	[image: image4.png][image: image5.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, 14-22 July, 2011
	Document: JCTVC-F380

	Title:
	CE9: Test result of unified motion vector prediction (UNI01)

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Il-Koo Kim
Woo-Jin Han
JeongHoon Park
	Email:
	ilkoo.kim@samsung.com
wjhan.han@samsung.com
jeonghoon@samsung.com

	Source:
	Samsung Electronics Co., Ltd.

Abstract

In this document, test results of unified motion vector prediction are provided. In the unification, number of candidate motion vector is fixed as 4 and same positions for motion vector candidates are used for both AMVP and merge case. The average loss from this unification is 0.1% without encoding and decoding time changes.
1 Introduction
In current HM-3.0, position of candidate motion vectors and derivation process of AMVP and merge are different each other. Since purposes of motion vector prediction of AMVP and merge is essentially same (reduction of motion vector difference (MVD) bit rate), it was recommended to have same derivation process, e.g., candidate motion vector positions for both AMVP and merge in order to keep consistency of motion vector prediction and to reduce the implementation burden by sharing the modules among AMVP and merge process [1]. In this contribution, a way of unifying AMVP-based and merge-based motion vector prediction methods is investigated and test results are provided.
2 Unified motion vector prediction
In this unification, number of candidates of AMVP and merge is fixed as four: three candidates as spatial predictors and one candidate as temporal predictor. Candidate positions are shown in Figure 1. In the figure, 1, 2 (2’) and 3 (3’) represent the position used for spatial motion vector prediction and 4 (T) represents the position used for temporal motion vector prediction.

The modifications from merge side are as follows: 1) number of candidates is reduced from 5 to 4. 2) position B of Figure 1 is never used. 3) When the reference picture index of the candidate is not equal to 0, the position is considered as “not available” 4) for corner candidates of merge, left (3’ of Figure 1) and above (2’ of Figure 1) position is used when the above right (3 of Figure 1) and below left (2 of Figure 1) position is not available, respectively.
The modifications from AMVP side are as follows: 1) number of candidates is increased from 3 to 4. 2) above position (1 of Figure 1) is used explicitly as the first candidate position, which was previously used only when 3 and 3’ of Figure 1 were not available. 3) even if 3 and 3’of Figure 1 are not available, position A is not used for prediction.
[image: image1.emf]1324 (T)AB

Figure 1
Figure 2 Position of unified motion vector predictor (same position for AMVP and merge)
3 Experimental results

Proposed unification is implemented in HM-3.0 reference software [1] and tested under common test condition [2]. Table 1 shows summarized results of the test performed. The average loss from this unification is 0.1% without encoding and decoding time changes. 0.1% less loss is observed in random access configuration compared to low delay configuration.

Table 1 Test results of unified motion vector prediction
	　
	Random access HE
	Random access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	0.0
	-0.1
	0.0
	0.2
	0.1
	0.3

	Class B
	0.1
	0.1
	0.1
	0.2
	0.2
	0.2

	Class C
	0.0
	0.1
	0.0
	0.0
	0.1
	0.0

	Class D
	0.1
	0.0
	-0.1
	0.0
	-0.1
	0.1

	Class E
	　
	　
	　
	　
	　
	　

	Overall
	0.1
	0.0
	0.0
	0.1
	0.1
	0.2

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	99%
	99%

	
	
	
	
	
	
	

	　
	Low delay (B) HE
	Low delay (B) LC

	　
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	0.2
	0.4
	0.3
	0.3
	0.3
	0.2

	Class C
	0.1
	0.3
	0.2
	0.1
	0.2
	-0.1

	Class D
	0.1
	0.3
	0.2
	0.1
	0.1
	0.1

	Class E
	0.4
	0.4
	0.2
	0.1
	0.0
	-0.4

	Overall
	0.2
	0.4
	0.2
	0.2
	0.1
	0.0

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	99%
	100%

This result is cross-verified by Qualcomm.
4 Conclusions

In this document, unified motion vector prediction was proposed. In the unification, number of candidate motion vector is fixed as 4 and same positions for motion vector candidates are used for both AMVP and merge case. The average loss from this unification is 0.1% without encoding and decoding time changes. Based on the results, it is recommended to adopt this unification method in order to keep consistency of motion vector prediction and to reduce the implementation burden by sharing the modules among AMVP and merge process.
5 References

