	[image: image11.png][image: image12.png][image: image13.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
6th Meeting: Torino, IT, 14-22 July, 2011
	Document: JCTVC-F048

	Title:
	CE3: Modifications of region-based adaptive interpolation filter

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Shohei Matsuo
Yukihiro Bandoh
Takeshi Ito
Seishi Takamura
Hirohisa Jozawa

1-1, Hikari-no-oka, Yokosuka-shi,
Kanagawa 239-0847, JAPAN
	
Tel:
Email:
	
+81-46-859-2070
matsuo.shohei@lab.ntt.co.jp

	Source:
	NTT (Nippon Telegraph and Telephone) Corporation

Abstract

This document reports the performance of a region-based adaptive interpolation filter that adjusts filter coefficients based on the characteristic of the input video signal. In the proposed method, a frame is segmented into multiple regions, and filter coefficients for each region are derived. The basic idea is that filter coefficients are designed for each region in a frame when the frame consists of multiple regions with different characteristics. The proposal was implemented in HM3.0 software to evaluate its performance. Compared to the HM3.0 anchor, the average BD-rate gain for HE-RA, HE-LB, HE-LP, LC-RA, LC-LB and LC-LP were 0.02 %, 0.04 %, 0.2%, 0.4%, 1.2% and 2.2%, respectively. The maximum coding gain was about 10.5 % for the sequence “Vidyo3” in LC-LP case. The computational complexity at the encoder and decoder were 107% and 101% on average, respectively.
1 Introduction
Interpolation filter that supports motion estimation with fractional-pel accuracy is one of important coding tools for improving efficiency of inter frame coding. In the 4th JCT-VC meeting, it was decided that HM2.0 adopts the 8-tap DCT-IF as an interpolation filter for both HE and LC cases. In HM3.0, the same filter is used for the interpolation process. The coefficient values of the filter are constant regardless of the characteristics of the input video sequences. To improve the performance of such a fixed interpolation, adaptive interpolation filters (AIF) were proposed, for example, 2D-AIF [1], SAIF [2]. Each AIF derives the optimal filter coefficients for each frame. However, single set of filter coefficients may not be the optimal option, when the image has plural regions each of which has different characteristics (motion, texture, etc.). In this contribution, a region-based adaptive approach is introduced into AIF. This approach is called Region-based AIF (RBAIF) [3-5]. RBAIF generates multiple sets of filter coefficients that are optimized for each region.
2 Region-Based Adaptive Interpolation Filter (RBAIF)
2.1 Basic idea
RBAIF designs the optimal multiple sets of filter coefficients for each region in a frame. For example, let us consider a frame which consists of two regions as shown in Figure 1. In this case, RBAIF generates two sets of filter coefficients, while AIF provides single set of filter coefficients on a frame-by-frame basis.
[image: image14.png]
Figure 1: Conventional AIF (left) and Region-based AIF (right).
The current RBAIF support multiple filter modes which Table.1 shows. Based on criteria shown in Table.1, every pixel in each frame is classified into one of multiple regions. As shown in Table 1, RBAIF also includes DCT-IF and AIF. The filter mode number of DCT-IF is zero and that of AIF is one. In the filter mode 2 and 3, the input picture is dual-partitioned. The segmentation line is set each CU size (e.g. 64 pixels). RBAIF needs two kinds of overhead information; one is an index that identifies the selected filter mode and the other is a set of filter coefficients of each region in the case of filter mode 1 to 3. When the filter mode 2 or 3 is selected, the position of the segmentation line, for example Tx or Ty in Table 1, has to be sent as well as those two kinds of overhead information.
Note that the proposed scheme can support arbitrary number of regions. The proposal is currently an extension of SAIF in terms of filter coefficient coding. Of course, the concept of the proposal can be also coupled with other AIF methods.

Table 1: Definition of filter modes.

