	[image: image4.png][image: image5.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
5th Meeting: Geneva, CH, 16-23 March, 2011
	Document: JCTVC-E386

	Title:
	IDCT pruning

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Madhukar Budagavi
Texas Instruments Inc., USA

	Email:
	madhukar@ti.com

	Source:
	Texas Instruments Inc.

Abstract

High frequency region of large transforms is typically zero due to quantization and energy compaction properties of transform. This contribution presents non-zero low frequency sub-block statistics of large transform blocks in anchor bitstreams of HM 2.0. The non-zero sub-block information can be used to carry out IDCT pruning where in the IDCT computations that have zero input and zero output can be eliminated. This contribution asserts that IDCT pruning is a useful technique that can be used to reduce SIMD computational complexity based on source statistics in decoder. It is also asserted to result in corresponding power savings in hardware transform engines. Complexity of pruned IDCT for HM 2.0 transform and transform implemented using partial butterfly (JCTVC-E243) are presented to demonstrate complexity reduction from IDCT pruning. This contribution recommends that the pruning behavior of large transforms be considered in design of HEVC transforms.
1 Introduction
High frequency region of large transforms is typically zero due to quantization and energy compaction properties of transform. This contribution presents non-zero low frequency sub-block statistics of large transform blocks in anchor bitstreams of HM 2.0. The non-zero sub-block information can be used to carry out IDCT pruning where in the IDCT computations that have zero input and zero output can be eliminated. This was highlighted during discussions in core transform break-out activity in Daegu [1].
In this contribution, IDCT pruning is asserted to be a useful technique that can be used to reduce SIMD computational complexity based on source statistics. It is also asserted to result in corresponding power savings in hardware transform engines. Complexity of pruned IDCT for HM 2.0 transform and transform implemented using partial butterfly (JCTVC-E243) are presented to demonstrate complexity reduction from IDCT pruning. This contribution recommends that the pruning behavior of large transforms be considered in design of HEVC transforms.
2 Non-zero block statistics
Due to quantization and energy compaction properties of transform, the high frequency region of large transforms is typically zero. The occurrence of following non-zero sub-blocks (See Figure 1) was measured. Let LK denote a block that has only the lowest frequency KxK sub-block to be non-zero.

· 16x16 Transform: L4, L8, L16
· 32x32 Transform: L4, L8, L16, L32

[image: image1.emf]Figure 1: Non-zero sub-blocks measured. Gray color indicates non -zero sub-block.

L16

16x16

L8

16x16

L4

16x16

4x4

8x8

L32

32x32

L16

32x32

L4

32x32

4x4

L8

32x32

Table below shows the distribution of non-zero sub-blocks. It can be seen from the table that majority of large transform blocks have non-zero coefficients in quadrant around DC value (which is Number of L4+L8 for 16x16 and Number of L4+L8+L16 for 32x32 transform blocks in Table 1).
Table 1: Distribution of non-zero sub-blocks.
	16x16 Transform
	
	

	
	High efficiency
	Low complexity

	Number of L4
	59%
	64%

	Number of L8
	18%
	29%

	Number of L16
	23%
	7%

	Number of L4+L8
	77%
	93%

	
	
	

	32x32 Transform
	
	

	Number of L4
	44%
	61%

	Number of L8
	15%
	29%

	Number of L16
	17%
	10%

	Number of L32
	24%
	0%

	Number of L4+L8+L16
	76%
	100%

3 Complexity implications
IDCT pruning can be successfully used to reduce complexity for blocks that have a majority of block region to be zero. 2D IDCT of an NxN block requires 2N 1D IDCTs. Figure 2 shows an example where N/2 x N/2 region is non-zero. For this example, only N/2 transforms need to be carried out along rows. Total number of 1D DCTs for this example is N/2+N = 1.5N, a 25% savings in complexity.

