	[image: image13.wmf]Y BD-rate

U BD-rate

V BD-rate

Class A

0,00

0,02

0,04

Class B

0,00

0,00

0,00

Class C

0,00

0,00

0,00

Class D

0,00

0,00

0,00

Class E

0,00

0,01

-0,01

All

0,00

0,01

0,00

Enc Time[%]

Dec Time[%]

Random access

Y BD-rate

U BD-rate

V BD-rate

Class A

-0,05

0,26

-0,12

Class B

0,01

0,00

0,05

Class C

-0,03

0,03

-0,09

Class D

0,02

-0,08

-0,11

Class E

All

-0,01

0,05

-0,06

Enc Time[%]

Dec Time[%]

Y BD-rate

U BD-rate

V BD-rate

Class A

Class B

0,01

-0,11

0,13

Class C

-0,02

0,17

0,03

Class D

-0,06

-0,10

-0,26

Class E

0,02

-0,59

-0,08

All

-0,01

-0,13

-0,03

Enc Time[%]

Dec Time[%]

Low delay

100%

103%

103%

103%

100%

103%

Intra

[image: image14.wmf]Y BD-rate

U BD-rate

V BD-rate

Class A

0,00

0,07

0,09

Class B

0,01

0,03

0,02

Class C

0,00

0,02

0,02

Class D

0,00

0,02

0,02

Class E

0,01

0,09

0,06

All

0,00

0,04

0,04

Enc Time[%]

Dec Time[%]

Random access

Y BD-rate

U BD-rate

V BD-rate

Class A

0,06

0,12

-0,33

Class B

0,00

0,03

0,00

Class C

-0,05

-0,05

0,01

Class D

-0,02

-0,12

-0,04

Class E

All

0,00

0,00

-0,09

Enc Time[%]

Dec Time[%]

Y BD-rate

U BD-rate

V BD-rate

Class A

Class B

-0,01

0,10

0,25

Class C

0,00

0,02

-0,09

Class D

-0,06

0,20

0,24

Class E

-0,01

-0,47

0,50

All

-0,02

0,00

0,21

Enc Time[%]

Dec Time[%]

105%

Intra

108%

125%

100%

Low delay

100%

109%

[image: image15.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
5th Meeting: Geneva, CH, 16-23 March, 2011
	Document: JCTVC-E225
WG11 Number: m19748

	Title:
	Line Memory Reduction for ALF Decoding

	Status:
	Input Document to JCT-VC

	Purpose:
	Report and Proposal

	Author(s) or
Contact(s):
	Semih Esenlik,
Matthias Narroschke,
Thomas Wedi
Panasonic R&D Center Germany
Monzastr. 4c, 63225 Langen, Germany
	

Tel:
Email:
	+49 6103 766 1306
Semih.Esenlik@eu.panasonic.com

+49 6103 766 204
Matthias.Narroschke@eu.panasonic.com
+49 6103 766 1194
Thomas.Wedi@eu.panasonic.com

	Source:
	Panasonic Corporation

Abstract

This contribution proposes a method to reduce the line memory that is required by ALF (Adaptive Loop Filter) in the decoder side. In the current HM 2.0, de-blocking filtering and ALF pose additional difficulties in the block based decoding procedure. Namely, since the two filtering operations require samples from neighboring blocks, additional horizontal and vertical line memory need to be employed which increases the manufacturing costs of the video chips. This contribution focuses on the reduction of the line memory for LCU-based (Largest Coding Unit) decoding. The main focus is the reduction in “horizontal” line memory whose size is directly proportional to the width of the decoded picture. With the help of the proposed technique the horizontal line memory that needs to be employed is reduced by %33 for luma and 20% for chroma with 0.01% increase in the coding efficiency. In addition to the main contribution two optional extensions are discussed that work together with the main proposal.
1 Introduction

The hardware implementation of the decoder usually employs on-chip memories to reduce the external memory bandwidth requirements. The data that is going to be used multiple times in the process of decoding is usually stored in the on-chip memory. As a result, the on-chip memory reduces the external memory access requirements.

