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Abstract

In this document, several patterns specifying ALF applications at picture/slice level are proposed to implement complexity scalable ALF, which aims at achieving tradeoff between coding efficiency and computational burden. Using these patterns, ALF is conditionally allowed according to the attributes of the current picture/slice, i.e. coding type, whether to be employed as reference, POC, and etc, which restricts ALF to work only for the pictures that are critical to the entire coding performance, and facilitates reasonable complexity allocation among different pictures. Thereby, ALF will be equipped with the feature of complexity scalability by varying ALF switching patterns and some associated assisting parameters, which helps the codec to carry out desired tradeoff between performance and complexity. 
1 Introduction

ALF is integrated in HEVC to reduce the quantization noise in the reconstructed pictures, and contributes to the high coding performance achieved by HEVC codec. However, high computational burden prevents its applications in low complexity (LC) scenarios. In the recommended common test conditions in JCTVC-E700 [1], ALF is disallowed in LC test cases. Performance comparisons between HM3.0-dev-bugfix LC anchors and alternative LC anchors with ALF allowed are shown in Table 1. 
	Table 1.  LC anchors vs Alternative LC anchors with ALF allowed
　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-3.8 
	-1.0 
	-1.4 
	-6.2 
	-3.1 
	-4.1 

	Class B
	-2.2 
	-2.3 
	-1.7 
	-4.2 
	-1.4 
	0.1 

	Class C
	-2.0 
	-2.6 
	-3.7 
	-3.0 
	0.7 
	-0.5 

	Class D
	-0.9 
	-2.2 
	-2.7 
	-2.7 
	0.4 
	0.7 

	Class E
	-3.3 
	-3.8 
	-4.6 
	　
	　
	　

	Overall
	-2.4 
	-2.3 
	-2.7 
	-4.0 
	-0.9 
	-0.9 

	Enc Time[%]
	144%
	109%

	Dec Time[%]
	144%
	127%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-4.8 
	-1.2 
	-0.3 
	-6.9 
	-2.5 
	-1.5 

	Class C
	-3.8 
	0.7 
	-1.2 
	-3.6 
	0.5 
	-1.0 

	Class D
	-2.4 
	0.1 
	0.2 
	-1.5 
	0.4 
	0.6 

	Class E
	-6.0 
	-6.4 
	-1.0 
	-8.6 
	-8.6 
	-2.1 

	Overall
	-4.2 
	-1.4 
	-0.5 
	-5.0 
	-2.2 
	-1.0 

	Enc Time[%]
	108%
	114%

	Dec Time[%]
	129%
	132%


As observed in Table 1, ALF can achieve an average of 3.9% bit rate reduction, however, at a cost of about 19% and 33% complexity increment in encoder and decoder, respectively. 
Define the term of “efficiency cost” as the percentage of complexity increment (positive value) or decrement (negative value) to get 0.1% efficiency improvement over a given reference. Here, the HM3.0-bugfix-dev LC anchors are chosen as reference. Thereby, the efficiency costs of the encoder and the decoder are 0.48% and 0.85%, respectively, which is poor tradeoff between coding efficiency and complexity for LC requirements. This is mainly due to that there is only one flag in SPS, i.e. adaptive_loop_filter_enable_flag, to perform completely ON/OFF control on the application of ALF, while leaving all the other tasks to the slice level optimization module to determine the usage of ALF. Therefore, it is necessary to introduce some options for ALF above slice layer to give further usage specifications besides SPS: adaptive_loop_filter_enable_flag, which could provide much flexibility to ALF complexity scalability and tradeoff control. 
2 ALF Switching Patterns
From the perspective of compression, ALF contributes to coding efficiency by reducing the quantization noise in the reconstructed pictures, which may further be marked for reference in the prediction loop for coding successive pictures. Thus, ALF also impacts on the performance of temporal prediction. To reach a given tradeoff between efficiency and complexity, it is reasonable to apply ALF only to some critical pictures such as reference pictures. Table 2 shows the performance of only allowing ALF when coding reference pictures under random access (RA) LC configuration compared to the HM3.0-bugfix-dev anchors. 
Table 2.  RALC anchors vs ALF reference pictures only
	　
	Random Access LC