[image: image2.emf]NxN

1D transform

along rows

1D transform

along columns

Figure 2: Only N/2 1D transforms along a row need to be carried out

N/2xN/2

A further savings in complexity can be achieved by pruning within a 1D transform as shown in Figure 3. In Figure 3, matrix multiplication implementation of IDCT is used as an example to illustrate pruning within a 1D transform. For the example shown in Figure 3, only ¼ the number of multiplication are required if multiplication by 0 is eliminated.

[image: image3.emf]c4 c1 c2 c3 c4 c5 c6 c7 X0

c4 c3 c6 -c7 -c4 -c1 -c2 -c5 X1

c4 c5 -c6 -c1 -c4 c7 c2 c3 X2

c4 c7 -c2 -c5 c4 c3 -c6 -c1 X3

c4 -c7 -c2 c5 c4 -c3 -c6 c1 X4

c4 -c5 -c6 c1 -c4 -c7 c2 -c3 X5

c4 -c3 c6 c7 -c4 c1 -c2 c5 X6

c4 -c1 c2 -c3 c4 -c5 c6 -c7 X7

c4 c1 c2 c3 c4 c5 c6 c7 X0

c4 c3 c6 -c7 -c4 -c1 -c2 -c5 X1

c4 c5 -c6 -c1 -c4 c7 c2 c3 X2

c4 c7 -c2 -c5 c4 c3 -c6 -c1 X3

c4 -c7 -c2 c5 c4 -c3 -c6 c1 0

c4 -c5 -c6 c1 -c4 -c7 c2 -c3 0

c4 -c3 c6 c7 -c4 c1 -c2 c5 0

c4 -c1 c2 -c3 c4 -c5 c6 -c7 0

N

2

mults

N

2

/4 mults

Figure 3: IDCT pruning within 1D transform. Only ¼number of Multsrequired.

The overall number of multiplications from Figure 2 and Figure 3 would be:

Horizontal transform: N/2 * N2/4
Vertical transform: N * N2/4
Total: (3/8)* N3

which corresponds to about 62% savings in multiplications compared to the case where no pruning is used. There is a similar savings in additions.
4 Inverse transform complexity for HM 2.0 and partial butterfly pruned transforms
The number of multiplications and additions required for pruned transforms were counted by hand for the HM 2.0 transform and partial butterfly of JCTVC-E243. An example calculation for L4 case is shown in Appendix. Table 2 summarizes the computational complexity.
Table 2: Pruned transform computational complexity for 1D transform.

	Mults are 16x8 mults
	
	
	
	
	
	

	
	16x16
	8x8 non-zero in 16x16
	4x4 non-zero in 16x16
	
	

	
	Mult
	Add
	Mult
	Add
	Mult
	Add
	Mult
	Add

	HM 2.0 - 16x16
	58
	66
	44
	58
	36
	42
	
	

	Partial butterfly - 16x16
	82
	100
	44
	46
	22
	32
	
	

	
	
	
	
	
	
	
	
	

	
	32x32
	16x16 non-zero in 32x32
	8x8 non-zero in 32x32
	4x4 non-zero in 32x32

	
	Mult
	Add
	Mult
	Add
	Mult
	Add
	Mult
	Add

	HM 2.0 - 32x32
	170
	194
	140
	162
	124
	130
	84
	88

	Partial butterfly - 32x32
	342
	372
	172
	200
	86
	112
	42
	64

It can be seen from Table 2 that in terms of number of multiplications and additions, the complexity characteristics of HM 2.0 butterfly structure and partial butterfly structures are different depending on amount of pruning done.
5 Conclusions

This contribution presents non-zero sub-block statistics of large transforms in anchor bitstreams of HM 2.0. The non-zero sub-block information can be used to carry out IDCT pruning where in the IDCT computations that have zero input and zero output can be eliminated. IDCT pruning is a useful technique that can be used to reduce SIMD computational complexity and power consumption. Complexity of pruned IDCT for HM 2.0 transform and partial butterfly transform (e.g. JCTVC-E243) are presented. This contribution recommends that the pruning behavior of large transforms be considered in design of HEVC transforms.

