
	[image: image1.png][image: image2.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
5rd Meeting: Geneva, CH, 16-23 March, 2011
	Document: JCTVC-E364-r2
WG11 Number: m19893

	Title:
	Proposal on RQT root location

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Krit Panusopone

Xue Fang
Limin Wang
	
Tel:
Email:
	+1-858-404-3618
krit@motorola.com

	Source:
	Motorola Mobility

Abstract

This contribution describes a modification to RQT structure for TU partitioning in the current HM. The proposed structure ties RQT root to CU size and PU partitioning type. Several optimization techniques to the modified RQT structure are also described.
Introduction
At Daegu meeting, an efficient TU representation was proposed [1] to improve trade-off between complexity and coding efficiency. In [1], TU size is linked to PU size, instead of CU size. Specifically, given a PU (either a square block or a rectangular block), the corresponding TU takes the same size as the PU. If PU is a square block, TU is a square block of the same size. If PU is a rectangular block, TU size is then set to the size of the largest possible square block that can fit into the PU.

This contribution focuses on RQT root location to make [1] more flexible. Results of some optimizing methods for this scheme including size matching cost function in ME routine, better overhead bit cost estimation in mode decision, and effect of different RQT root locations for chroma will be discussed.
RQT root location
There are two differences between [1] and HM RQT [2]. First, RQT root location in inter mode of HM RQT is set at CU while RQT root location in [1] is tied to CU size and PU partition type. Second, [1] sets RQT depth to 1. If these two factors are the same, as in the case of intra low complexity mode of HM RQT, [1] and HM RQT produce the same results for luma component as shown in [3].
Optimization
1.1 Luma optimization

There are many ways to further improve [1] by optimizing luma component. The first technique is to use correct size in HAD cost function in motion estimation routine. The second technique is to modify bit cost calculation in mode decision to reflect the removal of TU split flag bit. These two techniques improve coding performance of [1] by providing a more accurate RD cost inside PU mode decision which is critical to [1] since it does not allow further refinement in TU as in HM RQT. These two techniques are encoder only optimization and no change in syntax is required.
1.2 Chroma optimization

It is possible to apply [1] to chroma component only since chroma TU is tied to luma TU in the current RQT. Specifically, HM RQT for luma component is kept the same but TU split flag does not impact chroma TU. Chroma TU is now set based on CU size and PU partition type. Given a PU (either a square block or a rectangular block), the corresponding chroma TU takes the same size as the PU. If PU is a square block, chroma TU is a square block of the same size. If PU is a rectangular block, chroma TU size is then set to the size of the largest possible square block that can fit into the PU.
Proposed change to WD text

Change # 1

pred_type specifies prediction mode and partitioning type of the current coding unit. The semantics of pred_type depend on the slice type. The variables PredMode, PartMode and IntraSplitFlag are derived from the value of pred_type as defined in Table 7 7. The variables InterSplitFlag are derived from the value of pred_type as defined in Table 7 7a. The value of pred_type shall not be equal to 3 or 5 when slice_type is equal to P or B and log2CUSize is greater than Log2MinCUSize.
Change # 2
split_transform_flag[x0][y0][trafoDepth] specifies whether a block is split into blocks with half horizontal and vertical size for the purpose of transform coding. The array indices x0, y0 specify the location (x0, y0) of the top-left luma sample of the considered block relative to the top-left luma sample of the picture. The array index trafoDepth specifies the current subdivision level of a coding unit into blocks for the purpose of transform coding. trafoDepth is equal to 0 for blocks that correspond to coding units.

When split_transform_flag[x0][y0][trafoDepth] is not present, it is inferred as follows:

–
If log2TrafoSize is greater than Log2MaxTrafoSize or intraSplitFlag is equal to 1 or InterSplitFlag is equal to 1, the value of split_transform_flag[x0][y0][trafoDepth] is inferred to be equal to 1.