	
	Y
	U
	V

	Class A
	-5.6 
	-3.1 
	-4.2 

	Class B
	-4.0 
	-1.5 
	0.0 

	Class C
	-2.8 
	0.7 
	-0.5 

	Class D
	-2.4 
	0.3 
	0.5 

	Class E
	　
	　
	　

	Overall
	-3.7 
	-1.0 
	-1.0 

	Enc Time[%]
	108%

	Dec Time[%]
	124%


Referring to the RALC results in Table 1, disabling ALF in non-reference pictures leads to a performance loss of 0.3% on average, but saves an encoding and decoding time of 1% and 3%, respectively. And the efficiency cost of the encoder is 0.22%, and the decoder 0.65%. Therefore, the codec achieves a better tradeoff than the one used to get Table 1 results. 
To further provide flexible tradeoff control and scalable complexity adjustment to the codec, we propose the following ALF switching patterns as: 
· Pattern 0: ALF is allowed in all the pictures. 
· Pattern 1: ALF is allowed only in I picture. 

· Pattern 2: ALF is allowed only in reference pictures. 

· Pattern 3: ALF is periodically allowed to the pictures with its displaying order index divisible by a pre-defined positive integer. 
3 Syntax Description on HM3.0
The syntax for the ALF switching patterns in the above section based on HM3.0-dev-bugfix syntax structure is presented in the tables below. 
Table 3.  Modified PPS syntax (HM3.0)

	pic_parameter_set_rbsp( ) {
	Descriptor

	
pic_parameter_set_id
	ue(v)

	
seq_parameter_set_id
	ue(v)

	
entropy_coding_mode_flag
	u(1)

	
num_ref_idx_l0_default_active_minus1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	ue(v)

	
pic_init_qp_minus26  /* relative to 26 */
	se(v)

	
constrained_intra_pred_flag
	u(1)

	
adaptive_loop_filter_enable_flag 
	u(1)

	
if (adaptive_loop_filter_enable_flag) { 
	

	

adaptive_loop_filter_pattern_idx
	ue(v)

	

if (adaptive_loop_filter_pattern_idx == 3) {
	

	


adaptive_loop_filter_period
	ue(v)

	

}
	

	
}
	

	
rbsp_trailing_bits( )
	

	}
	


adaptive_loop_filter_enable_flag equals to 1 specifies that the adaptive loop filter process is applied to the reconstructed picture after the deblocking filter process.
adaptive_loop_filter_pattern_idx specifies the use pattern of the adaptive loop filter as listed in the table below:
Table 4.  Names association to ALF switching patterns

	adaptive_loop_filter_pattern_idx
	adaptive loop filter use pattern

	0
	Adaptive loop filters can be applied to every reconstructed picture.

	1
	Adaptive loop filters can be applied to the slices in the reconstructed pictures with slice_type of I only.

	2
	Adaptive loop filters can be applied to the slices in the reconstructed pictures marked as “used_as_reference”, i.e. the nal_ref_idc is not equal to 0.

	3
	Adaptive loop filters can be periodically applied to reconstructed pictures.


adaptive_loop_filter_period specifies the period of the filtering operation applied to the reconstructed pictures. The value of adaptive_loop_filter_period shall be in the range of 1 to MaxPicOrderCntLsb, inclusive, where MaxPicOrderCntLsb equals to 2^( log2_max_pic_order_cnt_lsb_minus4 + 4) , and is inferred to be 1 by default. For the current HM3.x series reference codes, we are aware that the POC handling section of codes need to be further completed as it is highlighted in JCT-VC reflector recently.
Table 5.  Modified slice header syntax (HM3.0)
	slice_header( ) {
	Descriptor

	
first_tb_in_slice
	ue(v)

	
entropy_slice_flag
	u(1)

	
if( !entropy_slice_flag ) {
	

	

slice_type
	ue(v)

