
	[image: image10.png][image: image11.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F235

	Title:
	CE8, Subset 5, Tool 3: Chroma ALF with reduced vertical filter size (JCTVC-E287)

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Madhukar Budagavi
Texas Instruments Inc., USA
Vivienne Sze
Texas Instruments Inc., USA
Minhua Zhou
Texas Instruments Inc., USA
	Tel:
Email:

Tel:
Email:
Tel:
Email:
	madhukar@ti.com
sze@ti.com
zhou@ti.com

	Source:
	Texas Instruments Inc.

Abstract

This contribution presents results for Nx3 chroma ALF filters when integrated into HM-3.0. Nx3 chroma ALF filters have a vertical size of 3 and require a line buffer of 2 lines when compared to 4 lines used by 5x5 filter in HM-3.0. BD-Rate results for 9x3 rectangle chroma ALF are reported to be: AI-HE: Y: 0.0, U: 0.1, V: 0.2, and RA-HE: Y: 0.0, U: 0.3, V: 0.3, LB-HE: Y: 0.0, U: 0.1, V: -0.2. BD-Rate results for 9x3 diamond chroma ALF are reported to be: AI-HE: Y: 0.0, U: 0.1, V: 0.3, and RA-HE: Y: 0.0, U: 0.3, V: 0.3, LB-HE: Y: 0.0, U: 0.3, V: 0.1. The number of multiplications for HM 3.0 chroma (5x5), 9x3 rectangle, and 9x3 diamond are reported to be: 13, 12, and 14 respectively.
1 Introduction

HM 3.0 ALF uses 5x5 square filter for chroma filtering as shown in Figure 1. The 5x5 filter is symmetric and requires 13 multiplications instead of 25. The same chroma filter is applied to both chroma planes. A two-bit chroma_idc field is used to signal which of the chroma plane(s) are filtered. Chroma ALF does not use CU adaptive filtering, ALF is applied on whole frame or not applied at all

[image: image1]
Figure 1: HM 3.0 Chroma ALF filter set.

ALF decode filtering can be carried out in either frame-based or LCU-based fashion. In frame-based chroma ALF filtering, the deblocking filter output is first stored in a frame buffer. The deblocked filter output is then read to carry out ALF filtering. Figure 2 shows an example frame-based ALF filtering with 5x5 filter. The red-lines in Figure 2 are pixel lines. The deblock frame buffer needs to be read 25 times which is not feasible since the memory bandwidth requirements go up to 25 frame buffer reads. Clearly a caching mechanism is needed to reduce memory bandwidth requirements.

[image: image2]
Figure 2: Frame-based ALF decode.

[image: image3]
Figure 3: Frame-based ALF decode filtering with line buffer cache.

Figure 3 shows an example of frame-based ALF decode filtering with line buffer cache. The figure on left shows filtering of line 4. The figure on right shows filtering of line 5. From the Figure 3, one can see that Lines 3, 4, 5, 6 get used in filtering of both lines 4 and 5. Data on these lines can be cached in line buffers to avoid reading them again from deblock frame output buffer. With the line buffer caching mechanism shown in Figure 3, the deblock frame output buffer needs to be read only once (also written once). However, this is still expensive. Memory bandwidth requirements can be further reduced by using LCU-based filtering instead as shown in Figure 4.

[image: image4]
Figure 4: LCU-based ALF decode filtering with line buffer cache.

In LCU-based filtering, ALF filtering is carried out on an LCU basis as and when the deblock filter output gets generated. The left part of Figure 4 shows ALF filtering of LCU(0,0) and the right part shows ALF filtering of LCU(1,0). The red lines show the deblock filter pixel lines (which is input to ALF filters) and the blue lines are the ALF filtered output. Since the ALF filter is a non-causal filter and uses right and bottom LCU data (which are not yet available), not all pixels in a LCU can be ALF filtered. The ALF filtered pixels are shown in solid blue line and the LCU pixels that cannot be ALF filtered when the LCU is generated are shown in dotted blue lines.

From Figure 4 it should be noted that even for LCU-based filtering, the previous 4 lines need to be cached in line buffers to avoid additional memory bandwidth as shown in Figure 4.

