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Abstract

In this contribution, truncated unary coding with fixed number of MVP candidates to solve the robust parsing issue related to AMVP and Merge. With the fixed number of candidates, parsing merge index and AMVP index doesn’t require any information regarding available candidates. At motion data reconstruction stage, to make the fixed number of MVP candidates always, the first existing candidate is modified and added to candidates list if initial existing candidates’ number is less than the fixed number. The proposed method achieves robust parsing of motion information as well as parsing throughput improvement with 0.3%, 0.2%, 0.6%, 0.7% BD-rate loss, respectively in HE-RA, LC-RA, HE-LD and LC-LD configurations. 
1 Introduction 
1.1 Parsing issue in AMVP and Merge modes
The AMVP mode and the merge mode use several spatial or temporal predictors which are competing using the RD criterion. To reduce the overhead of signaling the best predictor index, the index coding depends on the amount of reduced predictors set which is produced by removal of unavailable candidates and duplicates. To check availability, both modes need calculation of candidates’ position, prediction mode checking and derivation of collocated motion information. To check duplicates, both modes need to compare reconstructed motion information and furthermore, merge mode need to avoid and remove motion information which results in existing partition mode other than the current partition mode. Again, these checking need to be done during parsing stage, which makes parsing complex or parsing error.
1.2 Independent parsing of candidates derivation process
In this proposal, parsing the best predictor index is independent of candidates’ derivation process by assuming that there always exists the fixed number of candidates during parsing stage. Any motion information doesn’t need to be reconstructed during parsing and its reconstruction is carried out at the decoding stage along with predictor candidates’ derivation.
2 Description
The fixed number candidates’ assumption wastes bits to signal the best predictor index if the actual number of candidates is less than that number. To save bits and make the fixed number of candidates available, additional alternative candidates are considered in case that the pre-defined candidates are not sufficient due to unavailability or duplicates. These alternatives will be added until the number of candidates is equal to the defined value and when those are inserted, availability and duplicates are also checked like other pre-defined candidates. Figure 1 illustrates this derivation process and this alternative candidates’ derivation is carried out not in parsing stage but in decoding stage
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Figure 1: Proposed parsing and predictor candidates’ derivation process
2.1 Alternative candidates in AMVP mode
Currently, there are 3 predictor candidates defined in AMVP mode, in which 2 spatial candidates are derived each for the left and the above and 1 temporal candidate exists. Several positions and scaled predictors are defined for each direction and those are examined if the prior candidates defined are failed to be inserted into the predictor candidates set. If the prior candidate is chosen for the direction among the left, the above and the collocated, the later candidates are never examined on that direction.
In the proposed candidates’ derivation process, instead of defining new positions to be inserted as alternatives, the later candidates which never examined for any direction are chosen to be alternatives. For an example in Figure 2, if If Am+1, Am and Bn+1 are not available and the temporal predictor is duplicated with the previously chosen Bn, then the default predictors set has only one predictor Bn. Since B-1 is not examined on the above direction because it is defined to be examined later than Bn, B-1 is considered as one of alternative candidates.
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Figure 2: AMVP predictor candidate derivation process
Since it is possible that default positions’ candidates are also unavailable or duplicated, two more constant motion vectors are defined as alternatives, which are (0, 0) and (0, 1).
Assuming the fixed number of candidates in parsing stage means that the best predictor index is always coded while it isn’t coded when the total number of candidates is equal to 1 in HM. To reduce the overhead, the number of candidates is reduced from 3 to 2 in this proposal. If the default predictors are larger than 2, the first two candidates are chosen.

2.2 Alternative candidates in Merge mode
In the current HM, there are 5 candidates in Merge mode which are the left, the above, the collocated and two corners. Finding and checking other positions than pre-defined one costs additional complexity to calculate positions and derive its information. Therefore, it is proposed to modify the first existing predictor candidate to make alternative candidates when the pre-define candidates are not sufficiently found. Since zero motion is added in case of no candidates available in the current merge mode, there is always at least one predictor candidate available.
The first modification changes inter-prediction direction of the first predictor candidate. If the first one is bi-prediction, then two uni-directional prediction motions are added by splitting it into both directions. Otherwise (if it is uni-directional prediction), bi-prediction motion is added by setting the non-existing direction motion by zero motion with zero reference index.