	

pic_parameter_set_id
	ue(v)

	

frame_num
	u(v)

	

if( IdrPicFlag )
	

	


idr_pic_id
	ue(v)

	

if( pic_order_cnt_type  = =  0 )
	

	


pic_order_cnt_lsb /* 
	u(v)

	

……
	se(v)

	

if( adaptive_loop_filter_enabled_flag ) {
	

	


if ((adaptive_loop_filter_pattern_idx == 0) ||
	

	



(adaptive_loop_filter_pattern_idx == 1 && slice_type == I_SLICE) ||
	

	



(adaptive_loop_filter_pattern_idx == 2 && nal_ref_idc != 0) ||
	

	



(adaptive_loop_filter_pattern_idx == 3 && 
	

	



PicOrderCount % adaptive_loop_filter_period == 0 ) ) {
	

	



alf_param()
	

	


}
	

	

}
	

	

……
	

	
} else
	

	

if( entropy_coding_mode_flag  &&  slice_type  !=  I)
	

	


cabac_init_idc
	ue(v)

	}
	


Note that in Table 5, the variable “PicOrderCount” is the POC value of the current slice derived by using the specified POC related parameters, including necessary wrapping operations. 
4 Syntax Description on JCTVC-E603-v8
In JCTVC-E603-v8 [2], the slice information sharing in JCTVC-E045 [3] has been integrated. To implement the ALF switching patterns based on this adopted approach, some adjustments have been made to the syntax described in section 3. 
Table 6.  Modified PPS syntax (JCTVC-E603-v8)

	pic_parameter_set_rbsp( ) {
	Descriptor

	
pic_parameter_set_id
	ue(v)

	
seq_parameter_set_id
	ue(v)

	
entropy_coding_mode_flag
	u(1)

	
num_temporal_layer_switching_point_flags
	ue(v)

	
for( i = 0; i < num_temporal_layer_switching_point_flags; i++ )
	

	

temporal_layer_switching_point_flag[ i ]
	u(1)

	
num_ref_idx_l0_default_active_minus1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	ue(v)

	
pic_init_qp_minus26  /* relative to 26 */
	se(v)

	
constrained_intra_pred_flag
	u(1)

	
slice_granularity
	u(2)

	
if(adaptive_loop_filter_enabled_flag ) {
	

	

adaptive_loop_filter_pattern_idx
	ue(v)

	

if (adaptive_loop_filter_pattern_idx == 3)
	

	


adaptive_loop_filter_period
	ue(v)

	

shared_pps_info_enabled_flag
	u(1)

	

if( shared_pps_info_enabled_flag )
	

	


alf_param( )
	

	
}
	

	
if( cu_qp_delta_enabled_flag )
	

	

max_cu_qp_delta_depth
	u(4)

	
rbsp_trailing_bits( )
	

	}
	


The semantics of the added syntax elements for ALF switching patterns are the same as those in section 3. Note that the adaptive_loop_filter_enable_flag is kept in SPS. Moreover, if shared_pps_info_enabled_flag and adaptive_loop_filter_flag in alf_param() do not exist, their values are inferred to be 0. The exact semantics of these two syntax elements are expressed as: 

· shared_pps_info_enabled_flag specifies the shared information in picture parameter set RBSP shall be used for the referred slices. If shared_pps_info_enabled_flag is equal to 1, the alf_param() in picture parameter set RBSP shall be applied for the referred slices; otherwise, the alf_param() in slice header(s) shall be applied. If shared_pps_info_enabled_flag does not exist, its value is inferred to be 0. 
· adaptive_loop_filter_flag specifies whether adaptive loop filter applies or not for the current slice. If adaptive_loop_filter_flag in alf_param() does not exist, its value is inferred to be 0. 

