	[image: image16.png][image: image17.png][image: image18.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F054

	Title:
	Adaptive Loop Filter with Zero Pixel Line Buffers for LCU-based Decoding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Ching-Yeh Chen, Chia-Yang Tsai, Chih-Ming Fu, Yu-Wen Huang, and Shawmin Lei
No. 1, Dusing Rd. 1, Hsinchu Science Park, Hsinchu, Taiwan 30078
	
Tel:
Email:
	Shawmin Lei
+886-3-5670766 ext. 25555
{chingyeh.chen, chiayang.tsai, yuwen.huang, chihming.fu, shawmin.lei}@mediatek.com

	Source:
	MediaTek Inc.

Abstract

When the adaptive loop filter (ALF) in HM-3.0 is enabled, seven additional luma line buffers and seven additional chroma line buffers are required for LCU-based decoding. In this contribution, ALF with padding at virtual boundaries was proposed to remove all the line buffers. When the deblocking filter (DF) in HM-3.0 was used, the luma and chroma virtual boundaries were LCU row boundaries upward shifted by four and two pixels, respectively. The general concept was to process a to-be-filtered pixel on one side of a virtual boundary without using any pixel from the other side. Repetitive padding was used to replace pixels from the other side. In comparison with HM-3.0, no line buffer was needed, and BD-rates were reportedly 0.1%, 0.1%, and 0.2% for HE-AI, HE-RA, and HE-LD, respectively, where a positive number means loss while a negative number means gain. Moreover, since line buffer was no longer required, it was proposed to replace the 9x7 diamond filter by the 9x9 diamond filter for luma and to always use the 7x7 diamond filter instead of the 5x5 square filter for chroma. Corresponding BD-rate were 0.1%, -0.1%, and -0.4% reportedly for HE-AI, HE-RA, and HE-LD, respectively. In addition, a boundary smoothing technique was proposed to remove possible visual artifacts near virtual boundaries, and corresponding BD-rates were 0.1%, 0.0%, and -0.2% reportedly for HE-AI, HE-RA, and HE-LD, respectively. All the experiments reportedly achieved no change in run time.
1 Introduction
In the 5th JCT-VC meeting, JCTVC-E060 [1], JCTVC-E225 [2], JCTVC-E286 [3] presented the line buffer issue for ALF. In JCTVC-E060 and JCTVC-E286, Texas Instruments tried to reduce ALF line buffers by reducing filter taps in the vertical direction. In JCTVC-E225, Panasonic used DF intermediate pixels to replace a portion of filter source pixels for reducing ALF line buffers when the decoding process is done largest coding unit (LCU) by LCU. After the 5th JCT-VC meeting, the line buffer requirement of ALF in HM-3.0 became higher than that in HM-2.0 due to the newly adopted ALF with better coding efficiency. In this contribution, we will show how to remove all the ALF line buffers for LCU-based decoding by using a proposed concept of virtual boundaries. The rest of this contribution is organized as follows. The line buffer requirement of the in-loop filtering in HM-3.0 will be analyzed in Section 2, virtual boundaries will be introduced in Section 3, simulation results will be shown in Section 4, and finally conclusions will be given in Section 5.
2 Problem statement
2.1 Deblocking filter

Deblocking filter (DF) in HM-3.0 applies filtering on 8x8 block boundaries. In one picture, all vertical boundaries can be horizontally filtered in parallel, and then all horizontal boundaries can be vertically filtered in parallel. During processing of a luma boundary, four pixels of each side are involved in filter parameter derivation, and at most three pixels of each side can be changed after filtering. For horizontal filtering, reconstructed pixels are used for deriving filter parameters and filtering. For vertical filtering, reconstructed pixels are used for deriving filter parameters, and DF intermediate pixels (i.e. pixels after horizontal filtering) are used for filtering. During processing of a chroma boundary, two pixels of each side are involved in filter parameter derivation, and at most one pixel of each side is changed after filtering. For horizontal filtering, reconstructed pixels are used for deriving filter parameters and filtering. For vertical filtering, DF intermediate pixels are used for deriving filter parameters and filtering.
2.2 Sample adaptive offset

