	[image: image2.png]

[image: image3.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F073

	Title:
	Joint Luma-Chroma adaptive reference picture memory compression

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Shan Liu
Ximin Zhang
Shawmin Lei
2860 Junction Ave.

San Jose, CA95134, USA
	Emails:
	shan.liu@mediatek.com ximin.zhang@mediatek.com
shawmin.lei@mediatek.com

	Source:
	MediaTek USA

Abstract

This contribution proposes a localized adaptive scaling mechanism for compressing reference pictures, which can be used to reduce the hardware cost of IBDI technique in HEVC. The proposed mechanism compresses Luma pixels and Chroma pixels jointly, and was implemented in two versions. For the version 1 method, experimental results report average 0.07% BD-rate increase for random access (HE), and average 0.70% BD-rate increase for low delay (HE). For the version 2 method, experimental results report average 0.01% BD-rate increase for random access (HE), and average 0.29% BD-rate increase for low delay (HE). The average decoding time increases about 5-6% under current software implementation*. The effect on encoding time is negligible. Furthermore, an offset was applied to each luma block in the proposed version 1 method (similarly to the method proposed in JCTVC-D035). Experimental results report average 0.03% BD-rate increase for random access (HE) and average 0.28% BD-rate increase for low delay (HE).
* Note: the software implementation is not optimized and the decoding time might be reduced.

Introduction

Internal Bit-Depth Increase (IBDI) is a technique that increases the precision of several encoding, as well as corresponding decoding procedures, i.e. prediction, transform and loop filter by increasing pixel bit depth such that the overall compression gain can be achieved. The main drawback of this technique, despite of the coding gain, is that it requires more frame buffer memory and more memory access bandwidth. As an example, in the proposed High Efficiency Video Coding standard most up-to-date version software implementation HM3.0 (released on April the 18th, 2010) under the common test conditions, IBDI increases 8-bit input source to 10-bit internally during encoding and consequently decoding processes. This in theory would result in 25% more memory size for storing reference frames and memory access bandwidth.

Memory compression is the technique that is used to resolve above issues. The conceptual block diagram of an encoder and a decoder with memory compression is shown in Figure 1. The benefits of memory compression for encoder and decoder include:
- Reduction in MC read memory access bandwidth;
- Reduction in DPB write memory access bandwidth; and

- Graceful power degradation by enabling the low resolution decoding of a bit-stream.

[image: image1.emf]Encoder

Buffer

Decoder

Buffer

Original

Video

Bitstream

Decoded

Video

Figure 1

Conceptual block diagram of memory compression in video encoder and decoder
In more recent HEVC meetings, the localized adaptive scaling concept has appeared in a few contributions proposed by two companies, Toshiba and Zenverge. In both Toshiba and Zenverge proposals, a 4x4 block is used as a memory compression unit, where a scalar is assigned to each 4x4 block to specify the number of bits to be truncated off for each pixel inside this block. In Zenverge’s proposal, an offset was further calculated and assigned per each 4x4 block. In all the previous contributions, the memory compression for Luma and Chroma planes are independent.

1 Proposed methods
In this contribution, a localized adaptive scaling method is proposed for compressing reference picture, i.e. compressing reference picture with a compression ratio of 10:8, which can be used to reduce the hardware cost of IBDI technique, in HEVC or in general. The proposed method compresses Luma pixels and Chroma pixels jointly in order to achieve higher overall coding efficiency. It is block based. That is, the reference picture is divided into multiple 4x4 units. Because the motion prediction and compensation for Luma and Chroma pixels share the same motion vectors (or proportionally same, e.g. the motion vector magnitudes are divided by two in both horizontal and vertical direction for Chroma motion prediction and compensation for the YCbCr420 format) the corresponding Luma and Chroma pixel positions that are used for predicting and compensating the same target can be derived from each other.
1.1 Version 1 Algorithm Description
In the proposed version 1 method, each 4x4 Chroma block (Cb or Cr block) is associated with a scaling factor “scale”. The scale is calculated as following

0 =< (|max – M| >> scale) < 128, where M = (min >> 1) << 1.

