	[image: image1.png][image: image2.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

5th Meeting: Geneva, CH, 16-23 March, 2011
	Document: JCTVC-E412

	Title:
	Tiles for parallel decoding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Kiran Misra and Andrew Segall

	Tel:
Email:
	+1 360 817 8487
asegall@sharplabs.com

	Source:
	SHARP

Abstract

This contribution proposes an extension of the Tiles concept that is proposed in JCTVC-E408. Tiles partition an image into rectangular segments. This is asserted as being beneficial for the encoder in several applications, including MTU size matching, parallel encoding and memory constrained motion estimation. In this contribution, Tiles are extended to support decoder parallelization as well. This is realized by signaling Tile entry points in the bit-stream, so that a decoder is able to enter the bit-stream at the beginning of a Tile. The signaling is necessary as Tiles do not use a header, and thus can not be located in the bit-stream by a decoder (without completely parsing the bit-stream). The approach supports sending tile entry points explicitly in the slice header or markers in the bit-stream. Results show the benefit of the approach.

1 Introduction

Tiles are proposed in JCTVC-E408 as a mechanism to partition a picture into rectangular regions. The claimed benefit of the approach is better support for MTU size matching, parallel processing and memory constrained motion estimation. These gains come from the alternative scan pattern afforded by Tiles as well as the independence of LCUs in one tile from LCUs in other tiles in the motion compensation, intra prediction and context derivation process.

While Tiles provide benefits to an encoder, we observe that Tiles are potentially very useful for decoders as well; Specifically, Tiles provide a path to better support multi-core decoding. In previous system (such as H.264/AVC), multi-core decoding is enabled by slices. A primary benefit of Tiles is improved coding efficiency – this is somewhat due to the fact that Tiles do not require the header signaling of a slice.

While it is desirable to enable parallel decoding using Tiles, it is not currently possible. This is because a decoder does not know the location of Tiles within a bit-stream. To be clear, after decoding a slice header, a decoder knows the location of Tiles within the image frame. However, the location of the bits describing the Tile within the bit-stream is unknown.

If the decoder was able to find the start of a Tile within a bit-stream, the decoder could then begin decoding the Tile without referencing previously decoded data. This would directly lead to parallel processing, as multiple decoders could then decode multiple portions of an image frame without reference to other decoding processes.

2 Proposal
To enable the parallel decoding of Tiles, we propose to transmit the locations of Tile entry points in the bit-stream. We propose two methods for the signaling. The first signals the location data in the slice header. This has the advantage of high coding efficiency, as our technique is designed to adjust the signaling overhead based on the number of bits in a Tile. (Thus, small rate frames will have lower overhead than higher rate frames.) The drawback to the approach is latency at the encoder, as the encoder process must buffer the bit-stream in order to store the location data. For applications sensitive to this latency issue, we provide a second approach that transmits markers in the bit-stream. These markers signal the entry point in the bit-stream. Additionally, they include a greatly abbreviated slice header for improved coding efficiency. Note, for our implementation of Tiles P tables in HM-2.0 were used for context initialization of forward predicted B-slices for start of a tile which are not start of a slice.
Syntax and semantics are as follows:
Table 1 Slice header

	slice_header() {
	C
	Descriptor

	 …
	
	

	 tile_locations_flag
	1
	u(1)

	 if (tile_locations_flag) {
	
	

	 tile_ locations ()
	
	

	 }
	
	

	}
	
	

· “tile_locations_flag” signals if tile location information is being transmitted or not. If the value of “tile_locations_flag” is greater than “0”, then the tile location information is transmitted, otherwise it is not transmitted. The default value for “tile_locations_flag” is “0”.

Table 3 Tile location information

	tile_ locations()
	C
	Descriptor

	{
	
	

	 num_of_tiles_minus1_slice
	2
	u(5)

	 num_of_bits_minus1_for_tile_offset
	2
	u(5)

	 for (i=0; i<num_of_tiles_minus1_slice; i++) {
	
	

	 tile_offset[i]
	2
	ue(v)

	 }
	
	

	}
	
	

· “num_of_tiles_minus1_slice” specifies the number of tiles in the slice

· “num_of_bits_minus1_for_tile_offset” specifies the number of bits used by each tile_offset [i] entry.