[1] Y.-W Huang et al, “Description of Core Experiment 9: MV Coding and Skip/Merge Operations”, , JCTVC-E709, 5th Meeting: Geneva, CH, 16-23 March, 2011
[2] https://hevc.hhi.fraunhofer.de/svn/svn_HEVCSoftware/tags/HM-3.0/
[3] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-E700, 5th Meeting: Geneva, CH, 16-23 March, 2011
6 Patent rights declaration(s)
Samsung Electronics Co., Ltd. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 Proposed draft text
Derivation process for luma motion vectors for merge mode

This process is only invoked when PredMode is equal to MODE_ INTER and merge_flag [xP][yP] is equal to 1, where (xP, yP) specify the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture.

Inputs of this process are

· a luma location (xP, yP) of the top-left luma sample of the current prediction unit relative to the top-left luma sample of the current picture,
· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,

· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are

–
the luma motion vectors mvL0 and mvL1,

–
the reference indices refIdxL0 and refIdxL1,

–
the prediction list utilization flags predFlagL0 and predFlagL1.

The motion vectors mvL0 and mvL1, the reference indices refIdxL0 and refIdxL1, and the prediction utilization flags predFlagL0 and predFlagL1 are derived as specified by the following ordered steps:

1. The derivation process for merging candidates from neighboring prediction unit partitions in subclause 8.4.2.1.4 is invoked with luma location (xP, yP), the width and the height of the prediction unit nPSW and nPSH and the partition index PartIdx as inputs and the output is assigned to the availability flags availableFlagN, the motion vectors mvL0N and mvL1N, the reference indices refIdxL0N and refIdxL1N and the prediction list utilization flags predFlagL0N and predFlagL1N with N being replaced by A, B0, B1, C0 or C1.

2. The derivation process of reference indices for temporal merging candidate in subclause 8.4.2.1.3 is invoked with luma location (xP, yP), nPSW, nPSH as the inputs and the output is directly assigned to refIdxLX.

3. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location (xP, yP), refIdxLX as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector mvLXCol. The variables availableFlagCol and predFlagLXCol (with X being 0 or 1, respectively) are derived as specified below.

availableFlagCol = availableFlagL0Col || availableFlagL1Col (8‑71)

predFlagLXCol = availableFlagLXCol (8‑72)

4. The merging candidate list, mergeCandList, is constructed of which elements are given as specified order:

1. A, if availableFlagA is equal to 1

2. B0, if availableFlagB0 is equal to 1

3. B1, if availableFlagB1 is equal to 1 and if availableFlagB0 is equal to 0
4. C0, if availableFlagC0 is equal to 1
5. C1, if availableFlagC1 is equal to 1 and if availableFlagC0 is equal to 0
6. Col, if availableFlagCol is equal to 1

5. If several merging candidates have the motion vectors and the same reference indices, the merging candidates are removed from the list except the merging candidate which has the smallest order in the mergeCandList.

6. If the number of elements NumMergeCand within the mergeCandList is equal to 1, mergeIdx is set equal to 0, otherwise, mergeIdx is set equal to merge_idx[xP][yP].

7. The following assignments are made with N being the candidate at position mergeIdx in the merging candidate list mergeCandList (N = mergeCandList[mergeIdx]) and X being replaced by 0 or 1:

mvLX[0] = mvLXN[0] (8‑73)

mvLX[1] = mvLXN[1] (8‑74)

refIdxLX = refIdxLXN (8‑75)

predFlagLX = predFlagLXN (8‑76)

8. If all availability flags availableFlagN (with N being replaced by A, B0, B1, C0 or C1) are equal to 0, mergeIdx is set equal to 0 and the variables mvLX, refIdxLX and predFlagLX (with X being replaced by 0 or 1) are inferred as follows.
If slice_type is equal to P, the following applies.