Sample adaptive offset (SAO) in HM-3.0 can be regarded as a special case of filtering that only applies an offset for each pixel. In SAO, pixel classification is first done to classify pixels into different groups. The pixel classification for each to-be-filtered pixel requires the current pixel itself for band offset (BO) or a 3x3 window for edge offset (EO). Next, one offset is derived and transmitted for each group of pixels. In HM-3.0, SAO is only applied for luma.
2.3 Adaptive loop filter

Adaptive loop filter (ALF) in HM-3.0 uses three types of luma filter footprints and three types of chroma filter footprints, as shown in Figure 1. Each picture can select one luma filter footprint and one chroma filter footprint.
	[image: image1.png]
	[image: image2.png]
	[image: image3.png]

	(a)
	(b)
	(c)

	[image: image4.png]
	[image: image5.png]
	[image: image6.png]

	(d)
	(e)
	(f)

Figure 1. Filter footprints in HM-3.0; (a) luma 9x7 diamond; (b) luma 7x7 diamond; (c) luma 5x5 diamond; (d) chroma 9x9 square; (e) chroma 7x7 square; (f) chroma 5x5 square.
In HM-3.0, up to 16 luma filters and at most one chroma filter can be applied for each picture. In order to allow localization of ALF, there are two modes for luma pixels to select filters. One is a region-based adaptation (RA) mode, and the other is a block-based adaptation (BA) mode. As for the chroma components, since they are relatively flat, no local adaptation is used in HM-3.0, and the two components of a picture share one filter.

The RA mode simply divides one luma picture into 16 regions. Once the picture size is known, the 16 regions are determined and fixed. The regions can be merged, and one filter is used for each region after merging.

The BA mode uses edge activity and direction as a property for each 4x4 block. Calculating the property of a 4x4 block requires 8x8 pixels, as shown in Figure 2. After properties of 4x4 blocks are calculated, they are classified into 15 categories. The categories can be merged, and one filter is used for each category after merging.
[image: image7.png]
Figure 2. Illustration of pixels required for calculating the edge property of a 4x4 block.
2.4 LCU-based decoding

Figure 4 shows the current implementation of HM-3.0 software decoder. The decoding process is divided into two parts. One is LCU-based processing including intra prediction (IP), motion compensation (MC), inverse transform (IT), inverse quantization (IQ), and reconstruction (REC), and the other is picture-based processing including DF, SAO, and ALF. Entropy decoding (ED) belongs to the picture-based processing when SPS, PPS, or slice-level syntax elements are parsed and belongs to the LCU-based processing when syntax elements of LCUs are parsed. For software, picture-based implementations are much simpler than LCU-based implementations for DF, SAO, and ALF. However, for hardware, picture-based processing is usually unacceptable because of high picture buffer requirements. In hardware, on-chip picture buffers are very large and expensive while off-chip picture buffers significantly increase external memory access that requires high power consumption and long latency. Therefore, it is desirable to change DF, SAO, and ALF from picture-based to LCU-based decoding.
[image: image8.png]
Figure 4. Block diagram of HM-3.0 software decoder.
When LCU-based processing is used for DF, SAO, and ALF, the entire decoding process can be done LCU by LCU in a raster scan with an LCU-pipelining fashion for parallel processing of multiple LCUs. However, line buffers are required for DF, SAO, and ALF because processing one LCU row requires pixels from the above LCU row. For hardware, if off-chip line buffers (e.g. DRAM) are used, the external memory bandwidth and power consumption will be significantly increased; if on-chip line buffers (e.g. SRAM) are used, the chip area will be significantly increased, especially for pictures of large widths. Therefore, it is still desirable to reduce line buffers after picture buffers are significantly reduced by LCU-based processing.
2.5 Luma line buffers of in-loop filtering

