	[image: image3.png]

[image: image4.png]

[image: image5.png]O<cntNum &&
cn <cntNum

Y

count

cntfen] ++

sum = min(sum+1,15)

@n] =
cnt[en-1]

swap decoding table

Y

swap decoding table

swap counter table

AN

normarization
(right shift every
counter values)

sum =20

/)

normalize

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F395

	Title:
	CAVLC Adaptation using Difference Counter

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Tomoyuki Yamamoto
1-9-2 Nakase, Mihama-ku, Chiba-shi,
Chiba 261-8520 JAPAN
	
Tel:
Email:
	
+81-43-299-8526
yamamoto.tomoyuki@sharp.co.jp

	Source:
	SHARP Corporation

Abstract
This contribution proposes CAVLC adaptation using difference counter which does not require normalization process used in the counter based CAVLC method adopted in HM-3.0. The proposed method could also reduce the number of required counters while keeping coding gain achieved by the current counter based adaptation method.

1 Introduction

In the last meeting, counter-based adaptation for CAVLC [1] was adopted in HM, which achieves significant coding gain without major impact on encoding/decoding time. The method added counters to some decoding tables to prevent too frequent swapping of their table entries. The syntax elements for which such counters are introduced are those relating CU split flag, reference index, coded block flag, and transform split flag.
In order to control the timing of a swap, the occurrence of each codeword is counted. The counters need to be normalized to keep each counter from overflow. Although this normalization, right-shifting every counter once in sixteen times, does not require too much computation, it is still desirable not to have such process so that CAVLC process can be kept simpler.
2 CAVLC adaptation using difference counter
In the proposed method, the difference counter is introduced in place of the counter used in HM. Conceptually, the difference counter maintains the difference of occurrences of two successive codeNum. A swap of decoding table occurs when the value of a difference counter is zero. In other words, a swap occurs when the occurrences of the two successive codeNum are the same. Note that this is the similar condition that is used in the counter based method in HM.
In the proposed method, instead of strictly maintaining actual difference of occurrences, a simplified approach is used. Figure 1 illustrates decoding table and counters / difference counters for both the conventional and the proposal method. Figure 2 shows the decoding table adaptation processes used in each method.
As shown in Figure 2, normalization process used in HM is not required in the proposed method. A value stored in a counter in HM could have value of 0…31, which is assured by the periodical normalization process. In contrast, a value stored in a difference counter could have value of 0…3 without normalization. This difference in value range indicates that the proposed method needs fewer bits for each counter. It also should be noted that the proposed method does not require sum counter. In addition, dcnt[0] in Figure.1 (b) is not necessary because its value is always zero.

[image: image1]
Figure 1: Example of decoding table and associated counter / difference counter

[image: image2]
Figure 2: Decoding table adaptation process
3 Experimental result
Proposed method has been implemented on HM-3.0 reference software and the experiment was carried out based on the common test condition. The result is summarized in Table 1. It seems that the coding efficiency impact by the proposed method is negligible.
Table 1: BD-rate and encoding/decoding performance of proposed method
	　
	All Intra LC
	Random Access LC
	Low delay B LC
	Low delay P LC

	　
	Y
	U
	V
	Y
	U
	V
	Y
	U
	V
	Y
	U
	V

	Class A
	0.0
	0.0
	0.0
	-0.1
	0.0
	0.2
	　
	　
	　
	　
	　
	　

	Class B
	0.0
	0.0
	0.0
	0.0
	0.1
	0.1
	0.0
	0.1
	0.3
	0.0
	0.0
	0.4

	Class C
	0.0
	0.0
	0.0
	0.0
	0.0
	-0.1
	-0.1
	0.0
	-0.1
	0.0
	0.0
	-0.2

	Class D
	0.0
	0.0
	0.0
	0.0
	-0.1
	-0.3
	0.0
	0.0
	0.0
	0.0
	0.0
	-0.6

	Class E
	0.0
	0.1
	0.0
	　
	　
	　
	0.1
	0.7
	-0.9
	0.0
	0.4
	-1.0

	Overall
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0
	0.2
	-0.1
	0.0
	0.1
	-0.3

	Enc Time[%]
	100%
	100%
	100%
	100%

	Dec Time[%]
	100%
	100%
	100%
	100%

4 Conclusion
In this contribution, CAVLC adaptation using difference counter is proposed. The proposed method does not require normalization process needed in current HM. In addition, it requires fewer counters. It was verified through experiments that the coding efficiency impact is negligible. Based on these facts, it is recommended to include the proposed method in HM and WD.

5 Reference

[1] L. Guo, B. Li, X. Wang, M. Karczewicz, and J. Xu, “CE5: Counter based adaption for LCEC,” JCTVC-E143, JCT-VC 5th Meeting, Geneva, 2011
6 Patent rights declaration(s)
SHARP Corporation may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Appendix: Proposed draft text

6.1 CAVLC parsing process for slice data

6.1.1 Initialisation process

6.1.1.1 Difference counter initialisation for codeword index adaptive mapping
Outputs of this process are initial values of difference counters that are used for parsing a syntax element.

If the number of difference counters used for a syntax element is N (N>0), values of the N difference counters are all initialized to 0.
6.1.2 Codeword index mapping update process
Inputs to this process are a VLC codeword index mapping table indexMappingTable that provides the mapping between VLC codeword indexes and syntax element values, a codeword index value codeNum, and a value counterNum that specifies the number of difference counters used. If counterNum is not equal to 0, inputs additionally include an array diffCounterArray indexed from 0 to (counterNum-1) that saves the value of difference counters.

Outputs of this process are indexMappingTable, and if counterNum is not equal to 0 diffCounterArray with updated values.

The process is specified in the following ordered steps:

· Syntax element value syntaxVal is set equal to indexMappingTable [codeNum].

· If codeNum is not less than 1, codeNumPre is set equal to (codeNum-1). Otherwise, codeNumPre is set equal to codeNum. Syntax element value syntaxValPre is set equal to indexMappingTable [codeNumPre].

· If codeNum is greater or equal to counterNum, the values of indexMappingTable [codeNumPre] and indexMappingTable [codeNum] are exchanged with each other. No further step is carried out. Otherwise

·
· If diffCounterArray [codeNum] is equal to 0, the values of indexMappingTable [codeNumPre] and indexMappingTable [codeNum] are swapped.
· Otherwise, the value of diffCounterArray [codeNum] is decreased by 1.
·
·
· When codeNum is less than (counterNum-1), the value of diffCounterArray [codeNum+1] is set equal to Min (3, diffCounterArray [codeNum+1] + 1).
(a) HM-3.0

(b) Proposed method

(b) Proposed method

(a) HM-3.0

Page: 3
Date Saved: 2011-07-01

[image: image6.png]O<cntNum &&
cn<cntNum

swap

swap decoding table swap decoding table

dent[cn]--

cn+l <
cntNum N

Y

dent[cn+1] =
min (dent[cn+1]+1, 3)

count

[image: image7.png]cn: CodeNum cn: CodeNum

decoding counter decoding difference

table table table counter
cn=0 So cnt[0] cn=0 So dent[0]
cn=1 Sy cnt[1] cn=1 Sy dent[1]
cn=2 S, cnt[2] cn=2 S, dent[2]

cntNum cntNum
cn=3 S5 cn=3 S5
sum

cn=4 Sy counter cn=4 Sy

/ sum /

codeWord codeWord

