	[image: image12.bmp][image: image13.wmf]Y

U

V

Y

U

V

Class A

0,00

0,00

0,06

-0,05

0,00

0,00

Class B

-0,02

0,00

0,00

-0,04

0,00

0,00

Class C

-0,05

-0,01

-0,01

-0,06

0,00

0,00

Class D

-0,02

-0,01

-0,01

-0,03

0,00

0,00

Class E

-0,01

-0,02

-0,02

-0,04

0,01

0,01

Overall

-0,02

-0,01

0,01

-0,04

0,00

0,00

Enc Time[%]

Dec Time[%]

Y

U

V

Y

U

V

Class A

-0,08

-0,06

-0,06

-0,19

-0,24

0,14

Class B

-0,04

-0,06

0,09

-0,09

0,02

-0,01

Class C

-0,07

-0,04

-0,01

-0,07

0,01

-0,10

Class D

-0,04

0,03

-0,03

-0,01

0,01

0,05

Class E

Overall

-0,06

-0,03

0,00

-0,09

-0,04

0,02

Enc Time[%]

Dec Time[%]

Y

U

V

Y

U

V

Class A

Class B

-0,05

0,29

-0,23

-0,08

0,00

-0,08

Class C

-0,07

0,06

0,02

-0,07

0,05

0,12

Class D

-0,06

0,22

0,27

-0,09

0,00

-0,16

Class E

0,11

0,17

0,19

-0,15

0,02

0,13

Overall

-0,03

0,19

0,04

-0,09

0,02

-0,01

Enc Time[%]

Dec Time[%]

Y

U

V

Y

U

V

Class A

Class B

-0,05

0,06

-0,30

-0,19

0,07

-0,01

Class C

-0,07

0,17

-0,28

-0,16

0,01

0,00

Class D

-0,08

-0,27

-0,42

-0,08

0,22

-0,28

Class E

0,07

0,34

-0,67

-0,21

-0,37

-0,01

Overall

-0,04

0,06

-0,40

-0,16

0,01

-0,07

Enc Time[%]

Dec Time[%]

99%

99%

All Intra HE

All Intra LC

102%

103%

100%

100%

Random Access HE

Random Access LC

Low delay P HE

Low delay P LC

102%

101%

Low delay B LC

Low delay B HE

100%

102%

100%

102%

99%

98%

103%

102%

[image: image14.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, 14-22 July, 2011
	Document: JCTVC-F272

	Title:
	CE8 subtest 3: Line memory reduction for in-loop filtering

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Semih Esenlik, Matthias Narroschke, Thomas Wedi

Panasonic R&D Center Germany
Monzastr. 4c, 63225 Langen,

Germany
	
Tel:
Email:
	
+49 6103 766 1306
Semih.Esenlik@eu.panasonic.com

+49 6103 766 204
Matthias.Narroschke@eu.panasonic.com
+49 6103 766 1194
Thomas.Wedi@eu.panasonic.com

	Source:
	Panasonic Corporation

Abstract

This contribution is part of CE8 on in-loop filtering. Proposed is a method to reduce the line memory which is required by consecutive filtering operations in the decoder. In the current HM 3.0, Deblocking Filter (DF), Sample Adaptive Offset (SAO) and Adaptive Loop Filter (ALF) all pose difficulties related to storage requirements in the block-based decoding procedure. Namely, for the purpose of filtering across the boundaries of LCUs (Largest Coding Unit), horizontal and vertical line memory need to be employed which is associated with a high manufacturing cost of the decoder chips. This contribution focuses on the reduction of the line memory for LCU-based decoding. The main focus is the reduction in the so called horizontal line memory, whose size is directly proportional to the width of the decoded picture. With the help of the proposed technique the horizontal line memory that needs to be employed is reduced by 50% for the luminance component (6 lines of reduction in total) and 20% for the chrominance components (1 line of reduction for each component).
1 Introduction
To reduce external frame buffer access, hardware implementations of decoders usually store data that is used multiple times in the decoding process in an on-chip memory. A specific type of on-chip memory is called “line memory”. It is depicted in Figure 1. During the decoding process the coded blocks are decoded one by one in a raster scan order. Since the blocks neighboring to the currently decoded block to the bottom and to the right are not yet decoded, the filter operations Deblocking Filter (DF), Sample Adaptive Offset (SAO) and Adaptive Loop Filter (ALF) have to be delayed at the coding block borders as they require decoded samples of the not yet decoded neighboring blocks. For a quick access, decoders typically store those samples that are required for delayed filtering in the line memory.
The line memory can be further divided into horizontal and vertical line memory which is also shown in Figure 1. The size of the horizontal line memory is proportional to the frame width, whereas vertical line memory size is proportional to Largest Coding Unit (LCU) height. Since the horizontal line memory is considerably larger in size than the vertical line memory the goal of the proposal is set to achieve a reduction of the horizontal line memory. In the remaining part of the contribution, the term line memory is used synonymously with horizontal line memory.

