	[image: image6.png]

[image: image7.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
5th Meeting: Geneva, Switzerland, 16-23 March, 2011
	Document: JCTVC-E140
WG11 Number: m19657

	Title:
	CE8.1: DF-combined adaptive loop filter

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Tomohiro Ikai, Takanori Yamazaki

1-9-2 Nakase, Mihama-ku, Chiba-shi,

Chiba 261-8520 JAPAN
	Tel:
Email:
	+81-43-299-8526
ikai.tomohiro@sharp.co.jp

	Source:
	SHARP Corporation

Abstract
1 Introduction

In this document the proposed part is highlighted with Yellow color, The related addiction or correlation of WD2, which is not proposed part, is highlighted with Green color.
Abstract
2 Syntax and semantics
2.1.1 Syntax in tabular form
2.1.2 Slice data syntax
2.1.2.1 Adaptive loop filter parameter syntax
	alf_param() {
	C
	Descriptor

	
adaptive_loop_filter_flag
	2
	u(1)

	
if (adaptive_loop_filter_flag) {
	
	

	

alf_num_input_minus_1
	2
	u(1)

	

if(alf_num_input_minus_1 != 0) {
	
	

	

alf_parallel_flag
	2
	u(1)

	

}
	
	

	

alf_length_luma_minus5_div2
	2
	ue(v)

	

alf_nofilters_minus1
	2
	ue(v)

	

if (alf_noFilters_minus1 == 1)
	
	

	

alf_start_second_filter
	2
	ue(v)

	

else if (alf_noFilters_minus1 > 1) {
	
	

	

for (i=0; i< AlfMaxNumFilters; i++)
	
	

	

alf_filter_pattern[i]
	2
	u(1)

	

}
	
	

	

if (AlfNumFilters > 1)
	
	

	

alf_pred_method
	2
	u(1)

	

alf_min_kstart_minus1
	2
	ue(v)

	

for (i=0; i < AlfmaxDepth; i++)
	
	

	

alf_golomb_index_bit[i]
	2
	u(1)

	

for (i=0; i< AlfNumFilters; i++)
	
	

	

for (j=0; j< AlfLengthLuma; j++)
	
	

	

alf_coeff_luma[i][j]
	
	ge(v)

	

alf_chroma_idc
	2
	ue(v)

	

if (alf_chroma_idc) {
	
	

	

alf_length_chroma_minus_5_div2
	2
	ue(v)

	

for(i = 0; i< AlfLengthChroma; i++)
	
	

	

alf_coeff_chroma[i]
	
	se(v)

	

}
	
	

	

alf_cu_control_flag
	2
	u(1)

	

if (alf_cu_control_flag) {
	
	

	

alf_cu_control_max_depth
	2
	ue(v)

	

if (alf_cu_control_max_depth)
	
	

	

alf_length_cu_control_info
	2
	u(v)

	

for(i = 0; i< NumAlfCuFlag; i++)
	
	

	

alf_cu_flag [i]
	2
	u(1) | ae(v)

	

}
	
	

	
}
	
	

2.2 Semantics
2.3 Slice header semantics
2.3.1.1 Adaptive loop filter parameter semantics

[Ed.: (WJ) need to be inserted]
adaptive_loop_filter_flag equal to 1 specifies the adaptive loop filter process is applied to the reconstructed picture after the deblocking filter process.
alf_num_input_minus1 specifies the number of input used in adaptive loop filter process. The value of alf_num_input_minus1 shall be in the range of 0 to 1. The value equal to 1 specifies the adaptive loop filter process uses the deblocking filtered samples and the the non-deblocking filtered samples
alf_parallel_flag equal to 0 specifies the plural deblocking filtered samples are used in filtering process (non-parallel mode). The value equal to 1 specifies the plural non-deblocking filtered samples are used in the filtering process (parallel mode).

alf_length_luma_minus5_div2 specifies the filter length for luma component used in the adaptive loop filter process. The value of alf_length_luma_minus5_div2 shall be in the range of 0 to 2.