(1)

In Equation 1, “max” denotes the maximum pixel value in the block, “min” denotes the minimum pixel value in the block. The value of “scale” belongs to {0, 1, 2, 3} and represented by 2 bits. After that, the next 9 bits are used to represent the value “M”, followed by 4 bits to represent the position of the pixel with minimum value “min_pos”, then followed by prediction difference P_pred(i), i can be 0, 1, 2…, 15 except “min_pos”. Considering the 9 bits by “M”, 4 bits by “min_pos” and “15x7 bits” by the 15 pixels other than “min”, 120 bits are used. Compared to the target number of bits = 128 bits, 8 bits are saved from this Chroma block. Correspondingly, at least 2x8=16 bits saved from Cb and Cr blocks can be used to help the corresponding four Luma blocks’ compression. 4 bits can be allocated to each Luma block respectively. Therefore, each Luma block can use up to 132 bits.
In the proposed method, each Luma block is also associated with a scaling factor “scale”, such that

0 =< (|max – min| >> scale) < 128

 (2)

In Equation 2, “max” denotes the maximum pixel value in the block and “min” denotes the minimum pixel value in the block. The value of “scale” belongs to {0, 1, 2, 3}; One to three bits are used to represent the “scale” value. If scale equals to zero, two bits are used (“00”). Following these two bits for scale, the next 10 bits are used to represent the minimum value “min” losslessly, followed by 4 bits to represent the position of the pixel with minimum value “min_pos”, then followed by P_pred(i), i can be 0, 1, 2…, 15 except “min_pos”. Then all the remaining fifteen pixels are predicted from the “min”; the prediction differences, as shown in Equation 3, are stored.

P_pred(i) = p(i) – min;
i=0, 1, 2, … 15; i!=“min_pos”.

 (3)

With scale equal to zero, all P_pred(i) values can be represented losslessly by 7 bits. In total, 2+10+4+7x15=121 bits are consumed by one Luma block in this case, which is under 132 bits budget.

When scale equals to one, P_pred(i) value can be represented losslessly by 8 bits. Among 15 P_pred(i) values, four of them are truncated by one bit and represented by 7 bits; the rest are represented losslessly by 8 bits. In total, 2+10+4+7x4+8x11=132 bits are consumed by one Luma block in this case. The prediction differences can be shown in Equation 4 and 5 respectively.

 P7_pred(i) = ((p(i) – min)>> 1); the first 4 chosen pixel position i with i!=“min_pos”.
(4)
 P8_pred(i) = p(i) – min;
other pixel positions i with i!=“min_pos”.

(5)

When scale equals to two, all P_pred(i) values can be represented losslessly by 9 bits. Among 15 P_pred(i) values, 4 of them are truncated by two bits and represented by 7 bits; the rest are truncated by one bit and represented by 8 bits. In total, 2+10+4+7x4+8x11=132 bits are also consumed by one Luma block in this case. The prediction differences can be shown in Equation 6 and 7 respectively.

 P7_pred(i) = ((p(i) – min)>> 2); the first 4 chosen pixel position i with i!=“min_pos”.
(6)
 P8_pred(i) = ((p(i) – min)>> 1);
other pixel positions i with i!=“min_pos”.

(7)

If scale equals to three, all sixteen pixels in the 4x4 Luma block, 2 pixels are truncated two bits and stored in 8 bits as P_pred=(p>>2). Thus, this Luma block consumes 2+ 8x16 =130 bits in total.

The decompressed values for losslessly represented pixels are calculated in Equation 8 and 9. When scale equals to 1, the decompressed values for truncated pixels are calculated in Equation 10 and 11. When scale equals to 2, the decompressed values for truncated pixels are calculated in Equation 12 and 13. When scale equals to 3, the decompressed values for truncated pixels are calculated in Equation 14. P8_dec, P7_dec and P_dec denote the reconstructed value of pixel (p) which is represented by truncating 1 or 2 bits during the compression, respectively.

P_dec(i)=P_pred(i)+min, for i =0, 1…, 15, except min_pos
(8)
P_dec(min_pos)=min
(9)

P8_dec = P_pred + min

 (10)

P7_dec = (P_pred << 1) + 1 + min;

(11)

P8_dec = (P_pred)<< 1) + 1 + min

(12)

P7_dec = (P_pred << 2) + 2 + min;

(13)

P_dec = (P_pred << 2) +2;

(14)

In all above cases the Luma block consumes up to 132 bits in total, which exceeds the 128 bit budget (calculated from 8bits/pel * 16 pixels) by 4 bits. These extra 4 bits per Luma block are compensated by the savings from the corresponding Cb and Cr blocks.
1.2 Version 2 Algorithm Description
In the proposed version 2 method, each 4x4 Chroma block (Cb or Cr block) is associated with a scaling factor “scale” as following

0 =< (|max – min| >> scale) < 32

 (15)