A specific type of on-chip memory is conveniently called “line memory” which is depicted in Fig. 1. During the decoding process the coding blocks are processed one by one in a raster scan order. Since the immediate neighbors of the currently decoded block (below and right neighbors) are not available, the aforementioned filtering operations have to be delayed at the coding block borders (since the filtering operation extends beyond the region of the currently processed coding block). As a result the samples that are required for delayed filtering are stored in the “line memory“.

[image: image1]

Figure 1
2 Line memory requirements for HM2.0
ALF decode filtering can be carried out in either frame-based or LCU-based fashion. In frame-based ALF filtering, the deblocking filter output is first stored in a frame buffer. The deblocked filter output is then read to carry out ALF filtering. In LCU-based filtering, ALF filtering is carried out on an LCU basis as immediately after the deblocked filter output is generated. Therefore both deblocking filtering and ALF can be applied on a current LCU before the output is written to the reference frame memory. Since the frame based filtering requires additional access to the external memory, LCU-based filtering is considered preferable in hardware implementations.
Figure 1 shows the line memory requirements for the LCU-based filtering operation (at the decoder side) where first deblocking filtering is applied on the LCU and than ALF is performed on the deblocked LCU. The two filtering operations are carried out as follows:
1. First the all of the coding unit edges are deblocking filtered except for the right and bottom borders of the LCU [3].
2. The deblocking filtering of the pixels at the bottom LCU border is delayed since the LCU below is not available according to the processing order of the LCUs. This requires 4 horizontal lines to be stored in the line memory for delayed deblocking filtering.

3. The deblocking filtering of the pixels at the right LCU border is delayed since the neighboring LCU on the right is not available according to the processing order of the LCUs. This requires 4 vertical lines to be stored in the line memory for delayed deblocking filtering.

4. Since the input to ALF is the pixels that are processed by deblocking filtering, it cannot use the pixels that might be modified later by the deblocking filter. Due to this reason, 6 (maximum vertical size of ALF - 1) more horizontal lines are required to be stored in the lines memory for delayed adaptive loop filtering.

5. 1 line can be shared by deblocking filtering and ALF since its value will not be modified by deblocking filtering.

6. Therefore in total 9 (4 + maximum vertical size of ALF - 2) horizontal lines and 11 (4 + maximum horizontal size of ALF - 2) need to be stored in the line memory.

The following formulas can be used to estimate the amount of line memory that needs to be implemented in terms of number of bits:

[image: image2.wmf]
[image: image3.wmf]2)

-

filter

ALF

of

size

 vertical

(4

*

depth

-

bit

pixel

internal

*

h

frame_widt

bits

of

number

in

memory

line

Horizontal

+

=

 (1)

[image: image4.wmf]2)

-

filter

ALF

of

size

horizontal

(4

*

depth

-

bit

pixel

internal

*

height

_

LCU

bits

of

number

in

memory

line

Vertical

+

=

 (2)
The horizontal and vertical line memories are shown in Figure 2 below.

[image: image5]
Figure 2
3 Proposed Technique
The LCU based decoding procedure for current HM2.0 is depicted below in Figure 3. The region that needs to be stored in the line memory is depicted in light green color, and is composed of 9 horizontal lines. Due to the fact that the lowermost 3 lines (shown in red) might be modified by deblocking filter, the ALF filter is deferred additionally by 3 lines. In the figure, the ALF filter is shown in the lowermost position where the filtering process can be carried out. Below that point, since ALF will have filtering taps that overlap with the red lines (to be modified later by deblocking filter), the filtering operation cannot be applied.
[image: image6.png]LCU

9 pixels

Red lines will be
modified by DB fier

Figure 3
Figure 4 shows the proposed filtering operation at the horizontal LCU borders. Here it is proposed that ALF uses partially deblocked pixels at the LCU border in order to avoid additional delay in filtering operation. In other words, although the 3 red lines at the block edge are going to be modified by the deblocking filter, ALF is allowed to use these pixels as input. Therefore additional delay that is caused by the sequential order of the filters is eliminated, reducing the line memory requirement to 6 lines.
[image: image7.png]LCU