mvLX[0] = 0 (8‑77)

mvLX[1] = 0 (8‑78)

refIdxL0 = 0
(8‑79)

refIdxL1 = -1 (8‑80)

predFlagL0 = 1 (8‑81)

prefFlagL1 = 0 (8‑82)

Otherwise (slice_type is equal to B), the following applies.

mvLX[0] = 0 (8‑83)

mvLX[1] = 0 (8‑84)

refIdxL0 = 0
(8‑85)

refIdxL1 = 0
(8‑86)

predFlagL0 = 1 (8‑87)

prefFlagL1 = 1 (8‑88)

Derivation process for spatial merging candidates

Inputs to this process are

· a luma location (xP, yP) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,

· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· a variable PartIdx specifying the index of the current prediction unit within the current coding unit.

Outputs of this process are (with N being replaced by A, B0, B1, C0 or C1and with X being replaced by 0 or 1)

· the availability flags availableFlagN of the neighbouring prediction units,

· the reference indices refIdxLXN of the neighbouring prediction units,

· the prediction list utilization flags predFlagLXN of the neighbouring prediction units,
· the motion vectors mvLXN of the neighbouring prediction units.

[image: image2.png]
Figure 8‑3 – Spatial neighbours that can be used as merging candidates (informative) illustrates the position of the spatial neighbours A, B0, B1, C0 or C1relative to the current prediction unit.

For the derivation of availableFlagN, with N being A, B0, B1, C0 or C1and (xN, yN) being (xP, yP - 1), (xP - 1, yP+nPSH), (xP - 1, yP+nPSH-1), (xP+nPSW, yP - 1) or (xP+nPSW-1, yP - 1) the following applies.

–
If one of the following conditions is true, the availableFlagN is set equal to 0, both components mvLXN are set equal to 0, refIdxLXN and predFlagLX[xN, yN] of the prediction unit covering luma location (xN, yN) are assigned respectively to mvLXN, refIdxLXN and predFlagLXN.
· The prediction unit covering luma location (xN, yN) is not available or PredMode is MODE_INTRA.
· refIdxLX of the prediction unit covering covering luma location (xN, yN) is not equal to 0
· PartMode of the current prediction unit is PART_2NxN and PartIdx is equal to 1 and the prediction units covering luma location (xP, yP – 1) (PartIdx = 0) and luma location (xN, yN) (Cand. N) have identical motion parameters:

· mvLX[xP, yP – 1] = = mvLX[xN, yN]

· refIdxLX[xP, yP – 1] = = refIdxLX[xN, yN]

· predFlagLX[xP, yP – 1] = = predFlagLX[xN, yN]

· PartMode of the current prediction unit is PART_Nx2N and PartIdx is equal to 1 and the prediction units covering luma location (xP – 1, yP) (PartIdx = 0) and luma location (xN, yN) (Cand. N) have identical motion parameters:

· mvLX[xP – 1, yP] = = mvLX[xN, yN]

· refIdxLX[xP – 1, yP] = = refIdxLX[xN, yN]

· predFlagLX[xP – 1, yP] = = predFlagLX[xN, yN]

· PartMode of the current prediction unit is PART_NxN and PartIdx is equal to 3 and the prediction units covering luma location (xP – 1, yP) (PartIdx = 2) and luma location (xP – 1, yP – 1) (PartIdx = 0) have identical motion parameters:

· mvLX[xP – 1, yP] = = mvLX[xP – 1, yP – 1]

· refIdxLX[xP – 1, yP] = = refIdxLX[xP – 1, yP – 1]

· predFlagLX[xP – 1, yP] = = predFlagLX[xP – 1, yP – 1]

and the prediction units covering luma location (xP, yP – 1) (PartIdx = 1) and luma location (xN, yN) (Cand. N) have identical motion parameters:

· mvLX[xP, yP – 1] = = mvLX[xN, yN]

· refIdxLX[xP, yP – 1] = = refIdxLX[xN, yN]