Table 7.  Modified slice header syntax (JCTVC-E603-v8)
	slice_header( ) {
	Descriptor

	
lightweight_slice_flag
	u(1)

	
if( ! lightweight_slice_flag ) {
	

	

slice_type
	ue(v)

	

pic_parameter_set_id
	ue(v)

	

frame_num
	u(v)

	

if( IdrPicFlag )
	

	


idr_pic_id
	ue(v)

	

if( pic_order_cnt_type  = =  0 )
	

	


pic_order_cnt_lsb /* 
	u(v)

	

}
	

	

……
	

	
}
	

	
……
	

	
if( !lightweight_slice_flag ) {
	

	

……
	

	

if( adaptive_loop_filter_enabled_flag ) {
	

	


if ((adaptive_loop_filter_pattern_idx == 0) ||
	

	
 
 
  (adaptive_loop_filter_pattern_idx == 1 && slice_type == I ) ||
	

	
 
 
  (adaptive_loop_filter_pattern_idx == 2 && nal_ref_idc != 0) ||
	

	
 
 
  (adaptive_loop_filter_pattern_idx == 3 &&
	

	


PicOrderCount % adaptive_loop_filter_period == 0 ) ) {
	

	



if( !shared_pps_info_enabled_flag )
	

	




alf_param( )
	

	



alf_cu_control_param( )
	

	


}
	

	


else {
	

	



alf_flag_slice_level_override( )
	

	


}
	

	

}
	

	
}
	

	}
	


Table 8.  Slice level ALF flag override parameter syntax (JCTVC-E603-v8)

	alf_flag_slice_level_override( ) {
	C
	Descriptor

	
if( shared_pps_info_enabled_flag == 1)
	
	

	

adaptive_loop_filter_flag = 0
	
	

	}
	
	


Generally, when slice information sharing is enabled, the value of adaptive_loop_filter_flag at slice level is set equal to the one parsing from PPS at the initialization stage of slice header decoding. However, note that in Table 7 and 8, if ALF is not allowed according to the ALF switching patterns, the adaptive_loop_filter_flag will be locally and temporally set to 0 only in decoding the current slice. 
By doing this, when slice information sharing is used and ALF is switched from ON to OFF according to ALF switching patterns in coding two successive pictures, the later picture can just refer to the PPS of the former picture. Therefore, the encoder does not need to generate a new PPS for the change of adaptive_loop_filter_flag, which saves bits for the common information in PPS. In another words, if the information obtained through the alf_param() is shared for a group of pictures, the mechanism proposed here can ensure the alf switching-off overriding happens correctly; if information obtained through the alf_param() is for sharing within all the slices belonging to the same picture (by sending a new PPS for the current picture), for certain pictures, encoder can and should avoid sending unnecessary alf_param() information if ALF operation will be forced to switch off according to the ALF switching pattern rule.
5 Experimental Results
To demonstrate different tradeoffs between efficiency and complexity as well as the complexity scalable features, the ALF switching patterns are implemented on the software HM3.0-dev-bugfix. Besides LC anchors, another 5 ALF settings are employed in the experiments under LC configurations, i.e. periodical ALF (Pattern 3) with adaptive_loop_filter_period respectively set to 16, 8, 4 and 2, and Alternative Anchor where ALF is always allowed). The Class A test results were obtained using a workstation with a CPU of Intel Xeon X5690, and the other tests were conducted on a server with a CPU of Intel Xeon E5504. The performance comparisons are given in the tables below. 
Table 9.  LC anchor vs Periodical ALF_16

	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.3 
	-0.1 
	-0.1 
	-2.4 
	-1.5 
	-2.1 

	Class B
	-0.1 
	-0.1 
	-0.1 
	-1.9 
	-1.0 
	-0.2 

	Class C
	-0.1 
	-0.2 
	-0.2 
	-1.2 
	0.3 
	-0.5 

	Class D
	-0.1 
	-0.1 
	-0.2 
	-0.4 
	0.3 
	0.5 

	Class E
	-0.2 
	-0.2 
	-0.3 
	　
	　
	　

	Overall
	-0.2 
	-0.1 
	-0.2 
	-1.5 
	-0.5 
	-0.6 

	Enc Time[%]
	105%
	103%

	Dec Time[%]
	103%
	106%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-1.9 
	-1.5 
	-1.0 
	-2.5 
	-2.4 
	-2.2 