In Equation 15, “max” denotes the maximum pixel value in the block, “min” denotes the minimum pixel value in the block. The value of “scale” belongs to {0, 1, 2, 3, 4, 5}. For each Chroma block, at first two bits are used to specify the value of “scale” if it is less than 3. Namely, the two bits “00”, “01” and “10” indicates that the “scale” equal to 0, 1, 2, respectively. After that, the next 10 bits are used to represent the minimum value “min”, followed by 4 bits to represent the position of the pixel with minimum value “min_pos”, then followed by P_pred(i), i can be 0, 1, 2…, 15 except “min_pos”.
When scale is equal to zero, all P_pred(i) values can be losslessly stored in 5 bits by P_pred = (p – min). In total, 2+10+4+5x15=91 bits are consumed by this Chroma block. Compared to 128 bits, 37 bits are saved and can be utilized by Luma blocks.
When scale is equal to one, all P_pred(i) values can be losslessly store in 6 bits by P_pred = (p – min). In total, 2+10+4+6x15=106 bits are consumed by this Chroma block. Compared to 128 bits, 22 bits are saved and can be utilized by Luma blocks.
When scale is equal to two, all P_pred(i) values can be losslessly store in 7 bits by P_pred = (p – min). In total, 2+10+4+7x15=121 bits are consumed by this Cb block. Compared to 128 bits, 7 bits are saved and can be utilized by Luma blocks.
When scale is greater or equal to three, the Chroma block is compressed as in version 1 method.

Compared to version 1 method (16 saved bits in Chroma), up to 2x37=74 bits can be saved to increase the bit budget of each 4x4 Luma block. Consequently, some Luma pixels which have to be truncated in Version 1 method may be stored losslessly; or some Luma pixels which have to be truncated two bits in Version 1 method may only need to be truncated one bit here. As an example, if 6 bit per pixel representation is used for both Cb and Cr blocks, then only 106 bits are consumed by each Chroma block. That is, 22 bits are saved from each Chroma block (i.e. 44 bits from two Chroma blocks) and can be spent on four corresponding Luma blocks. Therefore, each Luma block may use up to 128+11=139 bits, which results in twelve pixels stored in 8 bit representation, three pixels stored in up to 9 bit representation, besides the pixel with minimum value stored in 10 bit representation.
1.3 Algorithm Description for Version 1 with Luma offset

In JCTVC-D035 [1], a couple of methods were proposed for compressing the reference picture memory, in which, an offset was calculated and used for compressing and decompression each 4x4 block, both luma and chroma. We here integrated this offset method [1] into our proposed version 1 method (luma only) and coding efficiency improvements (i.e. BD-rate reduction) were reported, compared with the original version 1 method described in 2.1. Further coding efficiency improvements are expected by applying offset to chroma blocks and/or the proposed version 2 method. Detailed results are reported in the next section.
2 Simulation results
Simulations were conducted following common test conditions defined in JCTVC-E700[2]. Results are shown in Table 1- 4.
Table 1
 Results for proposed methods and fix-rounding compared with HM3.0 anchor.

	
	Random access – version 1
	Random access – version 2
	Random access – fix rounding

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.03
	0.24
	-0.01
	0.01
	0.10
	0.27
	0.74
	6.87
	8.88

	Class B
	0.07
	0.04
	0.02
	0.01
	-0.07
	-0.01
	1.05
	3.54
	4.86

	Class C
	0.08
	0.16
	0.21
	0.02
	0.07
	0.21
	0.66
	2.15
	2.16

	Class D
	0.08
	0.06
	0.00
	0.01
	-0.05
	0.19
	0.57
	1.57
	1.77

	Class E
	
	
	
	
	
	
	
	
	

	All
	0.07
	0.12
	0.05
	0.01
	0.01
	0.16
	0.77
	3.53
	4.44

	Enc Time[%]
	99%
	99%
	100%

	Dec Time[%]
	105%
	105%
	107.5%

	
	
	
	
	
	
	
	
	
	

	
	Low delay – version 1
	Low delay – version 2
	Low delay – fix rounding

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	
	
	
	

	Class B
	0.36
	0.18
	0.19
	0.19
	0.07
	0.13
	2.35
	5.71
	8.11

	Class C
	0.24
	0.43
	0.65
	0.14
	0.33
	0.47
	1.26
	4.14
	4.46

	Class D
	0.07
	0.01
	0.83
	-0.04
	0.08
	1.06
	0.75
	6.14
	7.43

	Class E
	2.75
	0.98
	0.76
	1.06
	0.59
	0.17
	14.70
	18.22
	25.83

	All
	0.70
	0.35
	0.57
	0.29
	0.23
	0.45
	3.99
	7.77
	10.35

	Enc Time[%]
	100%
	100%
	102%

	Dec Time[%]
	105%
	106%
	114.8%

Table 2
 Results for proposed version 1 method compared with HM3.0 anchor.
	