6 pixels

Red lines will be
modified by DB fier

Figure 4
We would like to remark here that the proposed method does not change the order of the deblocking filter and ALF. With the proposed technique ALF is allowed to use the available partially (half-) deblocked pixels at the horizontal LCU block borders where deblocking filter has to be delayed. Therefore a %33 percent reduction in the line memory can be achieved with no impact on the coding efficiency.
The proposed method is also applied to the chroma component. Here the maximum vertical size of the ALF filter is 5 and only one horizontal line is modified by deblocking filter at LCU borders. Therefore the reduction in the line memory is %20, where the line memory is reduced from 5 to 4.
4 Extensions

4.1 Additional reduction in vertical line memory
The horizontal line memory accounts for most of the memory that is needed to be implemented (The size of the line memory is directly proportional to the width of the frame). However the proposed technique can be applied to reduce the vertical line memory as well. In the extension part of the proposal we propose to extend our method to include the reduction in the vertical line memory as well. This described in the Figures 5 and 6, where Figure 5 shows the situation in the current HM2.0. Figure 6 shows the proposed method where the vertical line memory is reduced from 11 lines to 8 lines.

Here the extension proposal is also applied to the chroma component. Therefore the vertical line memory required for chroma filtering is reduced from 5 to 4.
[image: image8.png]2

LCl

1

Red lines will be
modiied by DB fite

9 pixels|

Figure 5
[image: image9.png]U

LCl

1

Red lines will be
modiied by DB fite

6 pixelsI

Figure 6
4.2 Option for switching ALF off

In the decoder side the inclusion of non-deblocked pixels for adaptive loop filtering pose no problem due to the LCU based decoding procedure. However in the encoder side the parts of the pre-deblocked frame might need to be buffered as an intermediate step. More precisely 3 horizontal lines in each LCU might need to be stored and accessed for the filtering of the frame by ALF.

Although the increase in the complexity of the encoder is quite small, we decided to provide an optional solution to be able to overcome it. Therefore it is proposed as an extensional proposal to provide an option to the encoder to switch ALF off in the regions where the pre-deblocked pixels are required by ALF. In other words if the encoder is not willing to take the aforementioned extra burden, it can choose to switch ALF off at the 4th, 5th and 6th lines counting from the LCU bottom border. Therefore the reduction in horizontal line memory can still be achieved without increasing the encoder complexity in an alternative way.

The syntax element required for switching the ALF off is might be included either in the sequence or in picture parameter sets.

The experimental results associated with the proposed extension are given in the Part 5.
5 Experiments
Software and configuration

The settings for the experiment are:

· Macro PANASONIC_LINE_MEM_REDUCTION is set to 1 for line memory reduction in the horizontal line memory (main proposal).
· Macro PANASONIC_VERTICAL_LINE_MEM_REDUCTION is set to 1 for additional reduction in the vertical line memory.
· Macro PANASONIC_LINE_MEM_NO_ALF is set to 1 to enable the option for switching ALF off in the regions where pre-deblocked pixels are required by ALF.

Tested are 3 test cases, which are Intra, Random access, and Low delay each in high efficiency operation mode.

The configuration files of the SVN repository, which equal to those defined in [4], were used for the experiments. For all run time measurements, computers of the same configuration are used for both, reference and proposal.
5.1 Experimental results for main proposal

As a reference, the official tagged 2.0 version of the HM software [1][2] is used. Table 1 shows the experimental results of the main proposal that aims at line memory reduction in the horizontal line memory.

[image: image10]
Table 1
The attached excel file “JCTVC-E225_r1.xls” includes all further details of the main proposal.
5.2 Experimental results for “additional reduction in vertical line memory” extension

The results for the optional extension that govern additional vertical line memory reduction are given as follows:

[image: image11]
Table 2
The attached excel file “JCTVC-E225-extension-1_r1.xls” includes all further details for the optional extension to the proposal where additional reduction in the vertical line memory is achieved.
Due to the fact that additional logic needed to be included in the software to simulate LCU based decoding, the decoding times increased in this extensional proposal, which is an artificial effect. Here again the coding efficiency is increased by 0.01%.