6 References
[1] D. Flynn, BBC, JCTVC Daegu meeting.
7 Patent rights declaration(s)
Texas Instruments Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
8 Appendix

8.1 Number of computations for L4 case (only lowest 4x4 is non-zero) for HM 2.0 16x16 transform:
Non-colored operations below are pruned operations. Yellow colored multiplication are 16-bit multiplications and pink colored multiplication are 32-bit multiplications
	Stage 1
	Stage 2
	Stage 3

	F8 = (6 * X1 - 63 * X15) >> 6
F9 = (49 * X9 - 40 * X7) >> 6
F10 = (30 * X5 - 56 * X11) >> 6
F11 = (61 * X13 - 18 * X3) >> 6
F12 = (61 * X3 + 18 * X13) >> 6
F13 = (30 * X11 + 56 * X5) >> 6
F14 = (49 * X7 + 40 * X9) >> 6
F15 = (6 * X15 + 63 * X1) >> 6

	E4 = (12 * X2 - 62 * X14) >> 6
E5 = (53 * X10 - 35 * X6) >> 6
E6 = (53 * X6 + 35 * X10) >> 6
E7 = (12 * X14 + 62 * X2) >> 6
E8 = F8 + F9
E9 = F8 - F9
E10 = F11 - F10
E11 = F11 + F10
E12 = F12 + F13
E13 = F12 - F13
E14 = F15 - F14
E15 = F15 + F14
	D0 = (45 * (X0 + X8)) >> 6
D1 = (45 * (X0 - X8)) >> 6
D2 = (24 * X4 - 59 * X12) >> 6
D3 = (59 * X4 + 24 * X12) >> 6
D4 = E4 + E5
D5 = E4 - E5
D6 = E7 - E6
D7 = E7 + E6
D9 = (24 * E14 - 59 * E9) >> 6
D10 = (- 59 * E13 - 24 * E10) >> 6
D13 = (24 * E13 - 59 * E10) >> 6
D14 = (59 * E14 + 24 * E9) >> 6

	Stage 4
	Stage 5
	Stage 6

	C0 = D0 + D3
C3 = D0 - D3,
C8 = E8 + E11
C11 = E8 - E11
C12 = E15 - E12
C15 = E15 + E12
C1 = D1 + D2
C2 = D1 - D2
C9 = D9 + D10
C10 = D9 - D10
C13 = D14 - D13
C14 = D14 + D13
C5 = (45 * (D6 - D5)) >> 6
C6 = (45 * (D6 + D5)) >> 6

	B0 = C0 + D7
B7 = C0 - D7
B1 = C1 + C6
B6 = C1 - C6
B2 = C2 + C5
B5 = C2 - C5
B3 = C3 + D4
B4 = C3 - D4
B10 = (45 * (C13 - C10)) >> 6
B13 = (45 * (C13 + C10)) >> 6
B11 = (45 * (C12 - C11)) >> 6
B12 = (45 * (C12 + C11)) >> 6

	Y0 = B0 + C15
Y15 = B0 - C15
Y1 = B1 + C14
Y14 = B1 - C14
Y2 = B2 + B13
Y13 = B2 - B13
Y3 = B3 + B12
Y12 = B3 - B12
Y4 = B4 + B11
Y11 = B4 - B11
Y5 = B5 + B10
Y10 = B5 - B10
Y6 = B6 + C9
Y9 = B6 - C9
Y7 = B7 + C8
Y8 = B7 - C8

Number of operations:

· Number of 16-bit mults: Eight 16-bit mults and fourteen 32-bit mults = 8 + 14*2 = 36

· Adds: 42
8.2 Number of computations for L4 case (only lowest 4x4 is non-zero) for Partial butterfly of JCTVC-E243 16x16 transform:
O[0] = T[1][0]*X[1] + T[3][0]*X[3] + T[5][0]*X[5] + T[7][0]*X[7] + T[9][0]*X[9] + T[11][0]*X[11] + T[13][0]*X[13] + T[15][0]*X[15]