[image: image1]
2.2 Encoding algorithm

When an RBAIF encoder selects the optimal filter mode among the modes listed in Table 1, the encoder takes a two-step approach as follows.
2.2.1 Step 1: Selection for best segmentation mode
In the first step, the encoder selects the best mode among modes that support multiple regions whose mode ID in Table 1 are two and three. In these modes, the position of the segmentation line is variable. Therefore, the encoder has to determine the position. The criterion in the first step is MC prediction error. In this step, all candidate segmentation modes share common motion vectors derived by DCT-IF. Therefore, there are no needs of additional motion estimation. Then, filter coefficients are provided by solving the linear equation systems. Using the shared motion vectors and the obtained filter coefficients, MC prediction error is derived for each segmentation mode that has multiple regions. Finally, the encoder selects the mode that minimizes the squared sum of MC prediction error. The selected mode is called “best segmentation mode (RBAIF-best)” as shown in Figure 2. The process is summarized as follows.
S1: Derive motion vectors by using DCT-IF.
S2: Set a segmentation mode that consists of a filter mode and a position of the segmentation line.

S3: Calculate the filter coefficients for the segmentation mode defined by S2.

S4: Generate the prediction signals by using the motion vectors in S1 and the filter coefficients in S3.

 (Note that the motion vectors are shared for all segmentation modes.)

S5: Calculate the squared sum of MC prediction error
S6: Repeat the loop S2 to S5 until all possible candidates of the segmentation modes are tried.
S7: Select the best segmentation mode (RBAIF-best) that minimizes the squared sum of MC prediction error

In the 5th JCT-VC Geneva meeting, the segmentation granularity was one CU size (64 pixels) and the value was fixed [5]. For example, when the Class-A sequences such as Traffic and Nebuta are encoded, the number of the segmentation modes are 39 (2560/64 1) and 24 (1600/64 1) for the filter mode 2 and 3, respectively. In this contribution, to reduce the number of the segmentation modes, the segmentation granularity is not limited to one CU size but up to 8 CU sizes. The current encoder can set more than one CU size as the granularity value as shown in Figure 3. The values used for the simulation are listed in the section 3.

[image: image2]
Figure 2: Selection diagram in the first step.

[image: image3]
Figure 3: Segmentation granularity examples.
2.2.2 Step 2: Selection for best filter mode
In the second step, the encoder selects the optimal mode among three filter modes: DCT-IF, AIF and RBAIF-best that is the best segmentation mode derived in the first step. The criterion in the second selection is RD cost that consists of rate value derived by entropy coder and distortion value of a local decoded image. In this step, motion vectors derived using DCT-IF is reused as shown in Figure 4.
The encoder has to derive the distortion value of a local decoded image. In the HE configuration, the ALF is used on the default setting. Therefore, ALF process was applied four times (DCT-IF, AIF, RBAIF-best and the decided best filter mode) in the previous contribution [5]. In this contribution, to reduce the calculation for ALF, three ALF process in filter mode selection are skipped. After the best filter mode is decided, the ALF process is applied once to the current picture in the same way as HM3.0.

[image: image4]
Figure 4: Selection diagram in the second step.
2.3 Region-based adaptive interpolation filter parameter syntax
The semantics related to the proposed interpolation filter are as follows.
rbaif_filter_mode specifies the type of the interpolation filter that is used in the current picture.
rbaif_num_regions specifies the number of the regions included in the current picture.
rbaif_golomb_mode[i] specifies the shape parameter of the Golomb codes. The index i specifies the region number.
rbaif_diff_filter_coefficients_v_quarter[j][i] specifies the residual values between the DCT-IF filter coefficients and the generated AIF filter coefficients for the vertical direction to interpolate the quarter-pel positions. The index j specifies the region number and the index i specifies the coefficient number.
rbaif_diff_filter_coefficients_v_half[j][i] specifies the residual values between the DCT-IF filter coefficients and the generated AIF filter coefficients for the vertical direction to interpolate the half-pel positions. The index j specifies the region number and the index i specifies the coefficient number.
rbaif_diff_filter_coefficients_h_quarter[j][i] specifies the residual values between the DCT-IF filter coefficients and the generated AIF filter coefficients for the horizontal direction to interpolate the quarter-pel positions. The index j specifies the region number and the index i specifies the coefficient number.
rbaif_diff_filter_coefficients_h_half[j][i] specifies the residual values between the DCT-IF filter coefficients and the generated AIF filter coefficients for the horizontal direction to interpolate the half-pel positions. The index j specifies the region number and the index i specifies the coefficient number.
rbaif_segmentation_position_x[i] specifies the horizontal position where the segmentation line is located. The index i specifies the line number.