If predictor candidates are not sufficiently filled with the previous modification, motions of the first predictor candidate are modified by adding offset after inserting zero motion. The following upto 4 alternative candidates are tested to be inserted as alternatives: for an example of list 0 mv (mx0, my0) and list1 mv (mx1, my1), prediction direction and reference indices follows the existing one and the motion is modified as follows.
· If the current picture lies between two reference pictures,

· (mx0+1, my0) and (mx1-1, my1),

· (mx0-1, my0) and (mx1+1, my1),

· (mx0, my0+1) and (mx1, my1-1),

· (mx0, my0-1) and (mx1, my1+1)
· Otherwise (if the current picture lies in the same direction from two reference pictures),
· (mx0+1, my0) and (mx1+1, my1),

· (mx0-1, my0) and (mx1-1, my1),

· (mx0, my0+1) and (mx1, my1+1),

· (mx0, my0-1) and (mx1, my1-1)
3 Experimental result
	The proposed algorithm was implemented on HM 3.0. Since alternative candidates are not dependent on positions, merge index coding is simplified in this proposed technique. Every merge candidates is inserted from the starting position 0 to max possible candidates in order like AMVP. And in CABAC, context modeling is also simplified like AMVP not to use position information for modeling. That is, merge index coding is modified to use only two context models in which the first bin of the best predictor index uses the separate context from other bins in truncated unary coding. Table 1 shows the results from this simplified merge index coding.
　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.2 
	0.1 
	-0.1 
	0.0 
	0.0 
	0.2 

	Class B
	0.3 
	0.2 
	0.3 
	0.0 
	0.0 
	0.0 

	Class C
	0.3 
	0.4 
	0.4 
	0.0 
	0.0 
	-0.1 

	Class D
	0.3 
	0.1 
	0.2 
	0.0 
	0.0 
	0.0 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.3 
	0.2 
	0.2 
	0.0 
	0.0 
	0.0 

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	99%
	98%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.4 
	0.5 
	0.4 
	0.0 
	0.0 
	-0.1 

	Class C
	0.3 
	0.2 
	0.0 
	0.0 
	-0.1 
	-0.2 

	Class D
	0.4 
	0.1 
	0.4 
	0.0 
	-0.2 
	-0.5 

	Class E
	1.2 
	0.9 
	0.7 
	0.0 
	-0.1 
	-0.6 

	Overall
	0.5 
	0.4 
	0.4 
	0.0 
	-0.1 
	-0.3 

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	100%
	99%


Table 1: Simplified merge index coding
	Table 2 shows the results on top of this simplified merge index coding in which the fixed number of candidates set as 5 in Merge mode and 2 in AMVP mode while the anchor HM 3.0 uses 5 in Merge mode and 3 AMVP mode in max.
　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.4 
	0.0 
	0.4 
	0.2 
	0.3 
	0.6 

	Class B
	0.4 
	-0.2 
	-0.2 
	0.2 
	0.4 
	0.3 

	Class C
	0.2 
	0.2 
	0.0 
	0.1 
	0.1 
	0.0 

	Class D
	0.2 
	-0.1 
	-0.1 
	0.1 
	0.2 
	0.2 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.3 
	0.0 
	0.0 
	0.1 
	0.2 
	0.3 

	Enc Time[%]
	117%
	115%

	Dec Time[%]
	99%
	98%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	0.0 
	-0.2 
	0.4 
	0.6 
	0.6 