O[1] = T[1][1]*X[1] + T[3][1]*X[3] + T[5][1]*X[5] + T[7][1]*X[7] + T[9][1]*X[9] + T[11][1]*X[11] + T[13][1]*X[13] + T[15][1]*X[15]

O[2] = T[1][2]*X[1] + T[3][2]*X[3] + T[5][2]*X[5] + T[7][2]*X[7] + T[9][2]*X[9] + T[11][2]*X[11] + T[13][2]*X[13] + T[15][2]*X[15]

O[3] = T[1][3]*X[1] + T[3][3]*X[3] + T[5][3]*X[5] + T[7][3]*X[7] + T[9][3]*X[9] + T[11][3]*X[11] + T[13][3]*X[13] + T[15][3]*X[15]

O[4] = T[1][4]*X[1] + T[3][4]*X[3] + T[5][4]*X[5] + T[7][4]*X[7] + T[9][4]*X[9] + T[11][4]*X[11] + T[13][4]*X[13] + T[15][4]*X[15]

O[5] = T[1][5]*X[1] + T[3][5]*X[3] + T[5][5]*X[5] + T[7][5]*X[7] + T[9][5]*X[9] + T[11][5]*X[11] + T[13][5]*X[13] + T[15][5]*X[15]

O[6] = T[1][6]*X[1] + T[3][6]*X[3] + T[5][6]*X[5] + T[7][6]*X[7] + T[9][6]*X[9] + T[11][6]*X[11] + T[13][6]*X[13] + T[15][6]*X[15]

O[7] = T[1][7]*X[1] + T[3][7]*X[3] + T[5][7]*X[5] + T[7][7]*X[7] + T[9][7]*X[9] + T[11][7]*X[11] + T[13][7]*X[13] + T[15][7]*X[15]

EO[0] = T[2][0]*X[2] + T[6][0]*X[6] + T[10][0]*X[10] + T[14][0]*X[14]

EO[1] = T[2][1]*X[2] + T[6][1]*X[6] + T[10][1]*X[10] + T[14][1]*X[14]

EO[2] = T[2][2]*X[2] + T[6][2]*X[6] + T[10][2]*X[10] + T[14][2]*X[14]

EO[3] = T[2][3]*X[2] + T[6][3]*X[6] + T[10][3]*X[10] + T[14][3]*X[14]

EEE[0] = T[0][0]*X[0] + T[8][0]*X[8]

EEO[0] = T[4][0]*X[4] + T[12][0]*X[12]

EEE[1] = T[0][1]*X[0] + T[8][1]*X[8]

EEO[1] = T[4][1]*X[4] + T[12][1]*X[12]

EE[0] = EEE[0] + EEO[0]

EE[1] = EEE[1] + EEO[1]
EE[2] = EEE[1] - EEO[1]
EE[3] = EEE[0] - EEO[0]

E[0] = EE[0] + EO[0]

E[1] = EE[1] + EO[1]

E[2] = EE[2] + EO[2]

E[3] = EE[3] + EO[3]

E[4] = EE[3] - EO[3]

E[5] = EE[2] - EO[2]

E[6] = EE[1] - EO[1]

E[7] = EE[0] - EO[0]
x[0] = E[0] + O[0]

x[1] = E[1] + O[1]

x[2] = E[2] + O[2]

x[3] = E[3] + O[3]

x[4] = E[4] + O[4]

x[5] = E[5] + O[5]

x[6] = E[6] + O[6]

x[7] = E[7] + O[7]

x[8] = E[7] - O[7]

x[9] = E[6] - O[6]

x[10] = E[5] - O[5]

x[11] = E[4] - O[4]

x[12] = E[3] - O[3]

x[13] = E[2] - O[2]

x[14] = E[1] - O[1]

x[15] = E[0] - O[0]
Non-colored operations above are pruned operations. Yellow colored multiplication are 16-bit multiplications. There are no 32-bit multiplications.

Number of operations:

· Number of 16-bit mults: 22

· Adds: 32

Page: 5
Date Saved: 2011-03-20