[image: image1]
Figure 1: Horizontal and vertical line memory.
2 Line memory requirements for HM3.0

In-loop filtering in decoders can be carried out in either frame-based or LCU-based fashion. In frame-based filtering each filtering stage is performed on the whole video frame and the intermediate output is written to the external memory. Although no line memory implementation is required for frame based decoding, external memory access is formidable since the whole reconstructed image has to be retrieved from and written back to the external memory. In LCU-based filtering, the three filtering operations are carried out on an LCU one after the other. Therefore all DF, SAO and ALF can be applied on a current LCU before the output is written to the reference frame memory. Since the frame based filtering requires formidable amount of external memory access, LCU-based filtering is considered preferable in hardware implementations.

In H.264/MPEG-4 AVC only a single in-loop filter is employed which is the deblocking filter. The line memory requirement of H.264/MPEG-4 AVC was therefore just 4 lines. However in HM3.0 two more in-loop filters are introduced, namely Sample Adaptive Offset and Adaptive Loop Filter, that are applied in a sequential order subsequent to the deblocking filter. As a result the line memory requirement is increased from 4 lines to 12 lines in total. To put the 12 lines of line memory with a bit depth of 10bit/sample into perspective, a device capable of decoding a sequence of a spatial resolution of 1920×1080 samples would require 28.125kB of on-chip line memory storage to be implemented, which is calculated as follows:

[image: image2.wmf]kBytes

Sample

bit

lines

line

Samples

125

.

28

10

12

1920

=

×

×

.
2.1 Line memory requirements for the Deblocking Filter of HM3.0

In Figure 2 the deblocking operation on an LCU is depicted according to HM3.0. First, the horizontal deblocking of the vertical edges are performed and then vertical deblocking of the horizontal edges. The last 4 rows of samples however cannot be deblocked at the moment due to the absence of the decoded neighboring LCU to the bottom. Therefore, 4 lines (shown in a pink rectangle) have to be stored in the line memory for delayed processing.
[image: image3.png]
Figure 2: Vertical and horizontal deblocking filtering. Red region cannot be processed by deblocking filter.
The focus of this proposal is the reduction of the horizontal line memory. For a convenient description, the neighboring LCU to the right is assumed to be present through the remaining part of the paper (absence of which leads to the requirement for the vertical line memory). In Figure 2 the deblocking at the right LCU border is considered as not delayed due this assumption.
2.2 Line memory requirements for SAO of HM3.0

Sample Adaptive Offset [1] is applied on the output of the deblocking filter. The deblocking filter has to delay the modification of the last 3 lines of pixels at the bottom LCU border. This delay leads to a further delay by SAO. The problem is depicted in the figure below.
[image: image4.png]
Figure 3: Samples that can be used by SAO during the filtering of the LCU.
In the Figure 3, the red cross marks the samples used for classifications of SAO according to [1]. It can be seen that the SAO processing of the last 4 lines from the bottom of the LCU needs to be delayed as a consequence of the fact that 3 lines from the bottom LCU border are delayed for deblocking. As a result the SAO process requires 1 additional line of line memory (5 lines in total when only DF and SAO are considered).
2.3 Line memory requirements for ALF of HM3.0
In Figure 4, the block-based filter adaptation method [2] of ALF is depicted. For each 4x4 block, one out of several available filters is selected. One of these 4x4 blocks is marked in red in the Figure 4. For the filter selection process for a 4x4 block, an 8x8 pixel neighborhood is required. This neighborhood is marked by a black box in the Figure. ALF uses the output signal of the SAO process as input signal. Since the last 4 lines in an LCU are delayed for processing of the deblocking filter and SAO, the block-based filter selection process of ALF needs to be delayed as well. As it is shown in the below Figure 5, the filtering by ALF needs to be delayed by 8 lines from the bottom of the LCU since the filter selection requires samples which have passed the deblocking filter and SAO.
The delayed processing of 8 lines from the bottom LCU border requires 7 lines of line memory in addition to the 5 lines required by SAO and DF. Therefore in total 12 lines of line memory is required for the filtering with 3 consecutive in-loop filters.