· predFlagLX[xP, yP – 1] = = predFlagLX[xN, yN]

· PartMode of the current prediction unit is PART_NxN and PartIdx is equal to 3 and the prediction units covering luma location (xP, yP – 1) (PartIdx = 1) and luma location (xP – 1, yP – 1) (PartIdx = 0) have identical motion parameters:

· mvLX[xP, yP – 1] = = mvLX[xP – 1, yP – 1]

· refIdxLX[xP, yP – 1] = = refIdxLX[xP – 1, yP – 1]

· predFlagLX[xP, yP – 1] = = predFlagLX[xP – 1, yP – 1]

and the prediction units covering luma location (xP – 1, yP) (PartIdx = 2) and luma location (xN, yN) (Cand. N) have identical motion parameters:

· mvLX[xP – 1, yP] = = mvLX[xN, yN]

· refIdxLX[xP – 1, yP] = = refIdxLX[xN, yN]

· predFlagLX[xP – 1, yP] = = predFlagLX[xN, yN]

–
Otherwise, availableFlagN is set equal to 1 and the variables mvLX[xN, yN], refIdxLX[xN, yN] and predFlagLX[xN, yN] of the prediction unit covering luma location (xN, yN) are assigned respectively to mvLXN, refIdxLXN and predFlagLXN.

Derivation process for luma motion vector prediction

Inputs to this process are

· a luma location (xP, yP) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,

· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH.

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).

Output of this process is

· the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The motion vector predictor mvpLX is derived in the following ordered steps.

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in subclause 8.4.2.1.6 is invoked with luma location (xP, yP), the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as inputs and the availability flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B or C as the output.

2. The derivation process for temporal luma motion vector prediction in subclause 8.4.2.1.7 is invoked with luma location (xP, yP) , the width and the height of the prediction unit nPSW and nPSH, and refIdxLX (with X being 0 or 1, respectively) as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol.

3. The motion vector predictor list, mvpListLX, is constructed of which elements are given as specified order:

1. mvLXA, if availableFlagLXA is equal to 1

2. mvLXB, if availableFlagLXB is equal to 1
3. mvLXC, if availableFlagLXC is equal to 1

4. mvLXCol, if availableFlagLXCol is equal to 1

4. If several motion vectors have the same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX.

5. If the number of elements NumMVPCand(LX) within the mvpListLX is equal to 1, mvpIdx is set equal to 0, otherwise, mvpIdx is set equal to mvp_idx_lX[xP, yP].

6. The motion vector of mvListLX[mvpIdx] is assigned to mvpLX.

Derivation process for motion vector predictor candidates

Inputs to this process are

· a luma location (xP, yP) specifying the top-left luma sample of the current prediction unit relative to the top-left sample of the current picture,

· variables specifying the width and the height of the prediction unit for luma, nPSW and nPSH,
· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1).

Outputs of this process are (with N being replaced by A, B or C)

· the motion vectors mvLXN of the neighbouring prediction units,

· the availability flags availableFlagLXN of the neighbouring prediction units.

[image: image3.png]
Figure 8‑5 – Spatial motion vector neighbours
The function RefPicOrderCnt(pic, refidx, LX) is specified by the value of PicOrderCnt of the picture that is the reference picture RefPicListX[refidx] of pic with X being 0 or 1. PicOrderCnt of the reference picture shall be maintained until the picture is marked as “non-exisiting.”
The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps:

1. Let a sample locations be (xA, yA). The set of sample locations (xA, yA) represent the sample locations immediately to the left side of the left partition boundary.
2. Let the availability flag availableFlagLXA be initially set equal to 0 and the both components of mvLXA are set equal to 0.

1. For (xA, yA), the following applies repeatedly until availableFlagLXA is equal to 1:

· When the prediction unit covering luma location (xA, yA) is available, PredMode is not MODE_INTRA, predFlagLX[xA][yA] is equal to 1 and the reference index refIdxLX[xA][yA] is equal to the reference index of the current prediction unit refIdxLX, availableFlagLXA is set equal to 1 and the motion vector mvLXA is set equal to the motion vector mvLX[xA][yA], refIdxA is set equal to refIdxLX[xA][yA] and ListA is set equal to LX.

