	[image: image3.png][image: image4.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F426


	Title:
	Fixed Probability coding for Intra Mode Coding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Hisao Sasai
Takahiro Nishi
1006 Kadoma, Kadoma, Osaka, Japan
	
Tel:
Email:
	
+81 6 6900 9689
sasai.hisao@jp.panasonic.com

	Source:
	Panasonic Corporation


_____________________________
Abstract

This proposal presents a technique for complexity reduction for intra-mode parameter parsing process. In this contribution, it is proposed that 1) redundant bit saving for binarization for CABAC, 2) bypass coding and 3) no context updates are used for intra mode coding. In current HM3.0, the additional bin to indicate whether 32 or 33 is specified even it is always less than 33 in case that number of MPM equal to 2 and one context index is used and updated for all bins of intra mode coding. The proposed solution was implemented in HMv3 and their coding efficiencies were evaluated. The result shows 0.1% performance gain with fixed probability and less than 0.1% performance change with redundant bit reduction and bypass coding for All-Intra high efficiency configuration.
1 Introduction
The current binarization for "rem_intra_luma_pred_mode" is specified by Table 1 [1]. If "rem_intra_luma_pred_mode" presents, IntraPredMode is derived by the following procedure.


step 1. IntraPredMode = rem_intra_pred_mode


step 2. for (cIdx=0; cIdx < NumMPMCand; cIdx++)





if( IntraPredMode >= candModeList[cIdx] ) IntraPredMode++

Therefore, in case that NumMPMCand is more than or equal to "2", rem_intra_pred_mode should be 0 to Number of IntraPredMode-2. In that case, 6th bit is not necessary to be coded.

Table 1. Binarization for rem_intra_luma_pred_mode

	Value of rem_intra_luma_pred_mode
	Bin string

	less than 32
	FL, cMax = cNumBins

	32
	111110

	33
	111111


The current context derivation for "rem_intra_luma_pred_mode" is specified that the same context is used for all bins. The CABAC has high serial dependencies from multiple feedback loop, which poses practical problems for real-time processing of high resolution video sequences. It is difficult to increase throughput due to the dependencies as discussed in [2]. Moreover, current intra mode parsing has dependency on neighboring mode results which is for NumMPM Cand derivation and IntraPredMode derivation. Therefore, it is desired to simplify the intra mode coding for CABAC case.
2 Technical description

2.1 Redundant bit reduction

As noted section 1, the binarization is changed in case of NumMPMCand >1 or not. ( It is same as MPM index presents or not). 
Table 2. modified Binarization for rem_intra_luma_pred_mode

	Value of rem_intra_luma_pred_mode
	Bin string

	less than 32 or 

equal to 32 (with NumMPM Cand>1)
	FL, cMax = cNumBins

	32
	111110

	33
	111111


2.2 Fixed Probability coding

In the current HMv3, single context is used for "rem_intra_luma_pred_mode" for all bins. The probability adaptation may not work well since it is no strong dependency on each bins.
2.2.1 bypass coding

Without probability adaptation, bypass coding is specified in current HEVC CABAC. The bypass coding makes fast processing capability increase. It can be applied for all bins of "rem_intra_luma_pred_mode" coding.
2.2.2 no context updating

In order to code with fixed probability by bypass coding in current HEVC CABAC, it should be designed as 50% probabilities. Therefore, it is used only for sign or suffix coding for parameters.
In proposed solution, the probability for intra mode coding is initialized at beginning of slice (same as current context). All bins are coded as fixed probability to enhance the through put for intra mode parsing. 
The benefit of this approach is that each process can be processed in parallel without waiting, since no dependencies on the probability. Figure 1 shows the flow-chart of proposed decoding flow. It becomes simpler than current steps. Text for Working Draft is in Annex 1.
[image: image1.emf]Loop

(MaxBin)

Bin Code

Context Load


Figure 1. Operation flow for proposed solution
3 Simulation Results 
This method was implemented in HM3.0 and evaluated on common condition E700[3]. The luma BD-rate is not changed redundant bit reduction and bypass coding for All-Intra high efficiency configuration. The performance gain is 0.1% with fixed probability for All-Intra high efficiency configuration. To identify performance clearly, we do NOT change initial context parameters for this experiment. It can be benefit to tune the probability to get more gain. The Random Access and Low Delay setting results are also available in attached excel sheets.
3.1 Simulation Results for Redundant Bit removing
Table 3. BD BR for Redundant bit removing (high efficiency)

