	[image: image2.png][image: image3.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F113

	Title:
	CE 9: Result of a simplified MVP list construction (SP06)

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Seungwook Park
Joonyoung Park
Byeongmoon Jeon
#221 Yangjae-dong, Seoucho-gu,
Seoul 137-130, Korea

Shun-ichi Sekiguchi
Information Technology R&D Center
Mitsubishi Electric Corporation
5-1-1, Ofuna, Kamakura, JAPAN
	Tel:
Email:

Tel:
Email:
	
seungwook.park@lge.com

+81-467-41-2463
Sekiguchi.Shunichi@eb.MitsubishiElectric.co.jp

	Source:
	LG Electronics and Mitsubishi Electronic.

Abstract

This contribution proposed the simplification of MVP list construction in order to reduce the number of spatial MVP scaling process. All neighbouring blocks having the same reference picture in the same or different reference picture list are checked before scanning blocks having the different reference picture in the same or different reference picture list to avoid MVP scaling process. Simulation results show that there is no coding loss with the proposed simplification.
1 Introduction
In the last meeting, it was identified that a further investigation on a simplification of MVP list construction in AMVP process should be needed in order to reduce the complexity of MVP scaling process while maintaining a coding performance [1]. Actually, in HM3.0, MVP scaling process is called even if there is a candidate which does not need to be scaled in the other reference picture list. Let’s have a look at the scanning process for a MVP list construction in detail.
[image: image1.png]
Figure 1. Spatial motion vector neighbors
There are four conditions to be checked for each neighboring block.
1. The same reference picture and the same reference list with the current block
2. The same reference picture and the difference reference list with the current block
3. The different reference picture and the same reference list with the current block
4. The different reference picture and the difference reference list with the current block
In order to obtain a left neighboring MVP candidate, two blocks are scanned by using above four conditions as follows.
Step 1. Check A0 with condition 1

Step 2. Check A1 with condition 1

Step 3. Check A0 with condition 2

Step 4. Check A0 with condition 3 (MVP scaling process is involved)
Step 5. Check A0 with condition 4 (MVP scaling process is involved)
Step 6. Check A1 with condition 2

Step 7. Check A1 with condition 3 (MVP scaling process is involved)
Step 8. Check A1 with condition 4 (MVP scaling process is involved)
If we find a appropriate MVP candidate in scanning process, this process is halted and a candidate is added to the MVP list. And MVP scaling process is involved from Step 4 in the current scheme. Top neighboring MVP candidate is also obtained in a same spirit.
2 Proposed method

In order to reduce the occurrence of MVP scaling process, we changed the scanning order for a left neighboring candidate like below.
Step 1. Check A0 with condition 1

Step 2. Check A1 with condition 1

Step 3. Check A0 with condition 2

Step 4. Check A1 with condition 2

Step 5. Check A0 with condition 3 (MVP scaling process is involved)

Step 6. Check A0 with condition 4 (MVP scaling process is involved)

Step 7. Check A1 with condition 3 (MVP scaling process is involved)

Step 8. Check A1 with condition 4 (MVP scaling process is involved)
We also changed the scanning order for a top neighboring candidate in a same spirit. With the proposed method, MVP scaling process is deferred from Step 4 to Step 5. So if a MVP candidate is found in Step 4, MVP scaling is not involved in this scanning process.
3 Experimental results
The simulations of this document have used HM3.0 software, the common test conditions and reference configurations specified in [2] are followed. The detail results can be founded in attached spreadsheets.
Table 1. Overall BD-rate reduction for various threshold values
	
	Random access
	Random access LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.0
	0.1
	0.1
	0.0
	-0.1
	-0.1

	Class B
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	Class C
	0.0
	0.0
	0.0
	0.0
	0.0
	0.1

	Class D
	0.0
	0.1
	-0.1
	0.0
	0.0
	-0.1

	Class E
	
	
	
	
	
	

	All
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	100%
	100%

	
	Low delay
	Low delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	0.0
	0.0
	-0.3
	0.0
	0.0
	0.0