	Class C
	0.4 
	0.1 
	0.0 
	0.3 
	0.6 
	0.4 

	Class D
	0.4 
	-0.1 
	0.2 
	0.1 
	0.7 
	0.4 

	Class E
	1.7 
	0.8 
	1.0 
	2.0 
	2.5 
	1.7 

	Overall
	0.7 
	0.1 
	0.2 
	0.6 
	1.0 
	0.7 

	Enc Time[%]
	115%
	114%

	Dec Time[%]
	100%
	98%


Table 2: 5 Merge and 2 AMVP candidates
Except class E, loss from proposed low complexity parsing algorithm is less than 0.5% (0.4% and 0.3% loss for low delay coding structure in high efficiency and low complexity profiles respectively). However, about 15% encoder complexity is increased because statistically the anchor doesn’t use 5 merge candidates always while the proposed one uses 5 merge candidates always and merge mode takes encoder complexity for motion compensation and residual coding with RQT. But no complexity increment in decoder side is observed.
In class E, motion field is almost uniform and only a few motion candidates are used. Therefore, the overhead for additional alternatives is burden relatively more in those sequences. To reduce overhead bits in class E, new skip syntax is tested. In new skip syntax, skip mode is separated into two skip modes, that is, the skip mode having the best predictor index 0 and the skip mode having the non-zero best predictor index. In CABAC, when skip_flag is 1, it indicates skip mode with the best predictor index 0. Otherwise, it encodes 0 and encoder another skip flag which indicate whether it is skip mode having non-zero predictor index. In CAVLC, combined mode is increased by 1 to include these two skip modes than one skip mode. Table 3 shows the result and class E loss is reduced by this syntax modification.
	　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.4 
	0.1 
	0.0 
	0.2 
	0.0 
	0.2 

	Class B
	0.3 
	-0.2 
	-0.2 
	-0.1 
	-0.3 
	-0.4 

	Class C
	0.3 
	0.2 
	0.1 
	0.4 
	0.1 
	0.2 

	Class D
	0.3 
	-0.1 
	-0.2 
	0.2 
	0.0 
	0.0 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.3 
	0.0 
	-0.1 
	0.2 
	-0.1 
	0.0 

	Enc Time[%]
	117%
	115%

	Dec Time[%]
	99%
	98%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	0.1 
	-0.3 
	0.3 
	0.4 
	0.2 

	Class C
	0.5 
	0.0 
	0.1 
	0.7 
	0.7 
	0.6 

	Class D
	0.5 
	0.1 
	-0.1 
	0.6 
	0.5 
	0.8 

	Class E
	1.6 
	0.8 
	1.0 
	0.7 
	0.9 
	0.0 

	Overall
	0.7 
	0.2 
	0.1 
	0.5 
	0.6 
	0.4 

	Enc Time[%]
	115%
	113%

	Dec Time[%]
	100%
	99%


Table 3: 5 Merge and 2 AMVP candidates with new skip syntax
	To reduce encoder complexity simply, the reduced number of merge candidates is tested. Table 4 shows the result with 3 merge candidates and 2 AMVP candidates. 
　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.5 
	0.2 
	0.0 
	0.3 
	0.3 
	0.5 

	Class B
	0.6 
	0.0 
	0.0 
	0.4 
	0.3 
	0.4 

	Class C
	0.4 
	0.2 
	0.2 
	0.2 
	0.1 
	0.2 

	Class D
	0.5 
	0.1 
	0.0 
	0.2 
	0.1 
	0.1 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.5 
	0.1 
	0.0 
	0.3 
	0.2 
	0.3 

	Enc Time[%]
	105%
	104%

	Dec Time[%]
	98%
	99%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	-0.2 
	-0.5 
	0.5 
	0.6 
	0.4 

	Class C
	0.4 
	-0.2 
	-0.2 
	0.3 
	0.2 
	0.1 

	Class D
	0.4 
	-0.4 
	0.0 
	0.2 
	0.2 
	0.3 

	Class E
	1.6 
	0.7 
	1.1 
	2.0 
	1.8 
	1.6 

	Overall
	0.7 
	-0.1 
	0.0 
	0.7 
	0.6 
	0.5 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	99%
	99%


Table 4: 3 Merge and 2 AMVP candidates
	With these number of candidates, new skip syntax design described previously is also tested in Table 5.
　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.5 
	0.2 
	0.0 
	0.3 
	0.0 
	0.2 

	Class B
	0.5 
	-0.1 
	0.0 
	0.1 
	-0.2 
	-0.3 

	Class C
	0.4 
	0.2 
	0.2 
	0.5 
	0.3 
	0.3 

	Class D
	0.5 
	-0.1 
	0.0 
	0.5 
	0.2 
	0.3 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.5 
	0.0 
	0.0 
	0.4 
	0.0 
	0.1 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	98%
	99%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	-0.2 
	-0.3 
	0.4 
	0.1 
	-0.1 

	Class C
	0.5 
	0.1 
	-0.1 
	0.8 
	0.5 
	0.4 

	Class D
	0.6 
	-0.1 
	0.5 
	0.8 
	0.2 
	0.5 

	Class E
	1.2 
	0.5 
	0.2 
	0.5 
	0.5 
	-0.4 

	Overall
	0.7 
	0.0 
	0.1 
	0.6 
	0.3 
	0.1 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	99%
	99%