Figure 5 explains the number of luma line buffers required for DF, SAO, and ALF with LCU-based decoding. When the current LCU is processed, lines K-N cannot be vertically filtered by DF because the lower LCU is not yet available and DF needs four reconstructed pixels and four DF intermediate pixels on each side of a horizontal boundary for deriving filter parameters and filtering, respectively, as illustrated by the 4-pixel yellow stripe. Therefore, four lines (K-N) of reconstructed pixels and 4 lines (K-N) of DF intermediate pixels have to be stored for DF. SAO is applied on deblocked pixels, and the processing window for each pixel is 3x3, as illustrated by the 3x3 red square. Since DF will only reference DF intermediate pixels on line K but will not further change DF intermediate pixels on line K during vertical filtering, SAO can be applied to pixels on lines …A-J. After SAO is performed for lines …A-J, the 4x4 block property, as illustrated by the 4x4 blue square, still cannot be calculated due to that the required 8x8 window (lines E-L) used by the 4x4 block (lines G-J) is not yet entirely processed by SAO, i.e. lines K and L are not yet done by DF and SAO. However, at this moment ALF can be performed for pixels on lines …A-F. After lines …A-F are filtered by ALF, no further process can be done for the current LCU until the lower LCU comes. When the lower LCU comes, lines K-P… are first processed by DF and then processed by SAO. When line K is processed by SAO, DF output pixels of line J is required. Therefore, one line (J) of DF output pixels has to be stored for SAO. Next, the 4x4 block properties for lines G-P… are calculated. Finally, the lines G-P… can be filtered by ALF. When line G is filtered, it requires SAO output pixels from lines D-J, as illustrated by the filter footprint painted in green. Therefore, seven lines (D-J) of SAO output pixels have to be stored for ALF. In total, the entire in-loop filtering requires 16 luma line buffers. When the entire decoding system is considered, since the luma intra prediction already stores two lines (M-N) of reconstructed pixels (line M is required due to the chroma intra prediction from luma pixels), these two luma line buffers can be shared.
[image: image9.png]
Figure 5. Illustration of luma line buffers required for DF, SAO, and ALF in HM-3.0.
2.6 Chroma line buffers of in-loop filtering

Figure 6 explains the number of chroma line buffers required for DF and ALF with LCU-based decoding. Please recall that SAO is not used for chroma in HM-3.0. When the current LCU is processed, lines M-N cannot be vertically filtered by DF because the lower LCU is not yet available and DF needs two DF intermediate pixels on each side of a horizontal boundary for deriving filter parameters and filtering, as illustrated by the 2-pel yellow stripe. Therefore, two lines (M-N) of DF intermediate pixels have to be stored for DF. Since DF will only reference DF intermediate pixels on line M but will not further change DF intermediate pixels on line M during vertical filtering, ALF can be applied to pixels on lines …A-I. After ALF is performed for lines …A-I, no further process can be done for the current LCU until the lower LCU comes. When the lower LCU comes, lines M-P… are first processed by DF. Next, lines J-P… are filtered by ALF. When line J is filtered, it requires pixels from lines F-N, as illustrated by the filter footprint painted in green. Therefore, seven lines (F-L) of DF output pixels have to be stored for ALF. In total, the entire in-loop filtering requires nine chroma line buffers for LCU-based decoding. When the entire decoding system is considered, unfortunately these nine chroma line buffers cannot be shared with other modules.
[image: image10.png]
Figure 6. Illustration of chroma line buffers required for DF, SAO, and ALF in HM-3.0.