	Class C
	-1.7 
	-1.0 
	-1.6 
	-1.6 
	-0.8 
	-1.7 

	Class D
	-0.7 
	-0.5 
	-0.2 
	-0.5 
	-0.2 
	0.0 

	Class E
	-4.7 
	-7.2 
	-2.6 
	-6.4 
	-9.0 
	-3.9 

	Overall
	-2.1 
	-2.2 
	-1.2 
	-2.5 
	-2.7 
	-1.8 

	Enc Time[%]
	101%
	101%

	Dec Time[%]
	104%
	103%


	Table 10.  LC anchor vs Periodical ALF_8
　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.5 
	-0.1 
	-0.2 
	-3.4 
	-1.6 
	-2.5 

	Class B
	-0.3 
	-0.3 
	-0.2 
	-2.6 
	-0.8 
	0.2 

	Class C
	-0.3 
	-0.3 
	-0.5 
	-1.7 
	0.7 
	-0.3 

	Class D
	-0.1 
	-0.3 
	-0.3 
	-0.6 
	0.5 
	0.6 

	Class E
	-0.4 
	-0.5 
	-0.6 
	　
	　
	　

	Overall
	-0.3 
	-0.3 
	-0.3 
	-2.1 
	-0.3 
	-0.5 

	Enc Time[%]
	107%
	104%

	Dec Time[%]
	105%
	110%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-2.6 
	-1.7 
	-1.1 
	-3.6 
	-2.8 
	-2.4 

	Class C
	-2.3 
	-0.6 
	-1.7 
	-2.1 
	-0.6 
	-1.4 

	Class D
	-1.1 
	-0.1 
	0.0 
	-0.7 
	0.2 
	0.1 

	Class E
	-5.3 
	-7.1 
	-1.9 
	-7.3 
	-8.5 
	-3.3 

	Overall
	-2.7 
	-2.1 
	-1.1 
	-3.2 
	-2.6 
	-1.7 

	Enc Time[%]
	102%
	103%

	Dec Time[%]
	108%
	106%


Table 11.  LC anchor vs Periodical ALF_4

	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-1.0 
	-0.3 
	-0.4 
	-4.6 
	-2.7 
	-3.7 

	Class B
	-0.5 
	-0.6 
	-0.4 
	-3.4 
	-1.3 
	0.0 

	Class C
	-0.5 
	-0.7 
	-0.9 
	-2.3 
	0.6 
	-0.6 

	Class D
	-0.2 
	-0.6 
	-0.7 
	-1.6 
	0.3 
	0.5 

	Class E
	-0.8 
	-1.0 
	-1.2 
	　
	　
	　

	Overall
	-0.6 
	-0.6 
	-0.7 
	-3.0 
	-0.8 
	-0.9 

	Enc Time[%]
	113%
	106%

	Dec Time[%]
	111%
	115%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-3.3 
	-1.7 
	-0.7 
	-4.6 
	-2.8 
	-2.3 

	Class C
	-2.7 
	-0.1 
	-1.4 
	-2.6 
	0.1 
	-1.2 

	Class D
	-1.4 
	-0.3 
	0.0 
	-0.9 
	0.7 
	0.4 

	Class E
	-5.5 
	-6.5 
	-0.9 
	-7.9 
	-8.7 
	-2.0 

	Overall
	-3.1 
	-1.9 
	-0.7 
	-3.8 
	-2.3 
	-1.3 

	Enc Time[%]
	103%
	105%

	Dec Time[%]
	112%
	113%


	Table 12.  LC anchor vs Periodical ALF_2

　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-1.9 
	-0.5 
	-0.7 
	-5.6 
	-3.1 
	-4.2 