· “tile_offset [i]” indicates the offset of the ith Tile from the previous tile. The tile_offset [i] is the number of bytes difference between the first byte of tile i+1 and the fist byte of tile i.

	slice_header() {
	C
	Descriptor

	
first_lctb_in_slice
	2
	ue(v)

	
lightweight_slice_flag
	2
	u(1)

	
if(!lightweight_slice_flag) {
	
	

	

slice_type
	2
	ue(v)

	

pic_parameter_set_id
	2
	ue(v)

	

Frame_num
	2
	u(v)

	

if(IdrPicFlag)
	
	

	

idr_pic_id
	2
	ue(v)

	

pic_order_cnt_lsb
	2
	u(v)

	

if(slice_type = = P | | slice_type = = B) {
	
	

	

Num_ref_idx_active_override_flag
	2
	u(1)

	

if(num_ref_idx_active_override_flag) {
	
	

	

num_ref_idx_l0_active_minus1
	2
	ue(v)

	

If(slice_type = = B)
	
	

	

num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	

}
	
	

	

if(nal_ref_idc != 0)
	
	

	

Dec_ref_pic_marking()
	2
	

	

if(entropy_coding_mode_flag && slice_type != I)
	
	

	

cabac_init_idc
	2
	ue(v)

	

slice_qp_delta
	2
	se(v)

	

alf_param()
	
	

	

if(slice_type = = P | | slice_type = = B) {
	
	

	

mc_interpolation_idc
	2
	ue(v)

	

mv_competition_flag
	2
	u(1)

	

if (mv_competition_flag) {
	
	

	

mv_competition_temporal_flag
	2
	u(1)

	

}
	
	

	
}
	
	

	

if (slice_type = = B && mv_competition_flag)
	
	

	

collocated_from_l0_flag
	2
	u(1)

	
}
	
	

	
else {
	
	

	

slice_qp_delta
	2
	ue(v)

	

if(entropy_coding_mode_flag && slice_type != I)
	
	

	

cabac_init_idc
	2
	ue(v)

	
}
	
	

lightweight_slice_flag specifies if the slice is a lightweight slice. lightweight_ slice_flag equal to 1 defines that all default values in the slice header are equal to the values transmitted in the slice header preceeding the current slice header.

3 Results

We implemented the proposed transform dynamic range restriction algorithm in HM 2.0. To configure the encoder we use the parameters described in section 2 above. We then coded all sequences using the configuration files described in JCTVC-C600 [2]. Full results are available in the attached XLS sheets. However, the summary is as follows:

	
	Intra

	
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.9
	0.9
	1.7

	Class B
	1.2
	0.9
	1.1

	Class C
	0.8
	0.7
	0.6

	Class D
	0.0
	0.0
	0.0

	Class E
	2.5
	2.8
	1.6

	All
	1.0
	1.0
	1.0

	Enc Time[%]
	#NUM!

	Dec Time[%]
	#NUM!

	
	
	
	

	
	
	Random access
	

	
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	4.9
	4.9
	4.9

	Class B
	3.2
	2.9
	2.4

	Class C
	1.6
	1.5
	1.3

	Class D
	0.1
	0.1
	0.1

	Class E
	
	
	

	All
	2.5
	2.4
	2.2

	Enc Time[%]
	#NUM!

	Dec Time[%]
	#NUM!

	
	
	
	

	
	Low delay

	
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	

	Class B
	3.3
	2.9
	1.7

	Class C
	1.5
	1.2
	1.0

	Class D
	0.0
	0.0
	0.0

	Class E
	6.5
	3.1
	3.0

	All
	2.6
	1.8
	1.4

	Enc Time[%]
	#NUM!

	Dec Time[%]
	#NUM!

Here, we observe that the impact on coding efficiency is 1.0%, 2.5% and 2.6% for all intra, random access and low delay cases. We assert that this is a negligible impact given advantage of parallel encoder and decoder.
4 Conclusion

We propose a method where the start of tile locations are communicated to the decoder within the bitstream. The primary goal of this proposal is to enable parallel tile decoding operations.
5 Patent rights declaration(s)
Sharp may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
6 References
[1] A. Fuldseth, “Replacing slices with tiles for high level parallelism,” JCTVC-D227/m18987, 4th Meeting: Daegu, KR, 20-28 January, 2011.

[2] Frank Bossen, "Common test conditions and software reference configurations," JCTVC-D600/m19497, 4th Meeting: Daegu, KR, 20-28 January, 2011.

[3] Gisle Bjøntegaard, “Calculation of Average PSNR Differences between RD curves”, ITU-T SG16/Q6, 13th VCEG Meeting, Austin, Texas, USA, April 2001, Doc. VCEG-M33.

Page: 2
Date Saved: 2011-03-19

