6.5.2.1 Derivation of luma pixel classifications
There are two different filter adaptation modes in ALF. One is block-based adaptation (BA), and the other is region-based adaptation (RA). The former is to classify 4x4 blocks of one picture into 15 categories based on the block activity and direction, and the latter is to divide one picture into 16 regions according to the 4x4 block position. The category derivations in two filter adaptation modes are introduced in the following, respectively.

 The category derivation in the BA mode for one 4x4 block with the top-left pixel position [xC, yC]:

1. The variables varTemp1[x][y], varTempH[x][y], and varTempV [x][y] with x, y = -1..4 are derived as
 LCUHeight = 1 << Log2MaxCUSize;
 VirtualBoundary = LCUHeight – 4;
 LCUYAddr = (yC >> Log2MaxCUSize) << Log2MaxCUSize ;
 if (yC % LCUHeight < VirtualBoundary)
 {
 upperLine = LCUYAddr – 4;
 bottomLine = LCUYAddr + VirtualBoundary – 1;
 }
 else
 {
 upperLine = LCUYAddr + VirtualBoundary;
 bottomLine = upperLine + LCUHeight – 1;
 }
 cropY1 = Clip3 (upperLine, bottomLine, yC+y+1);
 cropY01 = Clip3 (upperLine, bottomLine, yC+y-1);
 varTempH[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x-1, yC+y] – s’’[xC+x+1, yC+y] |

varTempV[x][y] = | (s’’[xC+x, yC+y] << 1) – s’’[xC+x, cropY01] – s’’[xC+x, cropY1] |

varTemp1[x][y] = varTempH[x][y] + varTempV[x][y]
 where s’[x, y] is the pixel value in the reconstructed picture.
2. The variable varTemp2[x, y] with x, y = 0..3 is derived as
varTemp2[x][y] = (i(j varTemp1[x + i][y + j] with i, j = -1..1

3. The variables varTemp3, varTempH1, and varTempV1 are derived as

varTemp3 = ((i(j varTemp2[i][j]) >> 4 with i, j = 0..3

varTempH1 = (i(j varTempH[i][j] with i, j = 0..3

varTempV1 = (i(j varTempV[i][j] with i, j = 0..3

4. The filter index fIdx[xC, yC] for this 4x4 block is derived as

avg_var = Clip3(0, 15, (varTemp3 * 114)>> (3 + BitDepthY))

fIdx[x][y] = Clip3(0, 4, var_tab[avg_var]) + 5 * direction

where

var_tab[16] = {0, 1, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4}

direction = 0

if (varTempV1 > (varTempH1<< 1))

 direction = 1

else if (varTempH1 > (varTempV1 << 1))

 direction = 2

The category derivation in the RA mode for one 4x4 block with the top-left pixel position [xC, yC]:

fIdx[xC][yC] = region_tab[(y_idx << 2) + x_idx]

where

region_tab[16] = {0, 1, 4, 5, 15, 2, 3, 6, 14, 11, 10, 7, 13, 12, 9, 8}

x_interval = ((((PicWidthInSamplesL + (1<<Log2MaxCUSize) – 1)) >> Log2MaxCUSize) + 1) >> 2)
y_interval = ((((PicHeightInSamplesL + (1<<Log2MaxCUSize) – 1)) >> Log2MaxCUSize) + 1) >> 2)

x_idx = min (3, Floor((xC) / (x_interval<< Log2MaxCUSize)))

y_idx = min (3, Floor((yC) / (y_interval<< Log2MaxCUSize)))
where PicWidthInSamplesL and PicHeightInSamplesL are picture width and height in Luma, respectively, and 1<<Log2MaxCUSize is the max size of the coding unit.
6.5.2.2 Derivation of filter coefficients and applying the filter
Filter coefficients for each class are derived based on Wiener-based filter design. A cross-correlation matrix
[image: image1.wmf]0

,

j

C

 between the original pixels and the reconstructed pixels and an auto-correlation matrix
[image: image2.wmf]j

i

A

,

 of the reconstructed pixels are created for each class for the range of tap length of the filter. All pixels in a slice or pixels that are marked as filtered (by alf_cu_flag) during the re-design process of filter coefficients are used to calculate the correlation matrix.
 Based on the correlation matrix, filter coefficients for each class are derived by solving the following simultaneous equations:

[image: image3.wmf]0

,

1

0

,

j

N

i

j

i

i

C

A

w

=

å

-

=

 for j = 0 .. N-1

(6‑12)
where N is the number of filter coefficients,
[image: image4.wmf]i

w

 is the filter coefficients to be derived.

Estimated distortion is calculated for each class according to the following equation:

[image: image5.wmf]å

å

å

-

=

i

i

i

i

j

j

i

j

i

C

w

A

w

w

D

0

,

,

2

(6‑13)
When deriving luma filter coefficients, class merging is performed by deriving filter coefficients and estimating the distortion (for all pixels in a slice or pixels that are marked as filtered).

When the filter coefficients are designed, a 2-D FIR filtering with padding at virtual boundary is performed on all pixels in a slice, and the real rate-distortion cost can be calculated. The general concept of virtual boundary is to process a to-be-filtered pixel on one side of a virtual boundary without using any pixel from the other side. Repetitive padding is used to replace pixels from the other side. When the deblocking filter in HM-3.0 is used, the luma and chroma virtual boundaries are LCU row boundaries upward shifted by four and two pixels, respectively. The filter coefficients are encoded according to section 6.5.2.3.
_1360765767.unknown

_1360765781.unknown

_1360765809.unknown

_1360765743.unknown

_1360763383.unknown