AlfLengthLuma = (alf_length_luma_minus5_div2 << 1) + 5

If alf_num_input_minus_1 is equal to 0, a variable AlfNumCoeffLuma is derived as follows.
AlfNumCoeffLuma = (AlfLengthLuma * AlfLengthLuma / 4) + 2

Otherwise the variable AlfNumCoeffLuma is derived as follows.
AlfNumCoeffLuma = (AlfLengthLuma * AlfLengthLuma / 4) + 3
alf_coeff_luma[i][j] specifies the coefficient for luma component. The value of alf_coeff_luma shall be in the range of -512 to 511.
alf_chroma_idc specifies whether and which chroma components are to be filtered. The value of alf_chroma_idc shall be in the range of 0 to 3.
alf_length_chroma_minus5_div2 specifies the filter length for chroma components used in the adaptive loop filter process. The value of alf_length_chroma_minus5_div2 shall be in the range of 0 to 2. AlfLengthChroma is derived as follows.
AlfLengthChroma = (alf_length_chroma_minus5_div2 << 1) + 5
A variable AlfLengthChroma is derived as follows.
AlfNumCoeffChroma = (AlfLengthChroma * AlfLengthChroma / 2) + 2

alf_coeff_chroma[i] specifies the filter coefficient for chroma components. The value of alf_coeff_chroma shall be in the range of -512 to 511.
3 Decoding process
3.1.1 In-loop filter process
3.1.2 Adaptive loop filter process
An adaptive loop filtering process shall be conditionally performed on a treeblock basis after the completion of the deblocking filter process for the entire decoded picture, with all treeblocks in a picture processed in order of increasing treeblock addresses.

Each treeblock is processed on a coding unit basis with the same order as decoding process.

This process is invoked when both adaptive_loop_filter_enabled_flag is equal to 1 and adaptive_loop_filter_flag are equal to 1.

This process is performed on a coding unit basis after the completion of the slice construction process prior to adaptive loop filter process for the entire decoded slice, with all coding units in a slice processed in order of coding unit scan order.
Filter coefficients cL for luma samples and cC for chroma samples are derived by invoking the process specified in subclause 8.6.2.1.
When interpreting the luma samples of the coding unit as to be filtered, depending on alf_cu_control_flag, the following applies.
· If alf_cu_control_flag is equal to 0, the luma samples are filtered,
· Otherwise (alf_cu_control_flag is equal to 1), if AlfCuFlag[xC][yC] is equal to 1 where xC and yC are the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, the luma samples are filtered.
· Otherwise, the luma samples are not filtered.

When interpreting the chroma samples of the coding unit as to be filtered, depending on alf_chroma_idc, the following applies.
· If alf_chroma_idc is equal to 1, the Cr samples are filtered.
· Otherwise, if alf_chroma_idc is equal to 2, the Cb samples are filtered.
· Otherwise, if alf_chroma_idc is equal to 3, both chroma samples are filtered.
· Otherwise (alf_chroma_idc is equal to 0), both chroma samples are not filtered.
For the luma samples of the coding unit interpreted as to be filtered, the filtering process for luma samples specified in subclause 8.6.2.2 is invoked with the luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture, and the coding unit size log2CUSize as inputs and the output is the modified filtered picture, recFiltPictureL.

For the chroma samples of the coding unit interpreted as to be filtered, the filtering process for chroma samples specified in subclause 0 is invoked with the chroma location (xC/2, yC/2) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture, the coding unit size log2CUSize-1 and the chroma component index cIdx equal to 1 as inputs and the output is the modified filtered picture, recFiltPictureCb.

For the chroma samples of the coding unit interpreted as to be filtered, the filtering process for chroma samples specified in subclause 0 is invoked with the chroma location (xC/2, yC/2) specifying the top-left chroma sample of the current coding unit relative to the top left chroma sample of the current picture, the coding unit size log2CUSize-1 and the chroma component index cIdx equal to 2 as inputs and the output is the modified filtered picture, recFiltPictureCr.

[Ed.: (WJ) recPicture: deblocked/output picture and recFiltPicture: ALFed picture]

[Ed.: (WJ) depending adaptive_loop_filter_flag, recFiltPicture should be copied to recPicture in subclause 8.6]

3.1.2.1 Derivation process for filter coefficients

Outputs of this process are filter coefficients cL for the luma samples and filter coefficients cC for the chroma samples.