3 Proposed methods
3.1 Virtual boundaries
Among the required 16 luma line buffers and nine chroma line buffers, seven luma line buffers and seven chroma line buffers are caused by ALF. In order to eliminate the ALF line buffer requirement, we introduce the concept of virtual LCU row boundaries. As shown in Figure 7, virtual LCU row boundaries are upward shifted LCU row boundaries by N pixels. In the following, we may use “virtual boundary” to shorten “virtual LCU row boundary”. The general idea is to modify the processing of a to-be-filtered pixel to avoid any data access across the virtual boundary, which can be applied to both SAO and ALF. To be more specific, in the proposed ALF, if processing a to-be-filtered pixel on one side of a virtual boundary requires any pixel from the other side, repetitive padding is applied to replace the pixel from the other side by a pixel from the same side of the to-be-filtered pixel. Please note that the repetitive padding is used not only for filtering operations but also for block property calculation.
 SHAPE * MERGEFORMAT

With consideration of the DF in HM-3.0, the space between the virtual boundary and the LCU row boundary should be four pixels for luma (i.e. N=4 in Figure 7) and two pixels for chroma (i.e. N=2 in Figure 7). In this way, ALF does not need any line buffer to achieve LCU-based decoding, and the number of line buffers for the entire in-loop filtering is reduced from 16 to nine for luma and from nine to two for chroma.
Figure 5 can be used to explain the luma case where the virtual boundary is painted in red and four pixels above the LCU row boundary. When the current LCU is processed, lines K-N cannot be vertically filtered by DF because the lower LCU is not yet available. At this moment, if SAO and ALF processes for lines …A-J do not require any pixel below line J, lines …A-J can be processed without the lower LCU. When the lower LCU comes, lines K-P… are processed by DF, SAO, and ALF. At this time, if SAO and ALF processes for lines K-P… do not require any pixel above line K, line buffers for storing lines D-J can be removed.
Figure 6 can be used to explain the chroma case where the virtual boundary is painted in red and two pixels above the LCU row boundary. When the current LCU is processed, lines M-N cannot be vertically filtered by DF because the lower LCU is not yet available. At this moment, if ALF process for lines …A-L does not require any pixel below line L, lines …A-L can be processed without the lower LCU. When the lower LCU comes, lines M-P… are processed by DF, SAO, and ALF. At this time, if ALF process for lines M-P… does not require any pixel above line M, line buffers for storing lines F-L can be removed.

3.2 Virtual boundaries with unified filter shape
With the proposed virtual boundaries, since ALF line buffers can be totally removed, it is not necessary to use filter footprints with different numbers of taps in the horizontal and vertical directions. Consequently, it is proposed to replace the 9x7 diamond filter by the 9x9 diamond filter for luma. Moreover, in order to unify the filter shape for luma and chroma, it is proposed to always use the 7x7 diamond for chroma.
3.3 Virtual boundaries with unified filter shape and boundary smoothing
Sometimes visual artifacts may exist along virtual boundaries for ALF. Hence, a boundary smoothing technique is proposed together with the padding at virtual boundaries to remove all line buffers without sacrificing subjective quality. For the first lines above and below virtual boundaries (e.g. luma lines J and K in Figure 5 and chroma lines L and M in Figure 6), filtering is skipped. For the second lines above and below virtual boundaries (e.g. luma lines I and L in Figure 5 and chroma lines K and N in Figure 6), a filtered pixel and its corresponding SAO output pixel are averaged to generate an ALF output pixel. For the rest lines, the same method in Section 3.2 is used.
4 Simulation results

HM-3.0 was used as the anchor in all conducted experiments. High efficiency all intra (HE-AI), high efficiency random access (HE-RA), and high efficiency low delay (HE-LD) common test conditions in JCTVC-E700 [4] were tested for each proposed algorithm. Table 1 shows that the proposed ALF in Section 3.1 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma can result in 0.1%, 0.1%, and 0.2% luma BD-rate differences for HE-AI, HE-RA, and HE-LD, respectively, where a positive number means loss while a negative number means gain.
 SHAPE * MERGEFORMAT

Table 2 shows that the proposed ALF in Section 3.2 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma and unified filter shape with 9x9/7x7/5x5 diamond for luma and 7x7 diamond for chroma can result in 0.1%, -0.1%, and -0.4% luma BD-rate differences for HE-AI, HE-RA, and HE-LD, respectively. Without sacrificing the vertical taps, the 9x9 diamond filter can provide better BD-rate performance than the 9x7 diamond filter even when padding at virtual boundaries are enabled.
 SHAPE * MERGEFORMAT