Table 5: 3 Merge and 2 AMVP candidates with new skip syntax
	To prevent reconstruction of reference index and motion vector completely and increase parsing throughput, adaptive switching method for CABAC/CAVLC is disabled as in [1]. In detail, context selection for inter_pred_flag and ref_idx_lx in CABAC is simplified by using only one fixed context model and use_combined_inter_pred_ref is set as true to enable combined coding method for inter_pred_flag and ref_idx_lx in CAVLC no matter what neighboring information is in B slice. With this modification, the above four cases are tested again and the results as follows:
　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.4 
	0.1 
	0.4 
	0.2 
	0.2 
	0.5 

	Class B
	0.4 
	-0.1 
	-0.1 
	0.3 
	0.3 
	0.3 

	Class C
	0.3 
	0.1 
	0.0 
	0.1 
	0.1 
	0.0 

	Class D
	0.2 
	0.0 
	-0.1 
	0.1 
	0.2 
	0.1 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.3 
	0.0 
	0.1 
	0.2 
	0.2 
	0.2 

	Enc Time[%]
	117%
	115%

	Dec Time[%]
	99%
	99%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	0.0 
	-0.3 
	0.5 
	0.8 
	0.5 

	Class C
	0.4 
	0.1 
	0.1 
	0.3 
	0.5 
	0.4 

	Class D
	0.3 
	0.0 
	-0.3 
	0.1 
	0.6 
	0.4 

	Class E
	1.7 
	1.7 
	1.5 
	2.1 
	2.6 
	2.1 

	Overall
	0.6 
	0.3 
	0.1 
	0.7 
	1.0 
	0.7 

	Enc Time[%]
	115%
	114%

	Dec Time[%]
	100%
	100%


Table 6: 5 Merge 2 AMVP + disabling adaptive switching
With the modification, 0.1% loss is increased in LC case and 0.1% loss is reduced in low delay B HE.
	　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.3 
	0.0 
	0.1 
	0.2 
	-0.1 
	0.1 

	Class B
	0.4 
	-0.1 
	-0.2 
	-0.1 
	-0.3 
	-0.3 

	Class C
	0.3 
	0.1 
	0.0 
	0.4 
	0.2 
	0.2 

	Class D
	0.3 
	-0.2 
	-0.2 
	0.3 
	0.1 
	0.1 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.3 
	-0.1 
	-0.1 
	0.2 
	-0.1 
	0.0 

	Enc Time[%]
	117%
	115%

	Dec Time[%]
	100%
	100%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	0.0 
	-0.6 
	0.4 
	0.4 
	0.1 

	Class C
	0.5 
	0.1 
	0.0 
	0.7 
	0.8 
	0.6 

	Class D
	0.4 
	0.3 
	-0.1 
	0.6 
	0.9 
	0.9 

	Class E
	1.5 
	1.2 
	1.3 
	0.6 
	0.8 
	0.3 

	Overall
	0.6 
	0.3 
	0.0 
	0.5 
	0.7 
	0.5 

	Enc Time[%]
	115%
	114%

	Dec Time[%]
	100%
	100%


Table 7: 5 Merge 2 AMVP + new skip syntax + disabling adaptive switching
With the modification, 0.1% loss is reduced in low delay B HE.

	　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.4 
	0.1 
	0.1 
	0.3 
	0.1 
	0.6 

	Class B
	0.5 
	0.0 
	0.0 
	0.5 
	0.4 
	0.4 

	Class C
	0.4 
	0.3 
	0.1 
	0.2 
	0.3 
	0.1 

	Class D
	0.4 
	0.0 
	0.1 
	0.3 
	0.1 
	0.2 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.4 
	0.1 
	0.1 
	0.3 
	0.2 
	0.3 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	99%
	99%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	0.0 
	-0.3 
	0.6 
	0.5 
	0.3 

	Class C
	0.4 
	-0.2 
	-0.2 
	0.3 
	0.3 
	0.2 

	Class D
	0.3 
	-0.1 
	-0.1 
	0.4 
	0.3 
	0.3 

	Class E
	1.4 
	1.0 
	0.7 
	2.0 
	1.7 
	1.5 

	Overall
	0.6 
	0.1 
	0.0 
	0.7 
	0.6 
	0.5 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	99%
	100%


Table 8: 3 Merge 2 AMVP + disabling adaptive switching

With the modification, 0.1% loss is reduced in HE case.

