	[image: image7.emf]Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A0.00.00.00.00.00.0

Class B0.00.00.00.00.00.0

Class C0.00.00.00.00.00.0

Class D0.00.00.00.00.00.0

Class E0.00.00.00.00.00.0

All0.00.00.00.00.00.0

Enc Time[%]

Dec Time[%]

Random accessRandom access LoCo

Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A0.00.10.10.00.00.0

Class B0.00.10.10.0-0.1-0.1

Class C0.00.1-0.10.00.00.1

Class D0.3-0.20.20.0-0.1-0.4

Class E

All0.00.10.10.00.0-0.1

Enc Time[%]

Dec Time[%]

Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A

Class B-0.10.00.00.0-0.10.2

Class C0.00.00.10.0-0.20.0

Class D0.00.10.10.00.20.0

Class E-0.10.1-0.40.00.1-0.4

All-0.10.00.00.00.00.0

Enc Time[%]

Dec Time[%]

100%100%

100%99%

100%100%

100%100%

Low delayLow delay LoCo

100%100%

100%100%

Intra LoCo

Intra

[image: image8.wmf]Y BD-rate

U BD-rate

V BD-rate

Y BD-rate

U BD-rate

V BD-rate

Class A

0.0

0.0

0.0

0.0

0.0

0.0

Class B

0.0

0.0

0.0

0.0

0.0

0.0

Class C

0.0

0.0

0.0

0.0

0.0

0.0

Class D

0.0

0.0

0.0

0.0

0.0

0.0

Class E

0.0

0.0

0.0

0.0

0.0

0.0

All

0.0

0.0

0.0

0.0

0.0

0.0

Enc Time

Dec Time

Random access

Random access LoCo

Y BD-rate

U BD-rate

V BD-rate

Y BD-rate

U BD-rate

V BD-rate

Class A

0.0

-0.1

0.1

-0.1

-0.2

0.1

Class B

0.0

-0.1

-0.1

0.0

0.0

0.0

Class C

0.0

0.1

0.0

0.0

0.0

0.0

Class D

0.0

-0.1

-0.1

0.0

-0.1

0.0

Class E

All

0.0

-0.1

0.0

0.0

-0.1

0.0

Enc Time

Dec Time

Y BD-rate

U BD-rate

V BD-rate

Y BD-rate

U BD-rate

V BD-rate

Class A

Class B

0.0

0.0

0.0

0.1

-0.1

-0.1

Class C

0.0

0.1

0.0

0.0

-0.1

-0.3

Class D

-0.1

-0.3

0.4

0.0

-0.2

-0.1

Class E

0.0

-0.2

-0.3

0.1

0.0

-0.1

All

0.0

-0.1

0.1

0.0

-0.1

-0.2

Enc Time

Dec Time

Intra

Intra LoCo

100%

101%

100%

100%

101%

100%

100%

99%

Low delay

Low delay LoCo

100%

100%

99%

100%

[image: image9.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F055

	Title:
	Sample Adaptive Offset with Zero Pixel Line Buffers for LCU-based Decoding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Chih-Ming Fu, Ching-Yeh Chen, Chia-Yang Tsai, Yu-Wen Huang, and Shawmin Lei
No. 1, Dusing Rd. 1, Hsinchu Science Park, Hsinchu, Taiwan 30078
	
Tel:
Email:
	Shawmin Lei
+886-3-5670766 ext. 25555
{chihming.fu, chingyeh.chen, chiayang.tsai, yuwen.huang, shawmin.lei}@mediatek.com

	Source:
	MediaTek Inc.

Abstract

In HM-3.0, the decoding process of sample adaptive offset (SAO) processes a largest coding unit (LCU) without any pixel from any other LCU. Due to this LCU-independent decoding property, SAO does not require any pixel line buffer when picture-based processing is used. However, in hardware, LCU-based processing is favored because picture-based processing needs costly picture buffers. In this contribution, an analysis was first shown that one SAO line buffer is still required for LCU-based decoding. Next, SAO with skipping or padding at virtual boundaries was proposed. With consideration of the deblocking filter (DF) in HM-3.0, the virtual boundaries were LCU row boundaries upward shifted by four pixels. The general concept was that when processing a to-be-processed pixel on one side of a virtual boundary requires any pixel from the other side of the virtual boundary, the to-be-processed pixel will be skipped or the pixel from the other side will be replaced by a pixel of the same side. The proposed SAO reportedly achieved no change in BD-rate, encoding time, and decoding time, and did not require any line buffers for both picture-based and LCU-based decoding. Moreover, subjective quality was improved.
Introduction