	　
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0 
	0.0 
	0.1 

	Class B
	0.0 
	0.0 
	0.0 

	Class C
	0.0 
	0.0 
	0.0 

	Class D
	0.0 
	0.0 
	0.0 

	Class E
	0.0 
	0.0 
	0.0 

	Overall
	0.0 
	0.0 
	0.0 

	Enc Time[%]
	100%

	Dec Time[%]
	100%


3.2 Simulation Results for Bypass coding

Table 4. BD BR for bypass coding with Redundant bit removing(high efficiency)
	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0
	0.0
	0.0

	Class B
	0.0
	0.0
	0.0

	Class C
	0.1
	0.1
	0.1

	Class D
	0.0
	0.0
	0.0

	Class E
	0.1
	0.0
	0.0

	Overall
	0.0
	0.0
	0.0

	EncTime[%]
	99%

	DecTime[%]
	98%


3.3 Simulation Results for No context updating
Table 5. BD BR for No context updating with redundant bit removing (high efficiency)
	
	All Intra HE

	
	Y
	U
	V

	Class A
	0.0
	0.0
	0.0

	Class B
	-0.1
	0.0
	0.0

	Class C
	0.0
	0.0
	0.0

	Class D
	-0.1
	-0.1
	0.0

	Class E
	-0.1
	0.0
	0.0

	Overall
	-0.1
	0.0
	0.0

	Enc Time[%]
	100%

	Dec Time[%]
	100%


4 Conclusion

In this contribution, a modified binarization to remove redundant bin and fixed probability coding method for rem_intra_luma_pred_mode is proposed. The proposed method can introduce high through put for rem_intra_luma_pred_mode coding. An experimental result shows 0.1% performance gain in average BD-rate. It is suggested to consider the inclusion of this modification in the HM/WD of HEVC.

References
[1] T. Wiegand, et al., “WD3: Working Draft 3 of High-Efficiency Video Coding”, JCTVC-E603, 5th JCT-VC Meeting, Geneva, March 2011.
[2] Vivienne Sze et. al., “Context selection complexity in HEVC CABAC”, JCTVC-D244, Daegu, January 2011.
[3] Frank Bossen, “Common test conditions and software reference configurations”, JCTVC-E700, Geneva, March, 2011.
5 Patent rights declaration(s)
Panasonic Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Annex 1:  Proposed specification for the WD.
[Fixed Probability coding for intra mode]

The part of text change is used for colored text.
9.3.2 Binarization process

Input to this process is a request for a syntax element.

Output of this process is the binarization of the syntax element, maxBinIdxCtx, ctxIdxOffset, noUpdateFlag and bypassFlag.

Table 9-31 specifies the type of binarization process, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset associated with each syntax element.

The specification of the unary (U) binarization process, the truncated unary (TU) binarization process, the Rice (R) binarization process, the truncated Rice (TR), the concatenated unary / k-th order Exp-Golomb (UEGk) binarization process, the concatenated truncated Rice / k-th order Exp-Golomb (TREGk) binarization process, and the fixed-length (FL) binarization process are given in subclauses 9.3.2.1 to 9.3.2.6, respectively. Other binarizations are specified in subclauses 9.3.2.7 to 9.3.2.10.

The binarizations for the syntax element coeff_abs_level_minus3 as specified in subclause 9.3.2.10 consist of bin strings given by a concatenation of prefix and suffix bit strings. The UEGk binarization as specified in subclause 9.3.2.3, which is used for the binarization of the syntax elements mvd_lX (X = 0, 1 C) also consist of a concatenation of prefix and suffix bit strings. For these binarization processes, the prefix and the suffix bit string are separately indexed using the binIdx variable as specified further in subclause 9.3.3. The two sets of prefix bit strings and suffix bit strings are referred to as the binarization prefix part and the binarization suffix part, respectively.

Associated with each binarization or binarization part of a syntax element is a specific value of the context index table (ctxIdxTable) variable and the related context index offset (ctxIdxOffset) variable and a specific value of the maxBinIdxCtx variable as given in Table 9‑27. When two values for each of these variables are specified for one syntax element in Table 9‑27, the value in the upper row is related to the prefix part while the value in the lower row is related to the suffix part of the binarization of the corresponding syntax element.

The use of the DecodeBypass process and the variable noUpdateFlag and bypassFlag is derived as follows.

