxNumMergeCand
Outputs of this process are
· the merging candidate list mergeCandList

· the number of elements NumMergeCand within the mergeCandList
The scaled bi-predictive merging candidate is derived and then added to the mergeCandList by the following ordered steps:

1. Variables X, idx1, idx2 and PruningCnt are set as the following. The additional mergeCandList[ idx2 ]( which element of the mergeCandList is referred as C in the following steps) is then derived by the step 2 and 3 specified below.
· X = 0
· idx1 = 0
· idx2 = NumMergeCand
· PruningCnt = 0
2. If mergeCandList[ idx1 ]( which element of the mergeCandList is referred as A in the following steps) is available and refIdxLXA is not less than 0, the motion vector and the reference index of the additional mergeCandList[ idx2 ] are set by the following steps.
· If RefPicOrderCnt( currPic, refIdxLXA, LX) is not equal to RefPicOrderCnt( currPic, refIdxLXA, L(1–X) ) and refIdxLXA is less than num_ref_idx_l(1–X)_active_minus1+1, the following applies.
a. refIdxLXC = refIdxLXA
b. mvLXC is derived as scaled version of the motion vector mvLXA as specified below

· tx = ( 16384 + Abs( td / 2 ) ) / td

· DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 )
· mvLXC = ClipMv( ( DistScaleFactor * mvLXA + 128 ) >> 8 )
· where td and tb are derived as
· td = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxLXA, LX ) )
· tb = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxLXC, L(1-X) ) )
c. If none of the candidates in mergeCandList has the same motion vector and the same reference index as mergeCandList[ idx2 ], the following applies.
· predFlagL0C = 1
· prefFlagL1C = 1
· idx2 = idx2 + 1
d. PruningCnt = PruningCnt + 1
3. X = X + 1

4. If X is less than 2, idx2 is less than the maximum number of merging candidate and PruningCnt is less than 1, go back to the step 2.
5. Otherwise, the following applies.

· idx1 = idx1 + 1

· X = 0

6. If idx1 is less than NumOriginalMergeCand, idx2 is less than the MaxNumMergeCand and PruningCnt is less than 1, go back to the step 2. 
7. The number of elements NumMergeCand within the mergeCandList is set to the value of idx2.

x.x.x.x.x.x
Merging candidate list modification for zero vector merging candidate
Inputs of this process are
· the merging candidate list mergeCandList
· the number of elements NumMergeCand within the mergeCandList
· the MaxNumMergeCand
Outputs of this process are
· the merging candidate list mergeCandList

· the number of elements NumMergeCand within the mergeCandList
The zero vector merging candidate is derived and then added to the mergeCandList by the following ordered steps:

1. If the current slice is B slice, NumRefIdx is set to Min(num_ref_idx_l0_active_minus1+1, num_ref_idx_l1_active_minus1+1) , otherwise, NumRefIdx is set to num_ref_idx_l0_active_minus1+1.

2. Variables idx1, refIdxZ and PruningCnt are set as the following. The additional mergeCandList[ idx2 ]( which element of the mergeCandList is hereafter referred as C in the following steps) is then derived by the step 3 and 4 specified below.
· refIdxZ = 0
· idx2 = NumMergeCand
· PruningCnt = 0
3. The motion vector and the reference index of the additional mergeCandList[ idx2 ] are set by the following steps.
· If the current slice is B slice, the following applies.
a. mvL0C[ 0 ] = 0

b. mvL0C[ 1 ] = 0

c. mvL1C[ 0 ] = 0

d. mvL1C[ 1 ] = 0

e. refIdxL0C = refIdxZ

f. refIdxL1C = refIdxZ

g. If none of the candidates in mergeCandList has the same motion vector and the same reference index as mergeCandList[ idx2 ], the following applies.
· predFlagL0C = 1
· prefFlagL1C = 1
· idx2 = idx2 + 1
h. PruningCnt = PruningCnt + 1
· Otherwise, the following applies.
a. mvL0C[ 0 ] = 0

b. mvL0C[ 1 ] = 0

c. refIdxL0C = refIdxZ

d. If none of the candidates in mergeCandList has the same motion vector and the same reference index as mergeCandList[ idx2 ], the following applies.
· predFlagL0C = 1
· idx2 = idx2 + 1
e. PruningCnt = PruningCnt + 1
4. refIdxZ = refIdxZ + 1

5. If refIdxZ is less than NumRefIdx, idx2 is less than the MaxNumMergeCand and PruningCnt is less than 1, go back to the step 2
6. The number of elements NumMergeCand within the mergeCandList is set to the value of idx2.