In HM-3.0, SAO decoding is LCU-independent [1], which does not require any pixel line buffer when picture-based processing is used. However, picture-based processing is not good for hardware because of expensive picture buffers, and LCU-based processing is mostly used in hardware. Therefore, we studied the case of LCU-based decoding. Another problem of the current LCU-independent decoding in HM-3.0 is that skipping at LCU boundaries may sometimes bring visual artifacts. We also studied how to solve this problem. The rest of this contribution is organized as follows. The line buffer requirement will be analyzed in Section 2, virtual boundaries will be introduced in Section 3, simulation results will be shown in Section 4, and finally conclusions will be given in Section 5.
1 Problem statement
1.1 Deblocking filter

Deblocking filter (DF) in HM-3.0 applies filtering on 8x8 block boundaries. In one picture, all vertical boundaries can be horizontally filtered in parallel, and then all horizontal boundaries can be vertically filtered in parallel. During processing of a luma boundary, four pixels of each side are involved in filter parameter derivation, and at most three pixels of each side can be changed after filtering. For horizontal filtering, reconstructed pixels are used for deriving filter parameters and filtering. For vertical filtering, reconstructed pixels are used for deriving filter parameters, and DF intermediate pixels (i.e. pixels after horizontal filtering) are used for filtering.
1.2 Sample adaptive offset

Sample adaptive offset (SAO) in HM-3.0 can be regarded as a special case of filtering that only applies offsets for pixels. First, one picture is divided into LCU-aligned regions. In each region, band offset (BO) or edge offset (EO) can be selected. Next, pixel classification is done to classify pixels into groups, and one offset is derived for each group. The pixel classification for a current pixel requires the current pixel itself for BO or a 3x3 window for EO. As shown in Figure 1, EO classifies pixels by comparing the current pixel with its two neighboring pixels, and one of the four patterns can be used for each EO region. Moreover, in order to achieve LCU-independent decoding for reducing line buffers during picture-based processing, the first and last pixel columns of an LCU are skipped if the 0-, 45-, or 135-degree pattern is used; the first and last pixel rows of an LCU are skipped if the 45-, 90-, or 135-degree pattern is used.
 SHAPE * MERGEFORMAT

1.3 Analysis of line buffers
In HM-3.0, SAO is only applied for luma. Hence, we only discuss luma line buffers. Figure 2 explains the number of luma line buffers required for DF and SAO with LCU-based decoding. When the current LCU is processed, lines K-N cannot be vertically filtered by DF because the lower LCU is not yet available and DF needs four reconstructed pixels and four DF intermediate pixels on each side of a horizontal boundary for deriving filter parameters and filtering, respectively, as illustrated by the 4-pixel yellow stripe. Therefore, four lines (K-N) of reconstructed pixels and 4 lines (K-N) of DF intermediate pixels have to be stored for DF. SAO is applied on deblocked pixels, and the processing window for each pixel is 3x3, as illustrated by the 3x3 red square. Since DF will only reference DF intermediate pixels on line K but will not further change DF intermediate pixels on line K during vertical filtering, SAO can be applied to pixels on lines …A-J. After SAO is performed for lines …A-J, no further DF and SAO processes can be done for the current LCU until the lower LCU comes. When the lower LCU comes, lines K-P… are first processed by DF and then processed by SAO. When line K is processed by SAO, DF output pixels of line J is required. Therefore, one line (J) of DF output pixels has to be stored for SAO with LCU-based decoding even when the LCU-independent property is adopted.
 SHAPE * MERGEFORMAT

2 Proposed methods
In order to eliminate the SAO line buffer requirement, we introduce the concept of virtual LCU row boundaries. As shown in Figure 3, virtual LCU row boundaries are upward shifted LCU row boundaries by N pixels. In the following, we may use “virtual boundary” to shorten “virtual LCU row boundary”. The general idea is to avoid any data access across the virtual boundary. Moreover, it is proposed to remove the original constraints for each pixel at horizontal and vertical LCU boundaries. With consideration of the DF in HM-3.0, the space between the virtual boundary and the LCU row boundary should be four pixels (i.e. N=4 in Figure 3). In this way, SAO does not need any line buffer to for both picture-based and LCU-based decoding.
 SHAPE * MERGEFORMAT