–
If no value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9‑27 labelled as "na", all bins of the bit strings of the corresponding binarization or of the binarization prefix/suffix part are decoded by invoking the DecodeBypass process as specified in subclause 9.3.3.2.3. In such a case, bypassFlag is set equal to 1, where bypassFlag is used to indicate that for parsing the value of the bin from the bitstream the DecodeBypass process is applied. 
–
If the value is assigned to ctxIdxOffset for the corresponding binarization or binarization part in Table 9‑27 labelled as "fix", a specific value of the variable ctxIdx is further specified in subclause 9.3.3. noUpdateFlag is set equal to 1 and bypassFlag is set equal to 0.
–
Otherwise, for each possible value of binIdx up to the specified value of maxBinIdxCtx given in Table 9‑27, bypassFlag is set equal to 0. 

The possible values of the context index ctxIdx vary depending on the value of ctxIdxTable. The value assigned to ctxIdxOffset specifies the lower value of the range of ctxIdx assigned to the corresponding binarization or binarization part of a syntax element.

ctxIdxTable = 0 and ctxIdx = ctxIdxOffset = 0 are assigned to the syntax element end_of_slice_flag as further specified in subclause 9.3.3.1. For parsing the value of the corresponding bin from the bitstream, the arithmetic decoding process for decisions before termination (DecodeTerminate) as specified in subclause 9.3.3.2.4 is applied. 
	Table 9‑44 – Syntax elements and associated types of binarization, maxBinIdxCtx, ctxIdxTable, and ctxIdxOffset

	Syntax element
	
	Type of binarization
	maxBinIdxCtx
	ctxIdxTable
	ctxIdxOffset

	pcm_flag
	all
	FL, cMax = 1
	0
	0
	0

	prev_intra_luma_pred_flag
	I
	FL, cMax = 1
	0, fix
	Table 9‑10
	0

	
	P
	
	0, fix
	Table 9‑10
	1

	
	B
	
	0, fix
	Table 9‑10
	2

	rem_intra_luma_pred_mode
	I
	as specified in subclause 9.3.2.9
	0
	Table 9‑11
	0

	
	P
	
	0
	Table 9‑11
	1

	
	B
	
	0
	Table 9‑11
	2


9.3.2.9 Binarization process for rem_intra_luma_pred_mode

Input to this process is a request for the syntax element rem_intra_luma_pred_mode, NumMPMCand and cNumBins.

Output of this process is the binarization of the syntax element.

The binarization for rem_intra_luma_pred_mode is given by Table 9-47. 
Table 9‑47 – Binarization for rem_intra_luma_pred_mode

	Value of rem_intra_luma_pred_mode
	Bin string

	less than 32 or 

equal to 32 (with NumMPM Cand>1)
	FL, cMax = cNumBins

	32
	111110

	33
	111111


9.3.3.2.1 Arithmetic decoding process for a binary decision

Inputs to this process are ctxIdxTable, ctxIdx, codIRange, noUpdateFlag and codIOffset.

Outputs of this process are the decoded value binVal, and the updated variables codIRange and codIOffset.

Figure 9‑2 shows the flowchart for decoding a single decision (DecodeDecision):

1. The value of the variable codIRangeLPS is derived as follows.

–
Given the current value of codIRange, the variable qCodIRangeIdx is derived by

qCodIRangeIdx =( codIRange  >>  6 ) & 3

(9‑29)

–
Given qCodIRangeIdx and pStateIdx associated with ctxIdxTable and ctxIdx, the value of the variable rangeTabLPS as specified in Table 9‑40 is assigned to codIRangeLPS:
codIRangeLPS = rangeTabLPS[ pStateIdx ][ qCodIRangeIdx ]
(9‑30)

2. The variable codIRange is set equal to codIRange ( codIRangeLPS and the following applies.
–
If codIOffset is greater than or equal to codIRange, the variable binVal is set equal to 1 − valMPS, codIOffset is decremented by codIRange, and codIRange is set equal to codIRangeLPS.

–
Otherwise, the variable binVal is set equal to valMPS.
Given the value of binVal, if noUpdateFlag is not equal to 1, the state transition is performed as specified in subclause 9.3.3.2.1.1, otherwise the state is kept. Depending on the current value of codIRange, renormalization is performed as specified in subclause 9.3.3.2.2.

[image: image2.emf]noUpdateFlag==1 ?

pStateIdx = transIdxMPS[pStateIdx]

binVal = valMPS

noUpdateFlag==1 ?

Yes

No

Yes

No


Figure 9-2 - Flowchart for decoding a decision

Page: 2
Date Saved: 2011-07-11