	
	HE Random access
	
	Memory bandwith increase %

	
	Y BD-rate
	U BD-rate
	V BD-rate
	8bit/8bit
	32bit/ 64bit
	32bit/128bit
	64bit/128bit
	64bit/256bit
	64bit/512bit
	64bit/256bit FIFO
	64bit/512bit FIFO

	Class A
	0.05
	0.16
	0.08
	-2.65%
	-13.12%
	-20.20%
	-22.76%
	-26.86%
	-39.52%
	-28.36%
	-30.70%

	Class B
	0.07
	0.01
	0.04
	-2.74%
	-12.69%
	-19.21%
	-21.68%
	-25.42%
	-40.20%
	-26.77%
	-30.24%

	Class C
	0.06
	0.12
	0.14
	1.78%
	-10.74%
	-19.85%
	-23.61%
	-29.07%
	-44.85%
	-34.45%
	-38.49%

	Class D
	0.09
	0.15
	0.14
	8.03%
	-7.21%
	-18.46%
	-23.23%
	-29.67%
	-46.92%
	-35.76%
	-40.03%

	Class E
	
	
	
	
	
	
	
	
	
	
	

	All
	0.07
	0.10
	0.10
	0.82%
	-11.10%
	-19.50%
	-22.82%
	-27.76%
	-42.86%
	-31.15%
	-34.68%

	Enc Time[%]
	100%
	
	
	
	
	
	
	
	

	Dec Time[%]
	105%
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	HE Low delay
	Memory bandwith increase %

	
	Y BD-rate
	U BD-rate
	V BD-rate
	8bit/8bit
	32bit/ 64bit
	32bit/128bit
	64bit/128bit
	64bit/256bit
	64bit/512bit
	64bit/256bit FIFO
	64bit/512bit FIFO

	Class A
	
	
	
	
	
	
	
	
	
	
	

	Class B
	0.36
	0.18
	0.19
	0.31%
	-11.11%
	-19.01%
	-22.13%
	-26.58%
	-41.58%
	-29.97%
	-33.37%

	Class C
	0.24
	0.43
	0.65
	4.48%
	-9.86%
	-20.53%
	-24.77%
	-31.18%
	-48.14%
	-38.51%
	-42.98%

	Class D
	0.07
	0.01
	0.83
	12.47%
	-5.95%
	-18.96%
	-24.12%
	-31.73%
	-50.35%
	-39.45%
	-44.66%

	Class E
	2.75
	0.98
	0.76
	-12.20%
	-17.00%
	-21.87%
	-23.41%
	-33.36%
	-48.63%
	-31.52%
	-34.09%

	All
	0.70
	0.35
	0.57
	2.05%
	-10.61%
	-19.92%
	-23.53%
	-30.29%
	-46.73%
	-34.77%
	-38.73%

	Enc Time[%]
	100%
	
	
	
	
	
	
	
	

	Dec Time[%]
	106%
	
	
	
	
	
	
	
	

Table 3
 Results for proposed version 2 method compared with HM3.0 anchor.
	
	
	HE Random access
	
	Memory bandwith increase %

	
	Y BD-rate
	U BD-rate
	V BD-rate
	8bit/8bit
	32bit/ 64bit
	32bit/128bit
	64bit/128bit
	64bit/256bit
	64bit/512bit
	64bit/256bit FIFO
	64bit/512bit FIFO

	Class A
	0.01
	0.10
	0.27
	-2.65%
	-13.12%
	-20.20%
	-22.76%
	-26.86%
	-39.52%
	-28.36%
	-30.70%

	Class B
	0.01
	-0.07
	-0.01
	-2.74%
	-12.69%
	-19.21%
	-21.68%
	-25.42%
	-40.20%
	-26.77%
	-30.24%

	Class C
	0.02
	0.07
	0.21
	1.78%
	-10.74%
	-19.85%
	-23.61%
	-29.07%
	-44.85%
	-34.45%
	-38.49%

	Class D
	0.01
	-0.05
	0.19
	8.03%
	-7.21%
	-18.46%
	-23.23%
	-29.67%
	-46.92%
	-35.76%
	-40.03%

	Class E
	
	
	
	
	
	
	
	
	
	
	