Assuming a 4Kx2K image and IBDI on, the line buffer memory size for Chroma is: 2*(4K/2) * 4 lines *12bits = 16 Kbytes which is a significant amount for single chip video codecs.
2 ALF filters with reduced vertical size

For a given image size, the vertical size of ALF filters determines the size of line buffer/memory bandwidth requirements. These requirements can be reduced by reducing the vertical size of ALF filter. This contribution presents two ALF filters that reduce vertical size of chroma ALF filter. Figure 5 shows these filters. All three filters have a vertical size of 3. Since these filters operate on only 3 lines instead of the original 5, the size of the line buffers goes down from 4 lines to 2 lines – a 50% reduction in memory bandwidth/memory size requirements.

[image: image5]
Figure 5: ALF filters with reduced vertical size.

3 Simulation results

Chroma ALF of HM 3.0 was modified to support rectangular and diamond size. Table below provides the BD-Rate performance of existing HM 3.0 ALF chroma filter, 9x3 rectangle, and 9x3 diamond filter. It can be seen from tables below that the proposed chroma ALF filter sets capture most of the ALF coding gains while reducing line buffer size/memory bandwidth by 50%.

[image: image6.emf]Table 1: Summary of Y BD-Rate, Decoder time, and complexity of ALF filters.

Compared to anchor.

95%0.091%0.094%0.09x3 diamond

102%0.0108%0.0104%0.09x3 rectangle

HM 3.0 ALF

94%-0.192%-0.193%-0.1

No

ChromaALF

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Worst

case

multiplies

Line buffer

size /

Memory

bandwidth

Low delay

Random

accessIntra

[image: image7.emf]Table 2: Summary of U BD-Rate, Decoder time, and complexity of ALF filters.

Compared to anchor.

95%0.291%0.394%0.1120.5X9x3 diamond

102%0.1108%0.3104%0.1140.5X9x3 rectangle

131XHM 3.0 ALF

94%2.192%2.593%2.600

No

ChromaALF

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Worst case

multiplies

Line buffer

size /

Memory

bandwidth

Low delay

Random

accessIntra

[image: image8.emf]Table 3: Summary of V BD-Rate, Decoder time, and complexity of ALF filters.

Compared to anchor.

95%0.191%0.394%0.3120.5X9x3 diamond

102%-0.2108%0.3104%0.2140.5X9x3 rectangle

131XHM 3.0 ALF

94%1.892%2.293%3.100

No

ChromaALF

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Dec

time

BD-

Rate

Worst case

multiplies

Line buffer

size /

Memory

bandwidth

Low delay

Random

accessIntra

4 Proposed modifications to WD 3.0
Proposed modifications to WD 2.0 text are highlighted in yellow.
8.6.3.4 Filtering process for chroma samples

Inputs of this process are:

–
a chroma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left chroma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

–
a variable cIdx specifying the chroma component index.

Output of this process is the filtered reconstruction of chroma picture.

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCb.

–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCr.

A variable nS is set equal to (1 << log2CUSize) and a variable alfTapChroma is set equal to (alf_length_chroma_minus_5_div2 << 1) + 5. Variable alfTapChromaV is set to 3.
Filtered samples of chroma picture recFiltPicture[xC + x][yC + y] with x, y = 0..(nS)-1, are derived as follows.

[image: image9.wmf](

)

å

-

=

+

+

+

+

+

=

+

+

1

0

]

[

*

]

]

[

],

[

[

'

]

[

]

][

[

N

i

C

C

i

c

i

verPos

y

yC

i

horPos

x

xC

s

N

c

y

yC

x

xC

ture

recFiltPic

(8‑477)
where

N = AlfNumCoeffChroma – 1,

(8‑478)

horPos[i] = (i % alfTapChroma) – (alfTapChroma >> 1), and
(8‑479)

verPos[i] = (i / alfTapChromaV) – (alfTapChromaV >> 1)
(8‑480)

5 Patent rights declaration(s)
Texas Instruments Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

5

4

3

2

1

Filtering at (5, x+1)

Filtering at (4, x)

7

6

5

4

3

2

1

7

6

Output

Lines that need to be cached

Input

Output

Input

9x3 diamond

9x3 rectangle

5x5-Square

Page: 1
Date Saved: 2011-06-30

_1361001536.unknown