–
Otherwise (log2TrafoSize is less than or equal to Log2MaxTrafoSize and intraSplitFlag is equal to 0 and InterSplitFlag is equal to 0), the value of split_transform_flag[x0][y0][trafoDepth] is inferred to be equal to 0.
Change # 3
7.3.8 Transform tree syntax

	transform_tree(x0, y0, log2TrafoSize, trafoDepth, blkIdx) {
	Descriptor

	
if (trafoDepth = = 0 && IntraSplitFlag = = 0){
	

	

if(!entropy_coding_mode_flag && PredMode != MODE_INTRA) {
	

	

cbp_yuv_root
	vlc(n,v)

	

cbf_luma[x0][y0] [trafoDepth] = cbp_yuv_root & 1
	

	

cbf_cb[x0][y0] [trafoDepth] = (cbp_yuv_root >> 1) & 1
	

	

cbf_cr[x0][y0] [trafoDepth] = (cbp_yuv_root >> 2) & 1
	

	

residualDataPresentFlag = (cbp_yuv_root != 0)
	

	

}
	

	

else {
	

	

if(PredMode != MODE_INTRA)
	

	

no_residual_data_flag
	u(1) | ae(v)

	

residualDataPresentFlag = !no_residual_data_flag
	

	

}
	

	
}

else {
	

	

residualDataPresentFlag = TRUE
	

	
}
	

	
if (residualDataPresentFlag) {
	

	

intraSplitFlag = (IntraSplitFlag && trafoDepth = = 0 ? 1 : 0)
	

	InterSplitFlag = ((max_transform_hierarchy_depth_inter = = 0 ? 1 : 0) && (trafoDepth = = 0 ? 1 : 0) && (log2TrafoSize > Log2MinTrafoSize))
	

	

maxDepth = (PredMode = = MODE_INTRA ?

max_transform_hierarchy_depth_intra + IntraSplitFlag :

max_transform_hierarchy_depth_inter)
	

	

if(log2TrafoSize <= Log2MaxTrafoSize &&

log2TrafoSize > Log2MinTrafoSize &&

trafoDepth < maxDepth && !intraSplitFlag)
	

	

split_transform_flag[x0][y0][trafoDepth]
	u(1) | ae(v)

	

if(PredMode != MODE_INTRA &&

log2TrafoSize <= Log2MaxTrafoSize &&

entropy_coding_mode_flag) {
	

	

firstChromaCbf = (log2TrafoSize = = Log2MaxTrafoSize | |

trafoDepth = = 0 ? 1 : 0)
	

	

if(firstChromaCbf | | log2TrafoSize > Log2MinTrafoSize) {
	

	

xBase = x0 − (x0 & ((1 << log2TrafoSize) − 1))
	

	

yBase = y0 − (y0 & ((1 << log2TrafoSize) − 1))
	

	

if(firstChromaCbf | |

cbf_cb[xBase][yBase][trafoDepth − 1])
	

	

cbf_cb[x0][y0][trafoDepth]
	u(1) | ae(v)

	

if(firstChromaCbf | |

cbf_cr[xBase][yBase][trafoDepth − 1])
	

	

cbf_cr[x0][y0][trafoDepth]
	u(1) | ae(v)

	

}
	

	

}
	

	

if(split_transform_flag[x0][y0][trafoDepth]) {
	

	

x1 = x0 + ((1 << log2TrafoSize) >> 1)
	

	

y1 = y0 + ((1 << log2TrafoSize) >> 1)
	

	

transform_tree(x0, y0, log2TrafoSize − 1, trafoDepth + 1, 0)
	

	

transform_tree(x1, y0, log2TrafoSize − 1, trafoDepth + 1, 1)
	

	

transform_tree(x0, y1, log2TrafoSize − 1, trafoDepth + 1, 2)
	

	

transform_tree(x1, y1, log2TrafoSize − 1, trafoDepth + 1, 3)
	

	

}
	

	

else if(entropy_coding_mode_flag){
	

	

if(PredMode = = MODE_INTRA | | trafoDepth != 0 | |

cbf_cb[x0][y0][trafoDepth] | |

cbf_cr[x0][y0][trafoDepth])
	

	

cbf_luma[x0][y0][trafoDepth]
	u(1) | ae(v)

	

if(PredMode = = MODE_INTRA)
	

	

if(log2TrafoSize > Log2MinTrafoSize) {
	

	

cbf_cb[x0][y0][trafoDepth]
	u(1) | ae(v)

	

cbf_cr[x0][y0][trafoDepth]
	u(1) | ae(v)