[image: image5.png]
Figure 4: Blue, green and pink samples represent vertically deblocked, fully deblocked and SAO processed samples respectively.
The reasons for a line memory requirement of 12 lines can be summarized as follows:
1. Deblocking Filter and SAO cannot process last 4 lines of pixels in an LCU due to the unavailability of neighboring LCU from below.

2. The filter decision (pixel classification) method of ALF cannot classify 8 lines of pixels in an LCU, since the preceding operations (SAO and DF) are not complete at the last 4 lines.

3. Since the maximum vertical size of the ALF filter mask is 7, filtering a line of pixels require 3 additional lines from above. As a result 11 rows of pixels need to be buffered in order to carry on ALF after the LCU below is available.

4. Finally 1 additional line is required in order to carry on processing with SAO when the LCU below is available.

3 Proposed Method

In HM3.0 the problem of high amount of line memory requirement stems from the strict input-output relations between the 3 consecutive filters. A filtering stage requires that all the samples have to be already processed by the preceding filtering stage. As a result each filtering stage delays the following stage at the LCU borders.
To overcome the problem the filter application procedure is slightly modified at the LCU borders in order to reduce the line memory requirement substantially. The principle applied throughout the whole proposal is “substituting input samples that are not available in the instant of processing with available counterparts in the memory”. This principle is applied all, SAO, block-based filter selection of ALF and the filtering process of ALF. As a result, all 3 filters (DF, SAO and ALF) are able process all the samples in an LCU till the 3rd line from the bottom border of LCU.
An important remark about the proposal is that it does not change the order of the 3 consecutive filtering stages as the central tap of the ALF filter mask and of the SAO classification pattern always uses the SAO-processed and deblocked samples respectively. Moreover, there is no change in the details of Deblocking Filtering, SAO and ALF processes. According to the proposal only input substitution is performed at the bottom LCU border.

In the remaining part of Section 3, the proposed method is explained in detail.
3.1 Proposed modification of SAO

During the decoding of an LCU, last 3 rows of pixels are inaccessible to SAO since they are going to be modified by Deblocking Filter later on. Therefore SAO processing terminated at the 4th line above the LCU border.
In this proposal, the termination point is moved 1 line down as shown in Figure 5. The proposed SAO process uses 1 line of partially deblocked samples which are already available in the memory. As a result the LCU is processed by SAO until the 3rd line from the bottom LCU border.

[image: image6.png]
Figure 5: Termination points in HM3.0 and proposed method.
3.2 Proposed modification for the block-based pixel classification method of ALF

The same principle of “substituting unavailable samples with available ones” is applied to the block-based filter selection method of ALF. In the Figure 6 it is shown that 8x8 filter computation block (shown in solid black) requires pixels (3rd row of samples from below) that are not yet processed by SAO. First of all filter selection method is allowed to use partially deblocked 3rd line in order to enable the filter decision for the red block. Secondly the size of the red block is extended by 1 line (Filter decision for the red block is copied to the 4th row of samples from below). As a result filter decision is enabled for 5 more lines in an LCU compared to HM3.0.
[image: image7.png]
Figure 6: Filter decision is not available for 8 lines in HM3.0 and for 3 lines in the proposed method.
According to the proposal there is no change in the function that is used for filter decision.