	Class C
	0.0
	0.2
	0.0
	-0.1
	0.0
	-0.2

	Class D
	0.0
	0.2
	0.3
	0.0
	0.1
	-0.2

	Class E
	0.0
	0.2
	0.0
	-0.1
	-0.2
	0.3

	All
	0.0
	0.1
	0.0
	0.0
	0.0
	-0.1

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	100%
	100%

We would like to thank TI for conducting the cross-check for this in JCTVC-F080.
4 Conclusion

The simulation results show that there is no coding loss with the proposed simplification of MVP list construction as well as the occurrence of MVP scaling process is reduced. So we recommend to adopt this simplification into the current HEVC design.
5 Patent rights declaration(s)
LG Electronics and Mitsubishi Electronic may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6 Reference

[1] Yu-Wen Huang, “Description of Core Experiment 9: MV Coding and Skip/Merge Operations,” JCT-VC Document, JCTVC-E709, Geneva, April 2011.
[2] F. Bossen, “Common test conditions and software reference configurations,” JCT-VC Document, JCTVC-E700, Geneva, April 2011.
WD changes
8.4.2.1.5 Derivation process for motion vector predictor candidates

…
Replace

3. For (xAk, yAk) from (xA0, yA0) to (xA1, yA1) where yA1 = yA0 - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· When the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLX[xAk][yAk] is equal to 1 and the reference index refIdxLX[xAk][yAk] is equal to the reference index of the current prediction unit refIdxLX, availableFlagLXA is set equal to 1 and the motion vector mvLXA is set equal to the motion vector mvLX[xAk][yAk], refIdxA is set equal to refIdxLX[xAk][yAk] and ListA is set equal to LX.

4. When availableFlagLXA is equal to 0, for (xAk, yAk) from (xA0, yA0) to (xA1, yA1) where yA1 = yA0 - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· If the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLY[xAk][yAk] (with Y = !X) is equal to 1 and RefPicOrderCnt(currPic, refIdxLY[xAk][yAk], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xAk][yAk], refIdxA is set equal to refIdxLY[xAk][yAk] and ListA is set equal to LY.

· Otherwise if the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLX[xAk][yAk] is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLX[xAk][yAk], refIdxA is set equal to refIdxLX[xAk][yAk], ListA is set equal to LX.

· Otherwise if the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLY[xAk][yAk] (with Y = !X) is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xAk][yAk], refIdxA is set equal to refIdxLY[xAk][yAk], ListA is set equal to LY.
…
3. For (xBk, yBk) from (xB0, yB0) to (xB2, yB2) where xB0 = xP +nPSW, xB1 = xB0 - MinPuSize , and xB2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· When the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, and the reference index refIdxLX[xBk][yBk] is equal to the reference index of the current prediction unit refIdxLX and mvLX[xBk][yBk] is not identical to mvLXA, availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk] and ListB is set equal to LX.

4. When availableFlagLXB is equal to 0, for (xBk, yBk) from (xB0, yB0) to (xB2, yB2) where xB0 = xP +nPSW, xB1 = xB0 - MinPuSize , and xB2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· If the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLY[xBk][yBk](with Y = !X) is equal to 1 and RefPicOrderCnt(currPic , refIdxLY[xBk][yBk], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLY[xBk][yBk], refIdxB is set equal to refIdxLY[xBk][yBk] and ListB is set equal to LY.

· Otherwise if the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk], ListB is set equal to LX.

· Otherwise if the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLY[xBk][yBk] (with Y = !X) is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLY[xBk][yBk], refIdxB is set equal to refIdxLY[xBk][yBk], ListB is set equal to LY.