	

} else if(blkIdx = = 0) {
	

	

cbf_cb[x0][y0][trafoDepth − 1]
	u(1) | ae(v)

	

cbf_cr[x0][y0][trafoDepth − 1]
	u(1) | ae(v)

	

}
	

	

}
	

	
}
	

	
if(!entropy_coding_mode_flag && PredMode == MODE_INTRA) {
	

	

cbp_yuv_root
	vlc(n,v)

	

cbf_luma[x0][y0] [0] = cbp_yuv_root & 1
	

	

cbf_cb[x0][y0] [0] = (cbp_yuv_root >> 1) & 1
	

	

cbf_cr[x0][y0] [0] = (cbp_yuv_root >> 2) & 1
	

	
}
	

	}
	

Change # 4 (new)

Table 7‑7a ‑ Name association to prediction mode and partitioning type

	slice_type
	pred_type
	InterSplitFlag
	PredMode
	PartMode

	I
	0
	-
	MODE_INTRA
	PART_2Nx2N

	
	1
	-
	MODE_INTRA
	PART_NxN

	P or B
	0
	0
	MODE_INTER
	PART_2Nx2N

	
	1
	!(max_transform_hierarchy_depth_inter)
	MODE_INTER
	PART_2NxN

	
	2
	!(max_transform_hierarchy_depth_inter)
	MODE_INTER
	PART_Nx2N

	
	3
	!(max_transform_hierarchy_depth_inter)
	MODE_INTER
	PART_NxN

	
	4
	-
	MODE_INTRA
	PART_2Nx2N

	
	5
	-
	MODE_INTRA
	PART_NxN

	
	inferred
	0
	MODE_SKIP
	PART_2Nx2N

Change # 5

8.4.3.1
Decoding process for luma residual blocks

Inputs to this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location (xB, yB) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable log2TrafoSize specifying the size of the current block,

–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

–
a variable nCS specifying the size, in luma samples, of the current coding unit,

–
a (nCS)x(nCS) array resSamples of luma residual samples.

Output of this process is:

–
a modified version of the (nCS)x(nCS) array of luma residual samples.

Depending on InterSplitFlag, the following applies:

–
If InterSplitFlag is equal to 0, the following ordered steps apply:
Depending split_transform_flag[xB][yB][trafoDepth], the following applies:

–
If split_transform_flag[xB][yB][trafoDepth] is equal to 1, the following ordered steps apply:

1.
The variable xB1 is set equal to xB + ((1 << log2TrafoSize) >> 1).

2.
The variable yB1 is set equal to yB + ((1 << log2TrafoSize) >> 1).

3.
The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB, yB), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

4.
The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB1, yB), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

5.
The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

6.
The decoding process for luma residual blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (split_transform_flag[xB][yB][trafoDepth] is equal to 0), the following ordered steps apply:

1.
The variable nS is set equal to 1 << log2TrafoSize.

2.
The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location (xC + xB, yC +yB), the variable trafoDepth, the variable cIdx set equal to 0, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

3.
The array construction process as specified in subclause 8.5.5 is invoked with the luma location (xB, yB), the variable cIdx set equal to 0, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (InterSplitFlag is equal to 1), for the variable blkIdx proceeding over the values 0..3, the following ordered steps apply:

1.
The variable xB1 is set equal to xB + ((1 << log2TrafoSize) >> 1) * (blkIdx % 2).

2.
The variable yB1 is set equal to yB + ((1 << log2TrafoSize) >> 1) * (blkIdx / 2).

3.
The variable log2TrafoSize set equal to log2TrafoSize – 1.

4.
The variable nS is set equal to 1 << log2TrafoSize.

5.
The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location (xC + xB1, yC +yB1), the variable trafoDepth, the variable cIdx set equal to 0, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

6.
The array construction process as specified in subclause 8.5.5 is invoked with the luma location (xB1, yB1), the variable cIdx set equal to 0, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.
8.4.3.2
Decoding process for chroma residual blocks

Inputs to this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a luma location (xB, yB) specifying the top-left luma sample of the current block relative to the top left luma sample of the current coding unit,

–
a variable log2TrafoSize specifying the size of the current block,

–
a variable trafoDepth specifying the hierarchy depth of the current block relative to the coding unit,

–
a variable cIdx specifying the chroma component of the current block,

–
a variable nCS specifying the size, in chroma samples, of the current coding unit,

–
a (nCS)x(nCS) array resSamples of chroma residual samples.