x.x.x.x.x.x
Merging candidate list modification process for non-scaled bi-predictive merging candidate
Inputs of this process are
· the merging candidate list mergeCandList
· the number of elements NumMergeCand within the mergeCandList
· the NumOriginalMergeCand
· the MaxNumMergeCand
Outputs of this process are
· the merging candidate list mergeCandList

· the number of elements NumMergeCand within the mergeCandList
The non-scaled bi-predictive merging candidate is derived and then added to the mergeCandList by the following ordered steps:

1. Variables X, idx1, idx2 and PruningCnt are set as the following. The additional mergeCandList[ idx2 ]( which element of the mergeCandList is hereafter referred as C in the following steps) is then derived by the step 2 and 3 specified below.
· X = 0

· idx1 = 0

· idx2 = NumMergeCand

· PruningCnt = 0
2. If mergeCandList[ idx1 ]( which element of the mergeCandList is hereafter referred as A in the following steps) is available and refIdxLXA is not less than 0, the motion vector and the reference index of the additional mergeCandList[ idx2 ] are set by the following steps.
· If RefPicOrderCnt( currPic, refIdxLXA, LX) is not equal to RefPicOrderCnt( currPic, refIdxLXA, L(1–X) ), refIdxLXA is less than num_ref_idx_l(1–X)_active_minus1+1 and Abs( PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxLXA, LX) ) is equal to Abs( PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxLXA, L(1–X)) ) , the following applies.
a. refIdxLXC = refIdxLXA
b. mvLXC = – mvLXA

c. If none of the candidates in mergeCandList has the same motion vector and the same reference index as mergeCandList[ idx2 ], the following applies.
· predFlagL0C = 1
· prefFlagL1C = 1
· idx2 = idx2 + 1
· PruningCnt = PruningCnt + 1
3. X = X + 1

4. If X is less than 2, idx2 is less than the maximum number of merging candidate and PruningCnt is less than 1, go back to the step 2.

5. Otherwise, the following applies.

· idx1 = idx1 + 1

· X = 0

6. If idx1 is less than NumOriginalMergeCand, idx2 is less than the MaxNumMergeCand and PruningCnt is less than 1, go back to the step 2. 

7. The number of elements NumMergeCand within the mergeCandList is set to the value of idx2.

8.4.7.1.4
Derivation process for luma motion vector prediction

Inputs to this process are

· a luma location ( xP, yP ) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.
· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).

Output of this process is 

· the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The motion vector predictor mvpLX is derived in the following ordered steps.

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in subclause 8.4.2.1.6 is invoked with luma location ( xP, yP ), the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as inputs and the availability flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B as the output.

2. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location ( xP, yP ) , the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol.

3. The motion vector predictor list, mvpListLX, is constructed of which elements are given as specified order:

1. mvLXCol, if availableFlagLXCol is equal to 1

2. mvLXA, if availableFlagLXA is equal to 1

3. mvLXB, if availableFlagLXB is equal to 1

4. If several motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.
5. The variable NumMVPCand( LX ) is set to the number of motion vector predictor candidates in the mvpListLX. And the variable MaxNumMVPCand( LX ) is set to 2.
6. If the NumMVPCand( LX ) is less than MaxNumMVPCand( LX ), the motion vector predictor list modification process for zero motion vector predictor candidate in subclause x.x.x.x.x is invoked with the mvpListLX and the NumMVPCand( LX ) as the inputs and with the outputs being the mvpListLX and the NumMVPCand( LX ).
7. If the number of elements NumMVPCand( LX ) within the mvpListLX is equal to 1, mvpIdx is set equal to 0, otherwise, mvpIdx is set equal to mvp_idx_lX[ xP, yP ].

8. The motion vector of mvListLX[ mvpIdx ] is assigned to mvpLX.

x.x.x.x.x.x
Motion vector predictor list modification process for zero motion vector predictor candidate

Inputs of this process are
· the motion vector predictor list MvpListLX
· the number of elements NumMVPCand( LX ) within the mvpListLX
Outputs of this process are

· the motion vector predictor list MvpListLX
· the number of elements NumMVPCand( LX ) within the mvpListLX
The zero motion vector predictor candidate is derived and then added to the mvpListLX by the following ordered steps:

1. A variable idx2 is set as the following. The additional mvpListLX[ idx2 ]( which element of the mvpListLX is hereafter referred as C in the following steps) is then derived by the further following steps.
· idx2 = NumMVPCand( LX )

· mvLXC[ 0 ] = 0

· mvLXC[ 1 ] = 0

· If none of the candidates in mvpListLX has the same motion vector as mvpListLX[ idx2 ], the following applies.
a. Idx2 = idx2 + 1
2. The number of elements NumMVPCand (LX) within the mvpListLX is set to the value of idx2.
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