rbaif_segmentation_position_y[i] specifies the vertical position where the segmentation line is located. The index i specifies the line number.
The syntax specification using above semantics are shown in Table 2.
Table 2: Syntax specification for the proposed technique.
	Slice_header() {
	C
	Descriptor

	…
	
	

	rbaif_filter_mode
	2
	u(2)

	 if (rbaif_filter_mode == 0) {
	
	

	 }
	
	

	 else if (rbaif_filter_mode == 1) {
	
	

	 rbaif_golomb_mode[0]
	2
	u(5)

	 for (i = 0; i < RbaifNumFilterCoeffQuarter – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_quarter[0][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_quarter[0][i]
	2
	se(v)

	 }
	
	

	 for (i = 0; i < RbaifNumFilterCoeffHalf – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_half[0][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_half[0][i]
	2
	se(v)

	 }
	
	

	}
	
	

	else if (rbaif_filter_mode == 2) {
	
	

	 rbaif_num_regions
	2
	ue(v)

	 for (j = 0; j < rbaif_num_regions; j ++) {
	
	

	 rbaif_golomb_mode[j]
	2
	u(5)

	 for (i = 0; i < RbaifNumFilterCoeffQuarter – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_quarter[j][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_quarter[j][i]
	2
	se(v)

	 }
	
	

	 for (i = 0; i < RbaifNumFilterCoeffHalf – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_half[j][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_half[j][i]
	2
	se(v)

	 }
	
	

	 }
	
	

	 for (i = 0; i < rbaif_num_regions – 1; i++) {
	
	

	 rbaif_segmentation_position_x[i]
	2
	ue(v)

	 }
	
	

	}
	
	

	else if (rbaif_filter_mode == 3) {
	
	

	 rbaif_num_regions
	2
	ue(v)

	 for (j = 0; j < rbaif_num_regions; j ++) {
	
	

	 rbaif_golomb_mode[j]
	2
	u(5)

	 for (i = 0; i < RbaifNumFilterCoeffQuarter – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_quarter[j][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_quarter[j][i]
	2
	se(v)

	 }
	
	

	 for (i = 0; i < RbaifNumFilterCoeffHalf – 1; i++) {
	
	

	 rbaif_diff_filter_coefficients_v_half[j][i]
	2
	se(v)

	 rbaif_diff_filter_coefficients_h_half[j][i]
	2
	se(v)

	 }
	
	

	 }
	
	

	 for (i = 0; i < rbaif_num_regions – 1; i++) {
	
	

	 rbaif_segmentation_position_y[i]
	2
	ue(v)

	 }
	
	

	}
	
	

	…
	
	

	}
	
	

	
	
	

2.4 Decoder description
Inputs to the decoding process of the proposal are:

–
a luma location in full-sample units (xIntL, yIntL),

–
a luma location in fractional-sample units (xFracL, yFracL),

–
a luma reference sample array refPicLXL.
–
a set of DCT-IF filter coefficients
–
an index rbaif_filter_mode specifying the interpolation filter type that is used for the current picture.
–
an index rbaif_golomb_mode specifying the shape parameter that determines Golomb codes.

–
a set of rbaif_diff_filter_coefficients specifying the difference values between the DCT-IF filter coefficients and the calculated AIF filter coefficients
Output to this process is a predicted luma sample value predSampleLXL[xL, yL].
As described above, the objective is to allow the use of region adaptation. Therefore, the syntax in the slice header is also changed as follows to support the proposal. In the proposed decoder, the rbaif_filter_mode is decoded to indicate which interpolation filter is applied to the current picture.

When the rbaif_filter_mode is equal to 0, DCT-IF adopted in HM3.0 is applied to the current picture and no additional flag is decoded. The picture is interpolated by using DCT-IF filter coefficients. The DCT-IF filter coefficients are summarized as follows. The same filter set is used for both horizontal and vertical interpolation as described in the section 8.4.2.2.2.1 of Working Draft [6].