· If availableFlagLXB is equal to 1 and RefPicOrderCnt(currPic , refIdxB, ListB) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXB is set equal to mvLXB.
· Otherwise if availableFlagLXB is equal to 1 and RefPicOrderCnt(currPic , refIdxB, ListB) is not equal to RefPicOrderCnt(currPic, refIdxLX, LX),, mvLXB is derived as specified below.
…
with

4. For (xAk, yAk) from (xA0, yA0) to (xA1, yA1) where yA1 = yA0 - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· When the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLX[xAk][yAk] is equal to 1 and the reference index refIdxLX[xAk][yAk] is equal to the reference index of the current prediction unit refIdxLX, availableFlagLXA is set equal to 1 and the motion vector mvLXA is set equal to the motion vector mvLX[xAk][yAk], refIdxA is set equal to refIdxLX[xAk][yAk] and ListA is set equal to LX.
5. When availableFlagLXA is equal to 0, for (xAk, yAk) from (xA0, yA0) to (xA1, yA1) where yA1 = yA0 - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· When the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLY[xAk][yAk] (with Y = !X) is equal to 1 and RefPicOrderCnt(currPic, refIdxLY[xAk][yAk], LY) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xAk][yAk], refIdxA is set equal to refIdxLY[xAk][yAk] and ListA is set equal to LY.
5. When availableFlagLXA is equal to 0, for (xAk, yAk) from (xA0, yA0) to (xA1, yA1) where yA1 = yA0 - MinPuSize, the following applies repeatedly until availableFlagLXA is equal to 1:

· If the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLX[xAk][yAk] is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLX[xAk][yAk], refIdxA is set equal to refIdxLX[xAk][yAk], ListA is set equal to LX.

· Otherwise if the prediction unit covering luma location (xAk, yAk) is available, PredMode is not MODE_INTRA, predFlagLY[xAk][yAk] (with Y = !X) is equal to 1, availableFlagLXA is set equal to 1, the motion vector mvLXA is set equal to the motion vector mvLY[xAk][yAk], refIdxA is set equal to refIdxLY[xAk][yAk], ListA is set equal to LY.
…
4. For (xBk, yBk) from (xB0, yB0) to (xB2, yB2) where xB0 = xP +nPSW, xB1 = xB0 - MinPuSize , and xB2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· When the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, and the reference index refIdxLX[xBk][yBk] is equal to the reference index of the current prediction unit refIdxLX and mvLX[xBk][yBk] is not identical to mvLXA, availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk] and ListB is set equal to LX.
5. When availableFlagLXB is equal to 0, for (xBk, yBk) from (xB0, yB0) to (xB2, yB2) where xB0 = xP +nPSW, xB1 = xB0 - MinPuSize , and xB2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· When the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, and the reference index refIdxLX[xBk][yBk] is equal to the reference index of the current prediction unit refIdxLX and mvLX[xBk][yBk] is not identical to mvLXA, availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk] and ListB is set equal to LX.

6. When availableFlagLXB is equal to 0, for (xBk, yBk) from (xB0, yB0) to (xB2, yB2) where xB0 = xP +nPSW, xB1 = xB0 - MinPuSize , and xB2 = xP - MinPuSize, the following applies repeatedly until availableFlagLXB is equal to 1:

· If the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLX[xBk][yBk] is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLX[xBk][yBk], refIdxB is set equal to refIdxLX[xBk][yBk], ListB is set equal to LX.

· Otherwise if the prediction unit covering luma location (xBk, yBk) is available, PredMode is not MODE_INTRA, predFlagLY[xBk][yBk] (with Y = !X) is equal to 1, availableFlagLXB is set equal to 1, the motion vector mvLXB is set equal to the motion vector mvLY[xBk][yBk], refIdxB is set equal to refIdxLY[xBk][yBk], ListB is set equal to LY.

· If availableFlagLXB is equal to 1 and RefPicOrderCnt(currPic , refIdxB, ListB) is equal to RefPicOrderCnt(currPic, refIdxLX, LX), mvLXB is set equal to mvLXB.
· Otherwise if availableFlagLXB is equal to 1 and RefPicOrderCnt(currPic , refIdxB, ListB) is not equal to RefPicOrderCnt(currPic, refIdxLX, LX),, mvLXB is derived as specified below.

Page: 1
Date Saved: 2011-06-29