2.1 Skipping for pixels right below virtual boundaries with N=4

Figure 2 can be used to explain the how the proposed skipping works in more details where the virtual boundary is painted in red and four pixels above the LCU row boundary. When the current LCU is processed, lines K-N cannot be vertically filtered by DF because the lower LCU is not yet available. At this moment, since DF will only reference DF intermediate pixels on line K but will not further change DF intermediate pixels on line K during vertical filtering, SAO can be applied to pixels on lines …A-J. After SAO is performed for lines …A-J, no further SAO process can be done for the current LCU. When the lower LCU comes, lines K-P… are processed by DF and SAO. At this time, if SAO process for line K does not require any pixel above line K, line buffers can be saved. That is to say, processing of pixels right below virtual boundaries is skipped when the 45-, 90-, or 135-degree EO is used.
2.2 Padding for pixels right below virtual boundaries with N=4

In order to remove possible visual artifacts, a padding technique is proposed to replace the skipping technique in Section 3.1. When the 45-, 90-, or 135-degree is used for a to-be-processed pixel right below a virtual boundary, the processing is modified as follows. When the to-be-processed pixel requires any pixel from the upper side of the virtual boundary, the pixel from the upper side of the virtual boundary is replaced by the to-be-processed pixel.
3 Simulation results
HM-3.0 was used as the anchor. Table 1 and Table 2 show results of Section 3.1 and Section 3.2, respectively. As can be seen, there is almost no change in coding efficiency, encoding time, and decoding time while no line buffer is required not only for picture-based decoding but also for LCU-based decoding. Regarding the visual quality, it is found that the skipping of SAO at LCU boundaries in HM-3.0 caused some visually artifacts for smooth regions. Both the algorithm in Section 3.1 and that in Section 3.2 could successfully remove the visual artifacts. However, conceptually, the skipping technique may still cause degradation of visual quality in rare cases. It is more recommended to use the padding technique. Figure 4 shows the improvement of visual quality.
 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

4 Conclusions

MediaTek developed a technique to achieve zero SAO line buffers for both picture-based and LCU-based decoding. The concept of proposed methods was that when processing a to-be-processed pixel on one side of a virtual boundary requires any pixel from the other side of the virtual boundary, the to-be-processed pixel will be skipped or the pixel from the other side will be replaced by a pixel of the same side. Simulation results reportedly showed almost no change in coding efficiency, encoding time, and decoding time while all line buffers were successfully removed. Furthermore, the subjective quality was improved.
5 Acknowledgement

MediaTek would like to thank DSP/IC Design Lab for providing an FTP site. All bitstreams of the anchor and the proposed methods and corresponding decoders can be found at an FTP site. Requests of the FTP address, username, and password can be sent to chihming.fu@mediatek.com. Interested readers are encouraged to perform fair subjective evaluations by using blind tests, i.e. experiments without telling observers the relation between tested algorithms and video clips (anchor / Section 3.1 / Section 3.2) in advance.
6 Patent rights declaration(s)
MediaTek Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
7 References
[1] C.-M. Fu, C.-Y. Chen, C-Y Tsai, Y.-W. Huang, and S. Lei, “CE13: Sample Adaptive Offset with LCU-Independent Decoding,” Document of Joint Collaborative Team on Video Coding, JCTVC-E049, Mar. 2011.
[2] F. Bossen, “Common test conditions and software reference configurations,” Document of Joint Collaborative Team on Video Coding, JCTVC-E700, Mar. 2011.
Table 1. Results of the proposed SAO algorithm, which applies a skipping technique for to-be-processed pixels right below virtual boundaries with N=4 when the 45-, 90-, or 135-degree EO pattern under the assumption that the DF in HM-3.0 is used.

�

Table 2. Results of the proposed SAO algorithm, which applies a padding technique for to-be-processed pixels right below virtual boundaries with N=4 when the 45-, 90-, or 135-degree EO pattern under the assumption that the DF in HM-3.0 is used.

�

�

(a)

�

(b)

�

(c)

Figure 4. Subjective view of Kimono, POC=170, QP=32, HE-LD (a) anchor; (b) the algorithm proposed in Section 3.1; (b) the algorithm proposed in Section 3.2.

　�
　�
　�
�
　�
　�
　�
�
　�
　�
　�
�
　�
　�
　�
�
　�
C�
　�
�
　�
C�
　�
�
　�
C�
　�
�
　�
C�
　�
�
　�
　�
　�
�
　�
　�
　�
�
　�
　�
　�
�
　�
　�
　�
�
 (a) 1-D 0-degree (b) 1-D 90-degree (c) 1-D 135-degree (d) 1-D 45-degree

Figure 1. EO pixel classification patterns.

�

Figure 2. Illustration of luma line buffers required for DF and SAO in HM-3.0.

�

Figure 3. Virtual LCU row boundaries and LCU row boundaries in one picture.

Page: 8
Date Saved: 2011-07-01

[image: image10.png][image: image11.png][image: image12.png][image: image13.png][image: image14.png][image: image15.png]