2. When availableFlagLXA is equal to 0, for (xA, yA), the following applies repeatedly until availableFlagLXA is equal to 1:

· If the prediction unit covering luma location (xA, yA) is available, PredMode is not MODE_INTRA, predFlagLY[xA][yA] (with Y = !X) is equal to 1 and RefPicOrderCnt(currPic, refIdxLY[xA][yA], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xA][yA], refIdxA is set equal to refIdxLY[xA][yA] and ListA is set equal to LY.

· Otherwise if the prediction unit covering luma location (xA, yA) is available, PredMode is not MODE_INTRA, predFlagLX[xA][yA] is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLX[xA][yA], refIdxA is set equal to refIdxLX[xA][yA], ListA is set equal to LX.

· Otherwise if the prediction unit covering luma location (xA, yA) is available, PredMode is not MODE_INTRA, predFlagLY[xA][yA] (with Y = !X) is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xA][yA], refIdxA is set equal to refIdxLY[xA][yA], ListA is set equal to LY.

3. When availableFlagLXA is equal to 1, the following applies.

· If RefPicOrderCnt(currPic , refIdxA, ListA) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXA is set equal to mvLXA

· Otherwise, mvLXA is derived as specified below

tx = (16384 + Abs(td / 2)) / td (8‑77)

DistScaleFactor = Clip3(-1024, 1023, (tb * tx + 32) >> 6) (8‑77)

mvLXA = ClipMv((DistScaleFactor * mvLXA + 128) >> 8) (8‑77)

[Ed. (WJ): software has a clip function for scaled motion vector. Do we need this? AVC does not have it]

where td and tb are derived as

td = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic , refIdxA, ListA)) (8‑77)

tb = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic, refIdxLX, LX)) (8‑77)
The motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps:

3. Let a set of two sample locations be (xBk, yBk), with k = 0 .. 1, specifies sample locations with xBk = xP – 1, yB0 = yP + nPSH and yB1 = yB0 - MinPuSize. The set of sample locations (xBk, yBk) represent the sample locations immediately to the left side of the left partition boundary and it’s extended line. [Ed.: (WJ) MinPuSize should be defined somewhere]

4. Let the availability flag availableFlagLXB be initially set equal to 0 and the both components of mvLXB are set equal to 0.

5. For (xBk, yBk) from (xB0, yB0) to (xB1, yB1) where yB1 = yB0 - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· When the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1 and the reference index refIdxLX[xBk][yBk] is equal to the reference index of the current prediction unit refIdxLX, availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk] and ListB is set equal to LX.

6. When availableFlagLXB is equal to 0, for (xBk, yBk) from (xB0, yB0) to (xB1, yB1) where yB1 = yB0 - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· If the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLY[xBk][yBk] (with Y = !X) is equal to 1 and RefPicOrderCnt(currPic, refIdxLY[xBk][yBk], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLY[xBk][yBk], refIdxB is set equal to refIdxLY[xBk][yBk] and ListB is set equal to LY.

· Otherwise if the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk], ListB is set equal to LX.

· Otherwise if the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLY[xBk][yBk] (with Y = !X) is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLY[xBk][yBk], refIdxB is set equal to refIdxLY[xBk][yBk], ListB is set equal to LY.

7. When availableFlagLXB is equal to 1, the following applies.

· If RefPicOrderCnt(currPic , refIdxB, ListB) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXB is set equal to mvLXB
· Otherwise, mvLXB is derived as specified below

tx = (16384 + Abs(td / 2)) / td (8‑77)

DistScaleFactor = Clip3(-1024, 1023, (tb * tx + 32) >> 6) (8‑77)

mvLXB = ClipMv((DistScaleFactor * mvLXB + 128) >> 8) (8‑77)

[Ed. (WJ): software has a clip function for scaled motion vector. Do we need this? AVC does not have it]

where td and tb are derived as

td = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic , refIdxB, ListB)) (8‑77)

tb = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic, refIdxLX, LX)) (8‑77)