	　
	Random Access HE
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.5 
	0.4 
	0.1 
	0.4 
	0.0 
	0.2 

	Class B
	0.6 
	0.0 
	0.0 
	0.1 
	-0.2 
	-0.2 

	Class C
	0.5 
	0.3 
	0.1 
	0.6 
	0.4 
	0.2 

	Class D
	0.5 
	-0.1 
	-0.1 
	0.6 
	0.2 
	0.3 

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.5 
	0.1 
	0.0 
	0.4 
	0.1 
	0.1 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	100%
	101%

	
	
	
	
	
	
	

	　
	Low delay B HE
	Low delay B LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.5 
	-0.1 
	-0.3 
	0.5 
	0.1 
	0.0 

	Class C
	0.5 
	-0.1 
	-0.1 
	0.8 
	0.7 
	0.3 

	Class D
	0.4 
	-0.1 
	0.3 
	0.8 
	0.6 
	0.6 

	Class E
	1.3 
	0.4 
	0.3 
	0.8 
	-0.2 
	0.0 

	Overall
	0.6 
	0.0 
	0.0 
	0.7 
	0.3 
	0.2 

	Enc Time[%]
	105%
	105%

	Dec Time[%]
	100%
	101%


Table 9: 3 Merge 2 AMVP + new skip syntax + disabling adaptive switching

With the modification, 0.1% loss is increased in Low delay B LC and 0.1% loss is reduced in Low delay B HE.

In overall, loss is slightly reduced by disabling adaptive switching in CABAC/CAVLC not to use neighboring reference index and motion vector.
4 Conclusion
The proposed technique is not dependent on any information other than itself. To support low complexity parsing and increase parsing throughput in AMVP and merge modes, only 0.45% loss in average for random access and low delay coding structures is sacrificed. Loss from truncated unary code with fixed maximum value is reduced by inserting low complex artificial candidates which are obtained by modification of the existing candidate. It is proposed to be adopted into HM.
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7 Specification
7.1 7.3.7 Prediction unit syntax

	prediction_unit( x0, y0, log2PUWidth, log2PUHeight, PartIdx , 






 InferredMergeFlag ) {
	Descriptor

	
if( skip_flag[ x0 ][ y0 ] ) {
	

	

if( NumMergeCand  >  1 )
	

	


merge_idx[ x0 ][ y0 ]
	ue(v) | ae(v)

	
} else if( PredMode  = =  MODE_INTRA ) {
	

	

if( PartMode == PART_2Nx2N &&



log2PUWidth >= Log2IPCMCUSize )
	

	


pcm_flag
	u(1) | ae(v)

	

if( pcm_flag ) {
	

	


while ( !byte_aligned( ) )
	

	



pcm_alignment_zero_bit
	u(v)

	


for( i = 0; i < 1 << ( log2CUSize << 1 ); i++ )
	

	



pcm_sample_luma[ i ]
	u(v)

	


for( i = 0; i < ( 1 << ( log2CUSize << 1 ) ) >> 1; i++ )
	

	



pcm_sample_chroma[ i ]
	u(v)

	

} else {
	

	


prev_intra_luma_pred_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	


if( prev_intra_luma_pred_flag[ x0 ][ y0 ] )
	

	



if( NumMPMCand > 1 )
	

	




mpm_idx[ x0 ][ y0 ]
	u(1) | ae(v)

	


else
	

	



rem_intra_luma_pred_mode[ x0 ][ y0 ]
	ce(v) | ae(v)

	


if( IntraPredMode[ x0 ][ y0 ] == 2 )
	

	



planar_flag_luma[ x0 ][ y0 ]
	u(1) | ae(v)

	


intra_chroma_pred_mode[ x0 ][ y0 ]
	ue(v) | ae(v)

	


SignaledAsChromaDC = 




( chroma_pred_from_luma_enabled_flag ?





intra_chroma_pred_mode[ x0 ][ y0 ] == 3 :






intra_chroma_pred_mode[ x0 ][ y0 ] == 2 )
	

	


if( IntraPredMode[ x0 ][ y0 ] != 2 && 





IntraPredMode[ x0 ][ y0 ]!=34 && SignaledAsChromaDC )
	

	



planar_flag_chroma[ x0 ][ y0 ]
	u(1) | ae(v)