	Class B
	-1.1 
	-1.1 
	-0.9 
	-4.0 
	-1.5 
	0.0 

	Class C
	-1.0 
	-1.3 
	-1.9 
	-2.8 
	0.7 
	-0.5 

	Class D
	-0.4 
	-1.1 
	-1.3 
	-2.4 
	0.3 
	0.5 

	Class E
	-1.7 
	-1.9 
	-2.4 
	　
	　
	　

	Overall
	-1.2 
	-1.2 
	-1.3 
	-3.7 
	-1.0 
	-1.0 

	Enc Time[%]
	124%
	108%

	Dec Time[%]
	124%
	124%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-4.3 
	-1.5 
	-0.5 
	-6.0 
	-3.0 
	-2.1 

	Class C
	-3.4 
	0.3 
	-1.3 
	-3.2 
	0.3 
	-1.4 

	Class D
	-2.0 
	0.2 
	-0.1 
	-1.2 
	0.3 
	0.1 

	Class E
	-6.0 
	-6.4 
	-0.9 
	-8.4 
	-8.9 
	-2.1 

	Overall
	-3.8 
	-1.5 
	-0.7 
	-4.5 
	-2.5 
	-1.4 

	Enc Time[%]
	104%
	108%

	Dec Time[%]
	120%
	122%


	Table 13.  LC anchor vs Alternative Anchor (ALF always allowed)
　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-3.8 
	-1.0 
	-1.4 
	-6.2 
	-3.1 
	-4.1 

	Class B
	-2.2 
	-2.3 
	-1.7 
	-4.2 
	-1.4 
	0.1 

	Class C
	-2.0 
	-2.6 
	-3.7 
	-3.0 
	0.7 
	-0.5 

	Class D
	-0.9 
	-2.2 
	-2.7 
	-2.7 
	0.4 
	0.7 

	Class E
	-3.3 
	-3.8 
	-4.6 
	　
	　
	　

	Overall
	-2.4 
	-2.3 
	-2.7 
	-4.0 
	-0.9 
	-0.9 

	Enc Time[%]
	144%
	109%

	Dec Time[%]
	144%
	127%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-4.8 
	-1.2 
	-0.3 
	-6.9 
	-2.5 
	-1.5 

	Class C
	-3.8 
	0.7 
	-1.2 
	-3.6 
	0.5 
	-1.0 

	Class D
	-2.4 
	0.1 
	0.2 
	-1.5 
	0.4 
	0.6 

	Class E
	-4.8 
	-1.2 
	-0.3 
	-8.6 
	-8.6 
	-2.1 

	Overall
	-4.8 
	-1.2 
	-0.3 
	-5.0 
	-2.2 
	-1.0 

	Enc Time[%]
	108%
	114%

	Dec Time[%]
	129%
	132%


The efficiency cost values of the encoder and the decoder are given in Table 14. 
Table 14.  Efficiency cost values (%)
	Method
	encoder
	decoder

	Periodical ALF_16
	0.817 
	0.584 

	Periodical ALF_8
	0.693 
	0.663 

	Periodical ALF_4
	0.643 
	0.755 

	Periodical ALF_2
	0.643 
	0.915 

	Alternative ALF
	0.642 
	0.957 


As shown in the tests, complexity scalability can be carried out with different tradeoff points by using the ALF switching patterns. In addition, from the perspective of efficiency cost, periodical ALF with a period of 8 achieves the best tradeoff performance, which is suitable for the LC configurations where the major concerned issue is complexity. 
The following tables present the test results without the BD-BitRate values of the sequences of NebutaFestival and BQTerrace. The summary of the efficiency costs in Table 20 also indicates that a period of 8 is the best choice to implement periodical ALF under LC configurations. 