	All
	0.01
	0.01
	0.16
	0.82%
	-11.10%
	-19.50%
	-22.82%
	-27.76%
	-42.86%
	-31.15%
	-34.68%

	Enc Time[%]
	99%
	
	
	
	
	
	
	
	

	Dec Time[%]
	105%
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

	
	HE Low delay
	Memory bandwith increase %

	
	Y BD-rate
	U BD-rate
	V BD-rate
	8bit/8bit
	32bit/ 64bit
	32bit/128bit
	64bit/128bit
	64bit/256bit
	64bit/512bit
	64bit/256bit FIFO
	64bit/512bit FIFO

	Class A
	
	
	
	
	
	
	
	
	
	
	

	Class B
	0.19
	0.07
	0.13
	0.31%
	-11.11%
	-19.01%
	-22.13%
	-26.58%
	-41.58%
	-29.97%
	-33.37%

	Class C
	0.14
	0.33
	0.47
	4.48%
	-9.86%
	-20.53%
	-24.77%
	-31.18%
	-48.14%
	-38.51%
	-42.98%

	Class D
	-0.04
	0.08
	1.06
	12.47%
	-5.95%
	-18.96%
	-24.12%
	-31.73%
	-50.35%
	-39.45%
	-44.66%

	Class E
	1.06
	0.59
	0.17
	-12.20%
	-17.00%
	-21.87%
	-23.41%
	-33.36%
	-48.63%
	-31.52%
	-34.09%

	All
	0.29
	0.23
	0.45
	2.05%
	-10.61%
	-19.92%
	-23.53%
	-30.29%
	-46.73%
	-34.77%
	-38.73%

	Enc Time[%]
	100%
	
	
	
	
	
	
	
	

	Dec Time[%]
	106%
	
	
	
	
	
	
	
	

Table 4
 Results for proposed version 1 + luma offset and Zenverge offset method, compared with HM3.0-dev-memory anchor.
	
	Random access – Zenverge
	Random access – version1 + luma offset

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.00
	-0.13
	-0.26
	-0.03
	0.14
	-0.12

	Class B
	0.10
	-0.09
	-0.04
	0.04
	-0.06
	0.06

	Class C
	0.12
	0.07
	0.02
	0.06
	0.07
	0.06

	Class D
	0.14
	0.00
	-0.03
	0.06
	0.06
	-0.04

	Class E
	
	
	
	
	
	

	All
	0.09
	-0.04
	-0.07
	0.03
	0.05
	0.00

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	106.0%
	103.3%

	
	
	
	
	
	
	

	
	Low delay – Zenverge
	Low delay – version1 + luma offset

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	0.28
	0.23
	0.15
	0.16
	-0.35
	-0.16

	Class C
	0.21
	0.22
	0.10
	0.10
	-0.44
	-0.61

	Class D
	0.17
	0.38
	0.64
	0.08
	0.19
	0.20

	Class E
	1.61
	0.24
	0.66
	0.98
	0.31
	1.34

	All
	0.48
	0.27
	0.36
	0.28
	-0.11
	0.10

	Enc Time[%]
	100%
	100%

	Dec Time[%]
	106.2%
	103.4%

3 Conclusions
This contribution proposed a block-based adaptive scaling mechanism for compressing reference pictures which was implemented in two versions. The version 1 method reports 0.07% average BD-rate increase for random access (HE), and 0.70% average BD-rate increase for low delay (HE), respectively. The version 2 method reports 0.01% average BD-rate increase for random access (HE), and 0.29% average BD-rate increase for low delay (HE), respectively. With a quick implementation of applying an offset to each luma block in the proposed version 1 method, the average BD-rate increase reportedly reduced to 0.03% for random access (HE) and 0.28% for low delay (HE). It is possible to further improve coding efficiency (e.g. reduce BD-rate) by applying offset to chroma blocks as well, and/or the proposed version 2 method. It is recommended to further study the proposed methods in CE or AhG.
4 Patent rights declaration(s)
MediaTek Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
References
[1] Dzung Hoang, “Unified scaling with adaptive offset for reference frame compression with IBDI”, JCTVC-D035, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG, Daegu, Korea, Jan. 2011.
[2] Frank Bossen, “Common test conditions and software reference configurations”, JCTVC-E700, Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T VCEG and ISO/IEC MPEG, Geneva, CH, March. 2011.

[3] Gisle Bjontegaard, “Improvements of the BD-PSNR model”, ITU-T Q.6/SG16 VCEG, VCEG-AI11, Berlin, Germany, July 2008.