3.3 Proposed modification of the ALF filter application

During the filter application, last 3 rows of partially deblocked pixels are used instead of delaying the filtering operation by 3 rows. In Figure 7 the ALF filter mask is shown in black. Filter taps that are below the central filter tap are allowed to use partially deblocked pixels that are already available in the memory.
[image: image8.emf]LCU

Proposed

HM 3.0

Figure 7: Filtering by ALF is not possible for 8 lines in HM3.0 and for 3 lines in the proposed method.
In Figure 7 red arrows show the termination points for ALF filtering in current HM3.0 and for the proposed method. In the current HM3.0 DF, SAO and ALF are terminated at the 3rd, 4th and 8th lines above the bottom LCU border. In other words ALF cannot process the lines below and including the 8th line in a current LCU. On the other hand according to the current proposal all three loop filters are terminated at the 3rd line above the bottom LCU border. In other words the delays experienced by all three filters are the same.
3.4 Proposed change for Chroma ALF filter application

The proposed method that is explained in Section 3.3 is applied also to the chroma components. Here the maximum vertical size of the ALF filter is 5 and only one horizontal line is modified by deblocking filter at LCU borders. Therefore the reduction in the line memory is %20, where the line memory is reduced from 5 to 4.
4 Experimental Results

As a reference, the officially tagged 3.0 version of the HM software [3]

 REF _Ref297110271 \n \h
 * MERGEFORMAT [4] is used. The simulations are performed according to [5]. Table 1 shows the experimental results obtained for the proposal.

[image: image9]
Table 1: Experimental results.
Apart from reducing the line memory by 6 lines, the proposed method provides an average gain of 0.07% over all simulation cases. There is a slight increase in the decoding time which is due to the first time implementation of the line memory concept in the reference software.
5 Subjective Evaluation

In HM3.0 samples at the LCU borders are not processed by SAO in an attempt to reduce the line memory requirements. According to the proposed line memory reduction method all of the samples in an LCU can be processed by SAO.
Turning SAO off at the LCU boundaries results in artifacts that are easily visible on smooth surfaces. In Figure 8 a part of a picture generated by HM3.0 is presented. The grid of LCUs is visible on the blue background.

[image: image10]
Figure 8: 170th frame in Kimono sequence. Encoded by HM3.0 (Low delay B – HE) with QP=32.

In Figure 9 the same part of the image is presented which is generated by the proposed tool. In the figure the LCU grid artifact is totally eliminated since all the samples in an LCU are now processed by SAO.

[image: image11]
Figure 9: 170th frame in Kimono sequence. Encoded by Proposal (Low delay B – HE) with QP=32.

6 Conclusion

With this contribution we propose a method for reducing the line memory requirement for the LCU-based filtering procedure. The proposed method provides a 50% reduction in the horizontal line memory (6 lines of reduction in total) for the luminance component and a 20% reduction (1 line for each component) for the two chrominance components. Results of experiments following the common test conditions [5] show an average Y-BD-bit rate gain of 0.07%. A slight increase in the decoding times is observed which is a result of a clean implementation of the line memory concept in the reference software.

Since the cost of decoder chip production is closely related to the amount of line memory that needs to be included in the design, the proposed method is thought to be very beneficial for LCU-based decoding approach. We propose to include this technique in the next version of the HM.
7 References

[1] Chih-Ming Fu et. al., CE13: Sample Adaptive Offset with LCU-Independent Decoding, JCTVC-E049, Geneva, CH, March 2011.
[2] I. S. Chong et. al., CE8 Subtest 2: Block based adaptive loop filter, JCTVC-E323, Geneva, CH, March 2011.
[3] HM 3.0 Software, http://hevc.kw.bbc.co.uk/trac/browser/tags/HM-3.0
[4] T. Wiegand, W. J. Han, B. Bross, J. R. Ohm, G. J. Sullivan, WD3: Working Draft 3 of High-Efficiency Video Coding, JCTVC-E603, Geneva, Switzerland, March 2010.
[5] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-E700, Geneva, March 2011.
8 Patent rights declaration(s)
Panasonic Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Frame Width

Vertical Line Memory

Horizontal Line Memory

12 Lines

Block that is currently decoded

Page: 10
Date Saved: 2011-07-01

[image: image15.png][image: image16.bmp][image: image17.png][image: image18.png]_1371030071.unknown