Moreover, the corresponding RD curves of these two sequences are given in the document namely “JCTVC-F161_RD_curves.doc” in the zip packet. 
	Table 15.  LC anchor vs Periodical ALF_16

　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.3 
	-0.1 
	-0.1 
	-2.5 
	-1.0 
	-1.8 

	Class B
	-0.1 
	-0.1 
	-0.1 
	-1.3 
	-0.5 
	0.1 

	Class C
	-0.1 
	-0.2 
	-0.2 
	-1.2 
	0.3 
	-0.5 

	Class D
	-0.1 
	-0.1 
	-0.2 
	-0.4 
	0.3 
	0.5 

	Class E
	-0.2 
	-0.2 
	-0.3 
	　
	　
	　

	Overall
	-0.2 
	-0.1 
	-0.2 
	-1.5 
	-0.5 
	-0.6 

	Enc Time[%]
	105%
	103%

	Dec Time[%]
	103%
	106%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-1.3 
	-1.0 
	-0.3 
	-1.7 
	-1.5 
	-0.8 

	Class C
	-1.7 
	-1.0 
	-1.6 
	-1.6 
	-0.8 
	-1.7 

	Class D
	-0.7 
	-0.5 
	-0.2 
	-0.5 
	-0.2 
	0.0 

	Class E
	-4.7 
	-7.2 
	-2.6 
	-6.4 
	-9.0 
	-3.9 

	Overall
	-2.1 
	-2.2 
	-1.2 
	-2.5 
	-2.7 
	-1.8 

	Enc Time[%]
	101%
	101%

	Dec Time[%]
	104%
	103%


Table 16.  LC anchor vs Periodical ALF_8
	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-0.5 
	-0.2 
	-0.2 
	-3.5 
	-0.8 
	-1.7 

	Class B
	-0.3 
	-0.3 
	-0.2 
	-1.9 
	-0.1 
	0.6 

	Class C
	-0.3 
	-0.3 
	-0.5 
	-1.7 
	0.7 
	-0.3 

	Class D
	-0.1 
	-0.3 
	-0.3 
	-0.6 
	0.5 
	0.6 

	Class E
	-0.4 
	-0.5 
	-0.6 
	　
	　
	　

	Overall
	-0.3 
	-0.3 
	-0.3 
	-2.1 
	-0.3 
	-0.5 

	Enc Time[%]
	107%
	104%

	Dec Time[%]
	105%
	110%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-1.8 
	-1.0 
	-0.1 
	-2.4 
	-1.8 
	-0.8 

	Class C
	-2.3 
	-0.6 
	-1.7 
	-2.1 
	-0.6 
	-1.4 

	Class D
	-1.1 
	-0.1 
	0.0 
	-0.7 
	0.2 
	0.1 

	Class E
	-5.3 
	-7.1 
	-1.9 
	-7.3 
	-8.5 
	-3.3 

	Overall
	-2.7 
	-2.1 
	-1.1 
	-3.2 
	-2.6 
	-1.7 

	Enc Time[%]
	102%
	103%

	Dec Time[%]
	108%
	106%


Table 17.  LC anchor vs Periodical ALF_4
	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-1.0 
	-0.4 
	-0.5 
	-4.3 
	-1.0 
	-2.2 

	Class B
	-0.6 
	-0.6 
	-0.4 
	-2.5 
	-0.5 
	0.5 

	Class C
	-0.5 
	-0.7 
	-0.9 
	-2.3 
	0.6 
	-0.6 

	Class D
	-0.2 
	-0.6 
	-0.7 
	-1.6 
	0.3 
	0.5 

	Class E
	-0.8 
	-1.0 
	-1.2 
	　
	　
	　

	Overall
	-0.6 
	-0.6 
	-0.7 
	-3.0 
	-0.8 
	-0.9 

	Enc Time[%]
	113%
	106%

	Dec Time[%]
	111%
	115%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-2.3 
	-0.8 
	0.4 
	-3.2 
	-1.7 
	-0.4 

	Class C
	-2.7 
	-0.1 
	-1.4 
	-2.6 
	0.1 
	-1.2 

	Class D
	-1.4 
	-0.3 
	0.0 
	-0.9 
	0.7 
	0.4 

	Class E
	-5.5 
	-6.5 
	-0.9 
	-7.9 
	-8.7 
	-2.0 

	Overall
	-3.1 
	-1.9 
	-0.7 
	-3.8 
	-2.3 
	-1.3 

	Enc Time[%]
	103%
	105%

	Dec Time[%]
	112%
	113%


Table 18.  LC anchor vs Periodical ALF_2
	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-1.9 
	-0.7 
	-0.9 
	-5.1 
	-1.1 
	-2.1 