–
1/4 position: {1, 4, 10, 57, 19, 7, 3, 1}
–
1/2 position: {1, 4, 11, 40, 40, 11, 4, 1}
–
3/4 position: {1, 3, 7, 19, 57, 10, 4, 1}

When the rbaif_filter_mode is equal to 1, the AIF technique is applied to the current picture. In the current implementation, the numbers of the filter coefficients are the same as those of DCT-IF in HM3.0. Therefore, the RbaifNumFilterCoeffQuarter which indicates the number of the filter coefficients for the quarter-pel interpolation is 8 and the RbaifNumFilterCoeffHalf which indicates the number of the filter coefficients for the half-pel interpolation is 4. Since these values are shared between encoder and decoder, these two values are not embedded in the bitstream. Firstly, the rbaif_golomb_mode is decoded to indicate which shape parameter is used for the Golomb Codes of the residual filter coefficients. Next, four flags which indicate the residual filter coefficients are decoded:
1. rbaif_diff_filter_coefficients_v_quarter (for the vertical interpolation at the quarter-pel samples),
2. rbaif_diff_filter_coefficients_h_quarter (for the horizontal interpolation at the quarter-pel samples),
3. rbaif_diff_filter_coefficients_v_half (for the vertical interpolation at the half-pel samples),

4. rbaif_diff_filter_coefficients_h_half (for the horizontal interpolation at the half-pel samples).

AIF filter coefficients are reconstructed by adding the residual filter coefficients to the corresponding DCT-IF filter coefficients. In this filter mode, the filter coefficients are generated for both horizontal and vertical directions. The AIF filter coefficients are summarized as follows.

–
1/4 position (vertical): {Cvq1, Cvq2, Cvq3, Cvq4, Cvq5, Cvq6, Cvq7, Cvq8}
–
1/2 position (vertical): {Cvh1, Cvh2, Cvh3, Cvh4, Cvh4, Cvh3, Cvh2, Cvh1}
–
3/4 position (vertical): {Cvq8, Cvq7, Cvq6, Cvq5, Cvq4, Cvq3, Cvq2, Cvq1}
–
1/4 position (horizontal): {Chq1, Chq2, Chq3, Chq4, Chq5, Chq6, Chq7, Chq8}
–
1/2 position (horizontal): {Chh1, Chh2, Chh3, Chh4, Chh4, Chh3, Chh2, Chh1}
–
3/4 position (horizontal): {Chq8, Chq7, Chq6, Chq5, Chq4, Chq3, Chq2, Chq1}

As represented in Table 2, in the current implementation, Cvq8, Cvh1, Chq8 and Chh1 are not embedded in the bitstream and not decoded because of constraint conditions as follows:

[image: image5.wmf],

64

8

1

=

å

=

i

vqi

C

[image: image6.wmf],

32

4

1

=

å

=

i

vhi

C

[image: image7.wmf],

64

8

1

=

å

=

i

hqi

C

[image: image8.wmf].

32

4

1

=

å

=

i

hhi

C

Namely, the total number of filter coefficients to be decoded is 20.

In the following explanation, integer and fractional samples are represented as shown in Figure 5. The positions labelled with upper-case letters Ai,j within shaded blocks represent luma samples at full-sample locations inside the given two-dimensional array refPicLXL of luma samples. These samples may be used for generating the predicted luma sample value predSampleLXL[xL, yL]. The locations (xAi,j, yAi,j) for each of the corresponding luma samples Ai,j inside the given array refPicLXL of luma samples are derived as follows:
xAi,j = Clip3(0, PicWidthInSamplesL – 1, xIntL +i)
yAi,j = Clip3(0, PicHeightInSamplesL – 1, yIntL +j)
Given the luma samples Ai,j at full-sample locations (xAi,j, yAi,j), the luma samples ‘a0,0’ to ‘r0,0’ at fractional sample positions are derived by the following rules. The interpolation proceeds in the same manner as described in the rbaif_filter_mode equal to 0. The filter coefficients are replaced by the AIF filter coefficients for each interpolation direction. The picture is vertically interpolated by using the following equations (1) to (3). Note that variables offset1 and shift1 are the same definitions described in Working Draft [6].