The motion vector mvLXC and the availability flag availableFlagLXC are derived in the following ordered steps:

1. Let a set of three sample location (xCk, yCk), with k = 0,1,2, specifies sample locations with xC0 = xP + nPSW, xC1 = xC0 MinPuSize , xC2 = xP - MinPuSize and yCk = yP – 1. The set of sample locations (xCk, yCk) represent the sample locations immediately to the upper side of the above partition boundary and it’s extended line. [Ed.: (WJ) MinPuSize should be defined somewhere]

2. Let the availability flag availableFlagLXC be initially set equal to 0 and the both components of mvLXC are set equal to 0.

3. For (xCk, yCk) from (xC0, yC0) to (xC2, yC2) where xC0 = xP +nPSW, xC1 = xC0 - MinPuSize , and xC2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXC is equal to 1:

· When the prediction unit covering luma location (xCk, yCk) is available, PredMode is not MODE_INTRA, predFlagLX[xCk][yCk] is equal to 1, and the reference index refIdxLX[xCk][yCk] is equal to the reference index of the current prediction unit refIdxLX and mvLX[xCk][yCk] is not identical to mvLXC, availableFlagLXC is set equal to 1 and the motion vector mvLXC is set equal to the motion vector mvLX[xCk][yCk], refIdxC is set equal to refIdxLX[xCk][yCk] and ListC is set equal to LX.

4. When availableFlagLXC is equal to 0, for (xCk, yCk) from (xC0, yC0) to (xC2, yC2) where xC0 = xP +nPSW, xC1 = xC0 - MinPuSize , and xC2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXC is equal to 1:

· If the prediction unit covering luma location (xCk, yCk) is available, PredMode is not MODE_INTRA, predFlagLY[xCk][yCk](with Y = !X) is equal to 1 and RefPicOrderCnt(currPic , refIdxLY[xCk][yCk], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXC is set equal to 1, the motion vector mvLXC is set equal to the motion vector mvLY[xCk][yCk], refIdxC is set equal to refIdxLY[xCk][yCk] and ListC is set equal to LY.

· Otherwise if the prediction unit covering luma location (xCk, yCk) is available, PredMode is not MODE_INTRA, predFlagLX[xCk][yCk] is equal to 1, availableFlagLXC is set equal to 1, the motion vector mvLXC is set equal to the motion vector mvLX[xCk][yCk], refIdxC is set equal to refIdxLX[xCk][yCk], ListC is set equal to LX.

· Otherwise if the prediction unit covering luma location (xCk, yCk) is available, PredMode is not MODE_INTRA, predFlagLY[xCk][yCk] (with Y = !X) is equal to 1, availableFlagLXC is set equal to 1, the motion vector mvLXC is set equal to the motion vector mvLY[xCk][yCk], refIdxC is set equal to refIdxLY[xCk][yCk], ListC is set equal to LY.

· If availableFlagLXC is equal to 1 and RefPicOrderCnt(currPic , refIdxC, ListC) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXC is set equal to mvLXC.

· Otherwise if availableFlagLXC is equal to 1 and RefPicOrderCnt(currPic , refIdxC, ListC) is not equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXC is derived as specified below.

tx = (16384 + Abs(td / 2)) / td (8‑77)

DistScaleFactor = Clip3(-1024, 1023, (tb * tx + 32) >> 6) (8‑77)

mvLXC = ClipMv((DistScaleFactor * mvLXC + 128) >> 8) (8‑77)

[Ed. (WJ): software has a clip function for scaled motion vector. Do we need this? AVC does not have it]

where td and tb are derived as

td = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic , refIdxC, ListC)) (8‑77)

tb = Clip3(-128, 127, PicOrderCnt(currPic) – RefPicOrderCnt(currPic, refIdxLX, LX)) (8‑77)

· When availableFlagLXC is equal to 1 and mvLXC is identical to mvLXA, availableFlagLXC is set equal to 0.

Page: 11
Date Saved: 2011-07-01