	Class B
	-1.2 
	-1.1 
	-0.9 
	-2.9 
	-0.5 
	0.5 

	Class C
	-1.0 
	-1.3 
	-1.9 
	-2.8 
	0.7 
	-0.5 

	Class D
	-0.4 
	-1.1 
	-1.3 
	-2.4 
	0.3 
	0.5 

	Class E
	-1.7 
	-1.9 
	-2.4 
	　
	　
	　

	Overall
	-1.2 
	-1.2 
	-1.3 
	-3.7 
	-1.0 
	-1.0 

	Enc Time[%]
	124%
	108%

	Dec Time[%]
	124%
	124%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-3.2 
	-0.8 
	0.4 
	-4.5 
	-2.0 
	-0.4 

	Class C
	-3.4 
	0.3 
	-1.3 
	-3.2 
	0.3 
	-1.4 

	Class D
	-2.0 
	0.2 
	-0.1 
	-1.2 
	0.3 
	0.1 

	Class E
	-6.0 
	-6.4 
	-0.9 
	-8.4 
	-8.9 
	-2.1 

	Overall
	-3.8 
	-1.5 
	-0.7 
	-4.5 
	-2.5 
	-1.4 

	Enc Time[%]
	104%
	108%

	Dec Time[%]
	120%
	122%


Table 19.  LC anchor vs Alternative Anchor (ALF always allowed)

	　
	All Intra LC
	Random Access LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	-3.7 
	-1.4 
	-1.8 
	-5.7 
	-1.1 
	-2.0 

	Class B
	-2.3 
	-2.3 
	-1.8 
	-3.1 
	-0.5 
	0.5 

	Class C
	-2.0 
	-2.6 
	-3.7 
	-3.0 
	0.7 
	-0.5 

	Class D
	-0.9 
	-2.2 
	-2.7 
	-2.7 
	0.4 
	0.7 

	Class E
	-3.3 
	-3.8 
	-4.6 
	　
	　
	　

	Overall
	-2.4 
	-2.3 
	-2.7 
	-4.0 
	-0.9 
	-0.9 

	Enc Time[%]
	144%
	109%

	Dec Time[%]
	144%
	127%


	　
	Low delay B LC
	Low delay P LC

	
	Y
	U
	V
	Y
	U
	V

	Class A
	　
	　
	　
	　
	　
	　

	Class B
	-3.8 
	-0.6 
	0.7 
	-5.3 
	-1.8 
	-0.2 

	Class C
	-3.8 
	0.7 
	-1.2 
	-3.6 
	0.5 
	-1.0 

	Class D
	-2.4 
	0.1 
	0.2 
	-1.5 
	0.4 
	0.6 

	Class E
	-6.0 
	-6.4 
	-1.0 
	-8.6 
	-8.6 
	-2.1 

	Overall
	-4.2 
	-1.4 
	-0.5 
	-5.0 
	-2.2 
	-1.0 

	Enc Time[%]
	108%
	114%

	Dec Time[%]
	129%
	132%


Table 20.  Efficiency cost values (%)

	Method
	encoder
	decoder

	Periodical ALF_16
	0.817 
	0.584 

	Periodical ALF_8
	0.693 
	0.663 

	Periodical ALF_4
	0.643 
	0.755 

	Periodical ALF_2
	0.643 
	0.915 

	Alternative ALF
	0.642 
	0.957 


6 Conclusions

In this document, ALF switching patterns are proposed to implement complexity scalability and to achieve different tradeoff points for both the encoder and the decoder. Based on the experimental results, it is suggested to adopt the ALF switching patterns in WD. Moreover, we also recommend enabling ALF in LC configurations by employing periodical ALF pattern with a period value of 8 in the common test conditions. 
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