d0,0 = (Cvq1*A0,-3 + Cvq2*A0,-2 + Cvq3*A0,-1 + Cvq4*A0,0 +
 Cvq5*A0,1 + Cvq6*A0,2 + Cvq7*A0,3 + Cvq8*A0,4 + offset1) >> shift1
(1)

h0,0 = (Cvh1*A0,-3 + Cvh2*A0,-2 + Cvh3*A0,-1 + Cvh4*A0,0 +
 Cvh4*A0,1 + Cvh3*A0,2 + Cvh2*A0,3 + Cvh1*A0,4 + offset1) >> shift1
(2)

n0,0 = (Cvq8*A0,-3 + Cvq7*A0,-2 + Cvq6*A0,-1 + Cvq5*A0,0 +
 Cvq4*A0,1 + Cvq3*A0,2 + Cvq2*A0,3 + Cvq1*A0,4 + offset1) >> shift1
(3)

[image: image9.emf]A

-1,-1

A

0,-1

a

0,-1

b

0,-1

c

0,-1

A

1,-1

A

-1,0

A

0,0

A

1,0

A

-1,1

A

0,1

A

1,1

a

0,1

b

0,1

c

0,1

a

0,0

b

0,0

c

0,0

d

0,0

h

0,0

n

0,0

e

0,0

i

0,0

p

0,0

f

0,0

j

0,0

q

0,0

g

0,0

k

0,0

r

0,0

d

-1,0

h

-1,0

n

-1,0

d

1,0

h

1,0

n

1,0

A

2,-1

A

2,0

A

2,1

d

2,0

h

2,0

n

2,0

A

-1,2

A

0,2

A

1,2

a

0,2

b

0,2

c

0,2

A

2,2

Figure 5: Integer samples (shaded blocks with upper-case letters) and fractional samples (un-shaded blocks with lower-case letters) for quarter sample luma interpolation.
After the vertical interpolation is completed, the picture is horizontally interpolated by using the following equations (4) to (15).
a0,0 = (Chq1*A-3,0 + Chq2*A-2,0 + Chq3*A-1,0 + Chq4*A0,0 +
 Chq5*A1,0 + Chq6*A2,0 + Chq7*A3,0 + Chq8*A4,0 + offset1) >> shift1
(4)
b0,0 = (Chh1*A-3,0 + Chh2*A-2,0 + Chh3*A-1,0 + Chh4*A0,0 +
 Chh4*A1,0 + Chh3*A2,0 + Chh2*A3,0 + Chh1*A4,0 + offset1) >> shift1
(5)
c0,0 = (Chq8*A-3,0 + Chq7*A-2,0 + Chq6*A-1,0 + Chq5*A0,0 +
 Chq4*A1,0 + Chq3*A2,0 + Chq2*A3,0 + Chq1*A4,0 + offset1) >> shift1
(6)
e0,0 = (Chq1*d-3,0 + Chq2*d-2,0 + Chq3*d-1,0 + Chq4*d0,0 +
 Chq5*d1,0 + Chq6*d2,0 + Chq7*d3,0 + Chq8*d4,0 + offset1) >> shift1
(7)
f0,0 = (Chh1*d-3,0 + Chh2*d-2,0 + Chh3*d-1,0 + Chh4*d0,0 +
 Chh4*d1,0 + Chh3*d2,0 + Chh2*d3,0 + Chh1*d4,0 + offset1) >> shift1
(8)
g0,0 = (Chq8*d-3,0 + Chq7*d-2,0 + Chq6*d-1,0 + Chq5*d0,0 +
 Chq4*d1,0 + Chq3*d2,0 + Chq2*d3,0 + Chq1*d4,0 + offset1) >> shift1
(9)
i0,0 = (Chq1*h-3,0 + Chq2*h-2,0 + Chq3*h-1,0 + Chq4*h0,0 +
 Chq5*h1,0 + Chq6*h2,0 + Chq7*h3,0 + Chq8*h4,0 + offset1) >> shift1
(10)
j0,0 = (Chh1*h-3,0 + Chh2*h-2,0 + Chh3*h-1,0 + Chh4*h0,0 +
 Chh4*h1,0 + Chh3*h2,0 + Chh2*h3,0 + Chh1*h4,0 + offset1) >> shift1
(11)
k0,0 = (Chq8*h-3,0 + Chq7*h-2,0 + Chq6*h-1,0 + Chq5*h0,0 +
 Chq4*h1,0 + Chq3*h2,0 + Chq2*h3,0 + Chq1*h4,0 + offset1) >> shift1
(12)
p0,0 = (Chq1*n-3,0 + Chq2*n-2,0 + Chq3*n-1,0 + Chq4*n0,0 +
 Chq5*n1,0 + Chq6*n2,0 + Chq7*n3,0 + Chq8*n4,0 + offset1) >> shift1
(13)
q0,0 = (Chh1*n-3,0 + Chh2*n-2,0 + Chh3*n-1,0 + Chh4*n0,0 +
 Chh4*n1,0 + Chh3*n2,0 + Chh2*n3,0 + Chh1*n4,0 + offset1) >> shift1
(14)
r0,0 = (Chq8*n-3,0 + Chq7*n-2,0 + Chq6*n-1,0 + Chq5*n0,0 +
 Chq4*n1,0 + Chq3*n2,0 + Chq2*n3,0 + Chq1*n4,0 + offset1) >> shift1
(15)
The positions labelled with lower-case letters within un-shaded blocks represent luma samples at quarter-pel sample fractional locations. The luma location offset in fractional-sample units (xFracL, yFracL) specifies which of the generated luma samples at full-sample and fractional-sample locations is assigned to the predicted luma sample value predSampleLXL[xL, yL]. This assignment is done according to Table 3. The value of predSampleLXL[xL, yL] shall be the output. Note that variable shift3 is the same definition described in Working Draft [6].
Table 3: Assignment of the luma prediction sample predSampleLXL[xL, yL].
	xFracL
	0
	0
	0
	0
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3