Table 3 shows that the proposed ALF in Section 3.3 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma, unified filter shape with 9x9/7x7/5x5 diamond for luma and 7x7 diamond for chroma, and boundary smoothing, can result in 0.1%, 0.0%, and -0.2% luma BD-rate differences for HE-AI, HE-RA, and HE-LD, respectively. Although the boundary smoothing increases about 0.1% bit rate, it can remove possible visual artifacts and achieve similar subjective quality as the ALF in HM-3.0. Figure 8 shows an example of reducing visual artifacts by the boundary smoothing.
 SHAPE * MERGEFORMAT

 SHAPE * MERGEFORMAT

In all conducted experiments, the encoding and decoding times of the three tested algorithms are very close to those of the anchor. Moreover, all the ALF line buffers can be removed.
5 Conclusions

MediaTek proposed to apply repetitive padding at virtual boundaries for removing all ALF line buffers in LCU-based decoding systems. Next, since line buffer was no longer needed for ALF, it was proposed to unify the filter shape for both luma and chroma. Finally, in order to improve subjective quality, a boundary smoothing technique was also proposed. Simulation results reportedly showed that using the three proposed schemes together achieved 0.1% loss, 0% difference, and 0.2% gain for HE-AI, HE-RA, and HE-LD, respectively, with roughly unchanged encoding time, decoding time, and subjective quality in comparison with HM-3.0.
6 Acknowledgement
MediaTek would like to thank DSP/IC Design Lab for providing an FTP site. All bitstreams of the anchor and the proposed methods and corresponding decoders can be found at an FTP site. Requests of the FTP address, username, and password can be sent to chingyeh.chen@mediatek.com. Interested readers are encouraged to perform fair subjective evaluations by using blind tests, i.e. experiments without telling observers the relation between tested algorithms and video clips (anchor / Section 3.1 / Section 3.2 / Section 3.3) in advance.
7 Patent rights declaration(s)
MediaTek Inc. may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
8 References

[1] M. Budagavi, V. Sze, and M. Zhou, “CE8 Subtest 5: Luma ALF with reduced vertical filter size,” Document of Joint Collaborative Team on Video Coding, JCTVC-E060, Mar. 2011.

[2] S. Esenlik, M. Narroschke, and T. Wedi, “Line Memory Reduction for ALF Decoding,” Document of Joint Collaborative Team on Video Coding, JCTVC-E225, Mar. 2011.
[3] M. Budagavi, V. Sze, and M. Zhou, “Chroma ALF with reduced vertical filter size,” Document of Joint Collaborative Team on Video Coding, JCTVC-E287, Mar. 2011.
[4] F. Bossen, “Common test conditions and software reference configurations,” Document of Joint Collaborative Team on Video Coding, JCTVC-E700, Mar. 2011.
Table 1. Results of the proposed ALF in Section 3.1 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma.

�

Table 2. Results of the proposed ALF in Section 3.2 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma and unified filter shape with 9x9/7x7/5x5 diamond for luma and 7x7 diamond for chroma.

�

Table 3. Results of the proposed ALF in Section 3.3 using repetitive padding at virtual boundaries with N=4 for luma and N=2 for chroma, unified filter shape with 9x9/7x7/5x5 diamond for luma and 7x7 diamond for chroma, and boundary smoothing.

�

� EMBED PBrush ���(a) � EMBED PBrush ���(b)

Figure 8. Subjective view of Cactus_1920x1080, POC=311, QP=37, HE-LD (a) Section 3.2 with boundary smoothing disabled; (b) Section 3.3 with boundary smoothing enabled.

�

Figure 7. Virtual LCU row boundaries and LCU row boundaries in one picture.

Page: 11
Date Saved: 2011-07-01

[image: image19.png][image: image20.png][image: image21.png][image: image22.png][image: image23.png]_1370607707

_1370607532