	

}
	

	
} else { /* MODE_INTER */
	

	

if( !InferredMergeFlag )
	

	


if( entropy_coding_mode_flag || PartMode != PART_2Nx2N )
	

	



merge_flag[ x0 ][ y0 ]
	u(1) | ae(v)

	

if( merge_flag[ x0 ][ y0 ]  &&  NumMergeCand  >  1 ) {
	

	


merge_idx[ x0 ][ y0 ]
	ue(v) | ae(v)

	

} else {
	

	


if( slice_type  = =  B ) {
	

	



if(!entropy_coding_mode_flag &&






use_combined_inter_pred_ref( x0, y0 ) ) {
	

	




combined_inter_pred_ref_idx
	ue(v)

	




if( combined_inter_pred_ref_idx == MaxPredRef )
	

	





inter_pred_flag[ x0 ][ y0 ]
	ue(v)

	



} else
	

	




inter_pred_flag[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


if( inter_pred_flag[ x0 ][ y0 ]  = =  Pred_LC ) {
	

	



if( num_ref_idx_lc_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







 use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_lc_minus4[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_lc[ x0 ][ y0 ]
	ae(v)

	



}
	

	



mvd_lc[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_lc[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( LcToLx )  >  1 )
	

	




mvp_idx_lc[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


else { /* Pred_L0 or Pred_BI */
	

	



if( num_ref_idx_l0_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_l0_minusX[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_l0_minusX[ x0 ][ y0 ]
	ue(v) | ae(v)

	



}
	

	



mvd_l0[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l0[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L0 )  >  1 )
	

	




mvp_idx_l0[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	


if( inter_pred_flag[ x0 ][ y0 ]  = =  Pred_BI ) {
	

	



if( num_ref_idx_l1_active_minus1  >  0 ) {
	

	




if( !entropy_coding_mode_flag &&







use_combined_inter_pred_ref( x0, y0 ) ) {
	

	





if( combined_inter_pred_ref_idx == MaxPredRef )
	

	






ref_idx_l1_minusX[ x0 ][ y0 ]
	ue(v)

	




} else
	

	





ref_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	



}
	

	



mvd_l1[ x0 ][ y0 ][ 0 ]
	se(v) | ae(v)

	



mvd_l1[ x0 ][ y0 ][ 1 ]
	se(v) | ae(v)

	



if( NumMVPCand( L1 )  >  1 )
	

	




mvp_idx_l1[ x0 ][ y0 ]
	ue(v) | ae(v)

	


}
	

	

}
	

	
}
	

	}
	


7.2 7.4.7 Prediction unit semantics

merge_idx[ x0 ][ y0 ] specifies the merging candidate index of the merging candidate list where x0, y0 specify the location ( x0, y0 ) of the top-left luma sample of the considered prediction block relative to the top-left luma sample of the picture.

When merge_idx[ x0 ][ y0 ] is not present, it is inferred to be equal to 0.
7.3 8.4.2.1.1 Derivation process for luma motion vectors for merge mode
4. The merging candidate list, mergeCandList, is constructed of which elements are given as specified order:

1. A, if availableFlagA is equal to 1

2. B, if availableFlagB is equal to 1

3. Col, if availableFlagCol is equal to 1

4. C, if availableFlagC is equal to 1

5. D, if availableFlagD is equal to 1
5. If several merging candidates have the motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.

6. If the number of elements NumMergeCand within the mergeCandList is equal to 1, mergeIdx is set equal to 0, otherwise, mergeIdx is set equal to merge_idx[ xP][ yP ].

7. The following assignments are made with N being the candidate at position mergeIdx in the merging candidate list mergeCandList ( N = mergeCandList[ mergeIdx ] ) and X being replaced by 0 or 1:

mvLX[ 0 ] = mvLXN[ 0 ]
(8‑73)

mvLX[ 1 ] = mvLXN[ 1 ]
(8‑74)

refIdxLX = refIdxLXN
(8‑75)

predFlagLX = predFlagLXN
(8‑76)
8. If all availability flags availableFlagN (with N being replaced by A, B, Col, C, or D) are equal to 0, mergeIdx is set equal to 0 and the variables mvLX, refIdxLX and predFlagLX (with X being replaced by 0 or 1) are inferred as follows.
If slice_type is equal to P, the following applies.