	yFracL
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3
	0
	1
	2
	3

	predSampleLXL[xL, yL]
	A << shift3
	d
	h
	n
	a
	e
	i
	p
	b
	f
	j
	q
	c
	g
	k
	r

When the rbaif_filter_mode is equal to 2, the current picture is segmented into horizontal multiple regions such as right and left. The rbaif_num_regions which indicates the number of the regions included in the current picture is decoded. In the current implementation, this mode has two regions and the number is shared between encoder and decoder. Therefore, the rbaif_num_regions is not embedded in the bitstream and not decoded. The rbaif_segmentation_position_x which indicates the horizontal position of the segmentation is decoded. The rbaif_golomb_mode and the rbaif_diff_filter_coefficients are also decoded for each region. The interpolation method using the AIF filter coefficients for each region is the same as the method described in rbaif_filter_mode equal to 1.
When the rbaif_filter_mode is equal to 3, the current picture is segmented into vertical multiple regions such as top and bottom. The rbaif_num_regions which indicates the number of the regions included in the current picture is decoded. In the current implementation, this mode has two regions and the number is shared between encoder and decoder. Therefore, the rbaif_num_regions is not embedded in the bitstream and not decoded. The rbaif_segmentation_position_y which indicates the vertical position of the segmentation is decoded. The rbaif_golomb_mode and the rbaif_diff_filter_coefficients are also decoded for each region. The interpolation method using the AIF filter coefficients for each region is the same as the method describe in rbaif_filter_mode equal to 1.
3 Experimental results

The proposal has been implemented in HM 3.0. It is noted that the proposed method is only applied to luminance signal. The configurations of RBAIF are subject to the following conditions:

· Filter type: separable filter

· Tap length: 8 taps (6-bit representation)
· Algorithm to generate filter coefficients of each region: that of SAIF [2]
· Segmentation granularity settings are as follows.

· Class D (416x240): 2 CU sizes

· Class C (832x480): 3 CU sizes

· Class E (1280x720): 4 CU sizes

· Class B (1920x1080): 6 CU sizes

· Class A (2560x1600): 8 CU sizes

Note that the granularity values are derived by the following equation.
Floor (Sqrt (width * height) 4.4 CU size + 1.3)
The other configuration is subject to the common test condition [7].
The objective performance is shown in Table 4. The gains (BD-rate [8]) with the anchor of HM 3.0 were calculated. In the HE configuration, the average gains were about 0.02 %, 0.04% and 0.2 % for RA, LB and LP, respectively. In the LC configuration, those were 0.4 %, 1.2% and 1.3 % for RA, LB and LP, respectively. The maximum gain was about 10.5 % for the sequence “Vidyo3” in LC-LP case. It is confirmed that the proposal is effective for high resolutions such as Class A, B and E, especially in the LC configuration.
Regarding the computational complexity, the encoding and decoding time were about 107% and 101% against the anchor on average, respectively.