Output of this process is:

–
a modified version of the (nCS)x(nCS) array of chroma residual samples.

Depending on InterSplitFlag, the following applies:

–
If InterSplitFlag is equal to 0, the following ordered steps apply:
The variable splitChromaFlag is derived as follows:

–
If split_transform_flag[xB][yB][trafoDepth] is equal to 1 and log2TrafoSize is greater than Log2MinTrafoSize + 1, splitChromaFlag is set equal to 1.

–
Otherwise (split_transform_flag[xB][yB][trafoDepth] is equal to 0 or log2TrafoSize is equal to Log2MinTrafoSize + 1), splitChromaFlag is set equal to 0.

Depending splitChromaFlag, the following applies:

–
If splitChromaFlag is equal to 1, the following ordered steps apply:

1.
The variable xB1 is set equal to xB + ((1 << log2TrafoSize) >> 1).

2.
The variable yB1 is set equal to yB + ((1 << log2TrafoSize) >> 1).

3.
The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB, yB), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

4.
The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB1, yB), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

5.
The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

6.
The decoding process for residual chroma blocks as specified in this subclause is invoked with the luma location (xC, yC), the luma location (xB1, yB1), the variable log2TrafoSize set equal to log2TrafoSize − 1, the variable trafoDepth set equal to trafoDepth + 1, the variable cIdx, the variable nCS, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (splitChromaFlag is equal to 0), the following ordered steps apply:

1.
The variable nS is set equal to (1 << log2TrafoSize) >> 1.

2.
The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location (xC + xB, yC +yB), the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

3.
The array construction process as specified in subclause 8.5.5 is invoked with the luma location (xB, yB), the variable cIdx, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.

–
Otherwise (InterSplitFlag is equal to 1), for the variable blkIdx proceeding over the values 0..3, the following ordered steps apply:

1.
The variable xB1 is set equal to xB + ((1 << log2TrafoSize) >> 1) * (blkIdx % 2).

2.
The variable yB1 is set equal to yB + ((1 << log2TrafoSize) >> 1) * (blkIdx / 2).

3.
The variable log2TrafoSize set equal to log2TrafoSize – 1.

4.
The variable nS is set equal to (1 << log2TrafoSize) >> 1.

5.
The scaling and transformation process as specified in subclause 8.5.1 is invoked with the luma location (xC + xB1, yC +yB1), the variable trafoDepth, the variable cIdx, and the transform size trafoSize set equal to nS as the inputs and the output is a (nS)x(nS) array resSamplesBlock.

6.
The array construction process as specified in subclause 8.5.5 is invoked with the luma location (xB1, yB1), the variable cIdx, the variable inputArraySize set equal to nS, the variable outputArraySize set equal to nCS, the (nS)x(nS) array resSamplesBlock, and the (nCS)x(nCS) array resSamples as the inputs and the output is a modified version of the (nCS)x(nCS) array resSamples.
Experimental Results
The proposed method was implemented in HM-2.0 and tested to evaluate its coding performance and complexity. The coding conditions used for the simulations are specified in [4], except that RQT depth for inter is set to 1. Tables 1-2 show coding performance and complexity of the proposed method. Tables 3-4 show coding performance and complexity of the proposed method with luma optimization techniques (HAD cost function only). Tables 5-6 show coding performance and complexity of the proposed method with luma optimization techniques (HAD cost function and accurate overhead bit cost estimation). Some of simulation results were cross checked by NEC [5]. Notice that simulation platform of the proposed method and that of the anchor are different and hence results for encoding and decoding time are unreliable.
Table 1: Coding performance and complexity of the proposed method in random access test condition

	
	
	Random access
	
	
	Random access LoCo
	

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.6
	0.1
	0.1
	0.6
	0.1
	0.0

	Class B
	0.9
	0.4
	0.3
	0.8
	0.2
	0.1

	Class C
	0.7
	0.2
	0.2
	0.7
	0.1
	0.1

	Class D
	0.8
	-0.1
	0.1
	0.8
	0.0
	0.3

	Class E
	
	
	