mvLX[ 0 ] = 0
(8‑77)

mvLX[ 1 ] = 0
(8‑78)

refIdxL0 = 0

(8‑79)

refIdxL1 = -1
(8‑80)

predFlagL0 = 1
(8‑81)

prefFlagL1 = 0
(8‑82)

Otherwise ( slice_type is equal to B ), the following applies.

mvLX[ 0 ] = 0
(8‑83)

mvLX[ 1 ] = 0
(8‑84)

refIdxL0 = 0

(8‑85)

refIdxL1 = 0

(8‑86)

predFlagL0 = 1
(8‑87)

prefFlagL1 = 1
(8‑88)
7. If all availability flags availableFlagN (with N being replaced by A, B, Col, C, or D) are equal to 0, the availability flag availableFlagN is set to 1 and the motion vectors mvL0N and mvL1N, the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N of the first element of mergeCandList are assigned as follows.
If slice_type is equal to P, the following applies.

mvL0N[ 0 ] = 0
(8‑77)

mvL0N[ 1 ] = 0
(8‑78)

refIdxL0N = 0
(8‑79)

refIdxL1N = -1
(8‑80)

predFlagL0N = 1
(8‑81)

prefFlagL1N = 0
(8‑82)

Otherwise ( slice_type is equal to B ), the following applies.

mvL0N[ 0 ] = 0
(8‑83)

mvL0N[ 1 ] = 0
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)

refIdxL0N = 0
(8‑85)

refIdxL1N = 0
(8‑86)

predFlagL0N = 1
(8‑87)

prefFlagL1N = 1
(8‑88)

8. If the number of availability flags availableFlagN is less than NumMergeCand and slice_type is equal to B, the following elements are inserted into the merging candidate list, mergeCandList by modifying the first element’s motion vectors mvL0F and mvL1F, the reference indices refIdxL0F and refIdxL1F and the prediction list utilization flags predFlagL0F and predFlagL1F of mergeCandList by setting the availability flag of it to 1:
If predFlagL0F is equal to 1 and predFlagL1F is equal to 0, the following is added.
mvL0N = mvL0F
 (8‑83)

mvL1N = 0
 
 (8‑83)

refIdxL0N = refIdxL0F
(8‑85)

refIdxL1N = 0
(8‑86)

predFlagL0N = 1
(8‑87)

prefFlagL1N = 1
(8‑88)
If predFlagL0F is equal to 0 and predFlagL1F is equal to 1, the following is added.

mvL0N = 0
 
 (8‑83)

mvL1N = mvL1F
 
(8‑83)

refIdxL0N = 0

(8‑85)

refIdxL1N = refIdxL1F

(8‑86)

predFlagL0N = 1
(8‑87)

prefFlagL1N = 1
(8‑88)

Otherwise (predFlagL0F is equal to 1 and predFlagL1F is equal to 1), the followings are added.

mvL0N = mvL0F
 
 (8‑83)

mvL1N = 0
 
 (8‑83)

refIdxL0N = refIdxL0F

(8‑85)

refIdxL1N = 0

(8‑86)

predFlagL0N = 1
(8‑87)

prefFlagL1N = 0
(8‑88)
and

mvL0N = 0
 
 (8‑83)

mvL1N = mvL1F
 
 (8‑83)

refIdxL0N = 0

(8‑85)

refIdxL1N = refIdxL1F

(8‑86)

predFlagL0N = 0
(8‑87)

prefFlagL1N = 1
(8‑88)

9. If the number of availability flags availableFlagN is less than NumMergeCand, the following element is inserted into the merging candidate list, mergeCandList by setting its availability flag availableFlagN to 1

If slice_type is equal to P, the following applies.

mvL0N[ 0 ] = 0
(8‑77)

mvL0N[ 1 ] = 0
(8‑78)

refIdxL0N = 0

(8‑79)

refIdxL1N = -1
(8‑80)

predFlagL0N = 1
(8‑81)

prefFlagL1N = 0
(8‑82)

Otherwise ( slice_type is equal to B ), the following applies.