Table 4: Simulation Results.
[image: image10.emf]Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A-0.1-0.5-0.2-1.30.0-0.3

Class B0.0-0.10.0-0.10.00.0

Class C0.00.10.1-0.10.00.0

Class D0.00.10.0-0.20.20.2

Class E

All-0.02-0.10.0-0.40.0-0.1

Enc Time[%]

Dec Time[%]

Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A

Class B0.00.30.2-1.10.30.0

Class C0.0-0.10.0-0.60.1-0.2

Class D0.00.20.1-0.30.0-0.1

Class E-0.2-0.1-0.3-3.3-0.3-0.9

All-0.040.10.0-1.20.1-0.3

Enc Time[%]

Dec Time[%]

Y BD-rateU BD-rateV BD-rateY BD-rateU BD-rateV BD-rate

Class A

Class B-0.10.0-0.2-2.60.30.1

Class C-0.20.10.0-0.90.10.1

Class D-0.2-0.20.3-0.40.20.3

Class E-0.20.4-0.5-5.6-0.2-0.4

All-0.20.1-0.1-2.20.10.1

Enc Time[%]

Dec Time[%]

Low delay PLow delay LCP

106%107%

100%101%

102%

105%

100%

Random accessRandom access LC

Low delayLCLow delay

103%101%

107%109%

106%

4 Conclusion

In this contribution, a region-based AIF technique was proposed and the method of encoding complexity reduction was introduced. Average gains of coding efficiency against the anchor HM3.0 of HE case were about 0.02 %, 0.04% and 0.2 % for RA, LB and LP, respectively. Those of LC case were about 0.4 %, 1.2% and 2.2 % for RA, LB and LP, respectively. The average encoding complexity increment was about 7% compared to the anchor. The average decoding complexity increment was about 1% compared to the anchor. The proposal can be applied to other AIF methods such as 2D-AIF and EAIF that have already been employed in KTA software. More effective region-dividing methods will be investigated.
It is recommended to incorporate the proposal into HEVC as interpolation method.

5 References

[1] Y. Vatis, B. Edler, D. T. Nguyen and J. Osterman, “Two-dimensional non-separable adaptive wiener interpolation filter for H.264/AVC,” ITU-T SG16 Q.6 Document, VCEG-Z17r1, 26th VCEG Meeting, Busan, Korea, April 2005.

[2] S. Wittmann and T. Wedi, “Separable adaptive interpolation filter for video coding,” in Proc. International Conference on Image Processing (ICIP) 2008, San Diego, California, USA, October 2008.

[3] S. Matsuo, Y. Bandoh, S. Takamura and H. Jozawa, “Region-based adaptive interpolation filter,” JCTVC-B051, 2nd. JCT-VC Meeting, Geneva, CH, 21-28 July, 2010.

[4] S. Matsuo, Y. Bandoh, S. Takamura and H. Jozawa, “Response to CE3: Region-based adaptive interpolation filter,” JCTVC-D150, 4th. JCT-VC Meeting, Daegu, KR, 20-28 January, 2011.

[5] S. Matsuo, Y.Bandoh, T. Ito, S. Takamura and H. Jozawa, “CE3: Region-based adaptive interpolation filter,” JCTVC-E078, 5th. JCT-VC Meeting, Geneva, CH, 16-23 March, 2011.

[6] T. Wiegand, W.-J. Han, B. Bross, J.-R. Ohm and G. J. Sullivan, “WD3: Working Draft 3 of High-Efficiency Video Coding,” JCTVC-E603_d8, 5th. JCT-VC Meeting, Geneva, CH, 16-23 March, 2011.
[7] F. Bossen, “Common test conditions and software reference configurations,” JCTVC-D600, 4th. JCT-VC Meeting, Daegu, KR, 20-28 January, 2011.
[8] G. Bjontegaard, “Calculation of average PSNR differences between RD-curves,” ITU-T SG16 Q.6 Document, VCEG-M33, 13th VCEG Meeting, Austin, Texas, USA, April 2001.

6 Patent rights declaration(s)
NTT Corporation may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 4
Date Saved: 2011-07-01

[image: image15.png][image: image16.png][image: image17.png]_1371056076.unknown

_1371056113.unknown

_1371056197.unknown

_1371055979.unknown