5.3 Experimental results “option for switching ALF off” extension

The results for the optional extension that govern the option for switching ALF off are given below in Table 3. The aim of this extension is to provide flexibility to the encoder to choose between the following alternatives on a sequence or picture basis:

1. Using pre-deblocked pixels in filter design.

2. Switching ALF off in the regions where pre-deblocked pixels are required by ALF.
In the following simulations however, the ALF is always switched off to clearly see the impact on the coding efficiency.
[image: image12.emf]Y BD-rate U BD-rate V BD-rate

Class A 0,19 0,02 0,04

Class B 0,12 -0,01 -0,01

Class C 0,13 -0,01 -0,01

Class D 0,08 -0,01 -0,02

Class E 0,21 0,00 -0,02

All 0,14 0,00 0,00

Enc Time[%]

Dec Time[%]

Random access

Y BD-rate U BD-rate V BD-rate

Class A 0,30 0,29 -0,40

Class B 0,22 0,02 0,10

Class C 0,16 -0,07 -0,03

Class D 0,16 -0,09 -0,08

Class E

All 0,21 0,04 -0,09

Enc Time[%]

Dec Time[%]

Y BD-rate U BD-rate V BD-rate

Class A

Class B 0,28 0,04 -0,19

Class C 0,24 0,16 0,16

Class D 0,01 0,13 0,00

Class E 0,90 -0,05 -0,04

All 0,32 0,08 -0,03

Enc Time[%]

Dec Time[%]

98%

Intra

#NUM!

#NUM!

100%

Low delay

100%

#NUM!

Table 3
The attached excel file “JCTVC-E225-extension-2_r1.xls” includes all further details for the optional extension to the proposal, where the option of switching ALF off is applied.
Complexity Analysis

The current HM2.0 software is based on frame based filtering methodology. Therefore to be able to understand the impact of the proposal LCU based decoding operation had to be simulated within the HM2.0 software. Due to this fact the average encoding and decoding times have increased artificially. As a result we believe that to asses the complexity impact of the proposal, we should resort to the increase in the hardware implementation complexity.
In the decoder side the proposal requires no additional logic elements to be implemented. In the encoder side however the partially-deblocked pixels at the LCU borders need to be buffered additionally. The ratio of the region that needs to be stored additionally is only 3/64 of the original frame (64 being a typical size of the LCU), which does not result in a considerable increase in encoder complexity. Although the increase in encoder complexity is small, the problem is eliminated in the extension part of the proposal.

6 Conclusion
With this contribution we propose a method for reducing the line memory requirement for the LCU-based ALF decoding procedure. The proposed method provides a 33% reduction in the horizontal line memory for the luma component and a 20% reduction for the chroma components. As an optional extension, possibility of reduction in the vertical line memory is also considered where 27% reduction for luma component and 20% reduction in chroma component can be additionally achieved in the vertical line memory. Experimental simulations using the common test conditions [4] show an average Y-BD-bit rate gain of 0.01% for the main proposal and the optional extension.

Since the cost of decoder chip production is closely related to the amount of line memory that needs to be included in the design, the proposed method is thought to be very beneficial for LCU-based decoding approach. We propose to include this technique in the next version of the HM.
7 References

[1] HM 2.0 Software, http://hevc.kw.bbc.co.uk/trac/browser/tags/HM-2.0
[2] T. Wiegand, W.-J. Han, J.-R. Ohm, G. J. Sullivan, High Efficiency Video Coding (HEVC) text specification Working Draft 1, JCTVC-C403, Guangzou, China, October 2010.
[3] HM deblocking filter, JCTVC-C403, “High Efficiency Video Coding (HEVC) text specification Working Draft 1”, Guangzhou, October, 2010
[4] F. Bossen, “Common test conditions and software reference configurations”, JCTVC-D600, Daegu, KR, January 2011.
8 Patent rights declaration(s)
Panasonic Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
Frame Width

If the vertical size of the ALF is 7 as an example, 6 more lines are required by ALF.

Line Memory (Shaded Area)

4pixels required by deblocking filter 3 of which will be modified by it.

Block that is currently decoded

Vertical Line Memory

Frame Width

Horizontal Line Memory

Page: 9
Date Saved: 2011-03-17

[image: image16.png]

[image: image17.bmp]_1361254377.unknown

_1361254389.unknown

_1361094703.unknown