mvL0N[ 0 ] = 0
(8‑83)

mvL0N[ 1 ] = 0
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)

refIdxL0N = 0

(8‑85)

refIdxL1N = 0

(8‑86)

predFlagL0N = 1
(8‑87)

prefFlagL1N = 1
(8‑88)
10. If the number of availability flags availableFlagN is less than NumMergeCand and slice_type is equal to B, the following elements are inserted into the merging candidate list, mergeCandList by modifying the first element’s motion vectors mvL0F and mvL1F. The following elements’ the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N are set to be refIdxL0F, refIdxL1F, predFlagL0F and predFlagL1F respectively of the first element of mergeCandList by setting the availability flag of it to 1:

If the current picture lies between two reference pictures, the followings are added.
mvL0N[ 0 ] = mvL0F[0]+1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = mvL1F[0]-1
(8‑83)

mvL1N[ 1 ] = mvL1F[1]
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]-1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = mvL1F[0]+1
(8‑83)

mvL1N[ 1 ] = mvL1F[1]
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]+1
(8‑84)
mvL1N[ 0 ] = mvL1F[0]
(8‑83)

mvL1N[ 1 ] = mvL1F[1]-1
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]-1
(8‑84)
mvL1N[ 0 ] = mvL1F[0]
(8‑83)

mvL1N[ 1 ] = mvL1F[1]+1
(8‑84)
Otherwise (if the current picture lies in the same direction from two reference pictures), the followings are added.

mvL0N[ 0 ] = mvL0F[0]+1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = mvL1F[0]+1
(8‑83)

mvL1N[ 1 ] = mvL1F[1]
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]-1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = mvL1F[0]-1
(8‑83)

mvL1N[ 1 ] = mvL1F[1]
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]+1
(8‑84)
mvL1N[ 0 ] = mvL1F[0]
(8‑83)

mvL1N[ 1 ] = mvL1F[1]+1
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]-1
(8‑84)
mvL1N[ 0 ] = mvL1F[0]
(8‑83)

mvL1N[ 1 ] = mvL1F[1]-1
(8‑84)
11. If the number of availability flags availableFlagN is less than NumMergeCand and slice_type is equal to P, the following elements are inserted into the merging candidate list, mergeCandList by modifying the first element’s motion vector mvL0F. The following elements’ the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N are set to be refIdxL0F, refIdxL1F, predFlagL0F and predFlagL1F respectively of the first element of mergeCandList by setting the availability flag of it to 1:

mvL0N[ 0 ] = mvL0F[0]+1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]-1
(8‑83)

mvL0N[ 1 ] = mvL0F[1]
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]+1
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)

and

mvL0N[ 0 ] = mvL0F[0]
(8‑83)

mvL0N[ 1 ] = mvL0F[1]-1
(8‑84)
mvL1N[ 0 ] = 0
(8‑83)

mvL1N[ 1 ] = 0
(8‑84)
12. If several merging candidates have the motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.
13. If the number of availability flags availableFlagN is greater than NumMergeCand, the first NumMergeCand candidates are chosen in the merging candidate list mergeCandList and others’ availability flags availableFlagN is set to 0.
14. The following assignment are made with mergeCandList[mergeIdx] and X being replaced by 0 or 1:

mvLX[ 0 ] = mvLXN[ 0 ]
(8‑73)

mvLX[ 1 ] = mvLXN[ 1 ]
(8‑74)

refIdxLX = refIdxLXN
(8‑75)

predFlagLX = predFlagLXN
(8‑76)
7.4 In 8.4.2.1.4 Derivation process for luma motion vector prediction,
4. If several motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.

5. If the number of elements NumMVPCand( LX ) within the mvpListLX is equal to 1, mvpIdx is set equal to 0, otherwise, mvpIdx is set equal to mvp_idx_lX[ xP, yP ].

6. If the number of elements of the mvpListLX is less than NumMVPCand, the described motion vector predictor candidates but not examined in subclause 8.4.2.1.7 are inserted into mvListLX
7. If the number of elements of mvpListLX is less than NumMVPCand, the following candidate is inserted into mvpListLX:

mvLXN[0] = 0

mvLXN[1] = 0

8. If the number of elements of mvpListLX is less than NumMVPCand, the following candidate is inserted into mvpListLX:

mvLXN[0] = 0

mvLXN[1] = 1

9. If several motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.
10. If the number of availability flags availableFlagLXN is greater than NumMVPCand, the first NumMVPCand candidates are chosen in mvpListLX and others’ availability flags availableFlagLXN is set to 0.
11. The motion vector of mvListLX[ mvpIdx ] is assigned to mvpLX.
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