	
	
	

	All
	0.8
	0.1
	0.2
	0.8
	0.1
	0.1

	Enc Time[%]
	84%
	95%

Table 2: Coding performance and complexity of the proposed method in low delay test condition

	
	Low delay
	Low delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	1.2
	1.4
	1.6
	1.2
	0.4
	0.4

	Class C
	1.1
	0.8
	0.7
	1.1
	0.7
	0.4

	Class D
	1.0
	0.4
	0.1
	1.3
	0.7
	0.9

	Class E
	0.4
	-0.5
	-0.1
	0.6
	0.4
	-0.1

	All
	1.0
	0.7
	0.7
	1.1
	0.5
	0.5

	Enc Time[%]
	79%
	88%

Table 3: Coding performance and complexity of the proposed method with HAD cost function optimization in random access test condition
	
	
	Random access
	
	
	Random access LoCo
	

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.6
	0.0
	0.1
	0.5
	-0.1
	-0.1

	Class B
	0.8
	0.4
	0.3
	0.7
	0.1
	0.0

	Class C
	0.6
	0.1
	0.1
	0.5
	0.1
	0.0

	Class D
	0.7
	-0.1
	-0.1
	0.7
	0.1
	0.1

	Class E
	
	
	
	
	
	

	All
	0.7
	0.1
	0.1
	0.6
	0.1
	0.0

	Enc Time[%]
	88%
	100%

Table 4: Coding performance and complexity of the proposed method with HAD cost function optimization in low delay test condition
	
	Low delay
	Low delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	1.1
	1.6
	1.2
	1.0
	0.3
	0.4

	Class C
	0.9
	0.7
	0.6
	1.0
	0.5
	0.2

	Class D
	0.9
	0.3
	0.1
	1.3
	0.8
	0.4

	Class E
	0.5
	-0.4
	0.2
	0.5
	0.0
	0.0

	All
	0.9
	0.7
	0.6
	1.0
	0.4
	0.3

	Enc Time[%]
	84%
	94%

Table 5: Coding performance and complexity of the proposed method with HAD cost function optimization and accurate overhead bit cost estimation in random access test condition
	
	
	Random access
	
	
	Random access LoCo
	

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.6
	0.3
	0.2
	0.4
	0.1
	0.1

	Class B
	0.8
	0.5
	0.5
	0.7
	0.0
	0.0

	Class C
	0.6
	0.3
	0.3
	0.6
	0.0
	0.1

	Class D
	0.7
	0.2
	0.1
	0.7
	0.0
	0.1

	Class E
	
	
	
	
	
	

	All
	0.7
	0.3
	0.3
	0.6
	0.0
	0.0

	Enc Time[%]
	90%
	103%

Table 6: Coding performance and complexity of the proposed method with HAD cost function optimization and accurate overhead bit cost estimation in low delay test condition

	
	Low delay
	Low delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	1.0
	1.4
	1.2
	1.0
	0.1
	0.3

	Class C
	0.9
	0.9
	0.8
	0.9
	0.1
	-0.1

	Class D
	0.9
	0.9
	0.6
	1.2
	0.4
	0.1

	Class E
	0.4
	0.6
	0.3
	0.6
	0.3
	0.3

	All
	0.8
	1.0
	0.8
	0.9
	0.2
	0.1

	Enc Time[%]
	86%
	96%

References

[1] K. Panusopone, X. Fang, L. Wang, “Efficient TU representation,” JCT-VC document, JCTVC-D250, Jan. 2011.

[2] “HEVC Specification Working Draft 2,” JCT-VC document, JCTVC-D503, Jan. 2011.
[3] K. Panusopone, K. Chono, Y.H. Tan, M. Zhou, “Evaluation of RQT in HM and related TU representation, ” JCT-VC document, JCTVC-E365, Mar. 2011.
[4] Frank Bossen, “Common test conditions and software reference configurations,” JCT-VC document, JCTVC-D600, Jan. 2011.
[5] K. Chono, H. Aoki, Y. Senda, “Cross-verification report of proposal on RQT root location” JCT-VC document, JCTVC-E183, Mar. 2011.
Motorola Mobility Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2011-03-18