[Ed.: (WJ) syntax elements alf_coeff_luma and alf_coeff_chroma have about half of coefficients due to symmetry whereas cL and cC have entire coefficients]

[Ed.: (WJ) luma ALF uses diamond shape with 7-sample restriction in vertical direction and chroma ALF uses raster shape]

[Ed.: (WJ) need to be inserted]
3.1.2.2 Filtering process for luma samples

Inputs of this process are:

–
a luma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left luma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

Output of this process is the filtered reconstruction of luma picture.

Let s’ be a variable specifying luma sample array recPictureL.
A variable nS is set equal to (1 << log2CUSize) and a variable alfTap is set equal to (alf_length_luma_minus_5_div2 << 1) + 5.

For each sample of luma picture recFiltPictureL[xC + x][yC + y] with x, y = 0..(nS)-1, the following apply:

1. Luma filter index fIdx is derived for each sample as follows: [Ed.: (WJ) not included yet]

If the alf_num_input_minus1 is equal to 0, the luma sample at position (xC + x, yC + y) is filtered as

[image: image1.wmf](

)

8

]

][

[

*

]

]

[

],

[

[

'

]

][

[

128

]

][

[

1

0

>>

þ

ý

ü

î

í

ì

+

+

+

+

+

+

=

+

+

å

-

=

N

i

L

L

L

i

fIdx

c

i

verPos

y

yC

i

horPos

x

xC

s

N

fIdx

c

y

yC

x

xC

ture

recFiltPic

(8‑464)
where N is set equal to AlfNumCoeffLuma-1 and horPos[i] and verPos[i] are specified in Table 8‑14 and Table 8‑15, respectively.

Otherwise (alf_num_input_minus1 is equal to 1), if the alf_parallel_flag is 0, the luma sample at position (xC + x, yC + y) is filtered as

[image: image2.wmf](

)

8

]

][

[

*

]

]

[

],

[

[

'

]

1

][

[

*

]

,

[

]

][

[

128

]

][

[

2

0

>>

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

+

+

+

+

-

+

+

+

+

=

+

+

å

-

=

N

i

L

L

L

L

i

fIdx

c

i

verPos

y

yC

i

horPos

x

xC

s

N

fIdx

c

y

yC

x

xC

s

N

fIdx

c

y

yC

x

xC

ture

recFiltPic

(8‑464)
where N is set equal to AlfNumCoeffLuma-1 and horPos[i] and verPos[i] are specified in Table 8‑14 and Table 8‑15, respectively.

Otherwise (alf_num_input_minus1 is equal to 1 and the alf_parallel_flag is equal to 1), the luma sample at position (xC + x, yC + y) is filtered as

[image: image3.wmf](

)

8

]

][

[

*

]

]

[

],

[

[

]

1

][

[

*

]

,

[

'

]

][

[

128

]

][

[

2

0

>>

ï

þ

ï

ý

ü

ï

î

ï

í

ì

+

+

+

+

+

-

+

+

+

+

=

+

+

å

-

=

N

i

L

L

L

L

i

fIdx

c

i

verPos

y

yC

i

horPos

x

xC

s

N

fIdx

c

y

yC

x

xC

s

N

fIdx

c

y

yC

x

xC

ture

recFiltPic

(8‑464)
where N is set equal to AlfNumCoeffLuma-1 and horPos[i] and verPos[i] are specified in Table 8‑14 and Table 8‑15, respectively.
Table 8‑14 – Specification of horPos[i] according to alfTap for adaptive loop filter process of luma samples
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	alfTap = 5
	0
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-1
	0
	1
	0
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	0
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-3
	-2
	-1
	0
	1
	2
	3
	-2
	-1
	0
	1

	alfTap = 9
	-1
	0
	1
	-2
	-1
	0
	1
	2
	-3
	-2
	-1
	0
	1
	2
	3
	-4
	-3
	-2
	-1
	0

	i
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	alfTap = 5
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	2
	-1
	0
	1
	0
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 9
	1
	2
	3
	4
	-3
	-2
	-1
	0
	1
	2
	3
	-2
	-1
	0
	1
	2
	-1
	0
	1

Table 8‑15 – Specification of verPos[i] according to alfTap for adaptive loop filter process of luma samples
	i
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19

	alfTap = 5
	-2
	-1
	-1
	-1
	0
	0
	0
	0
	0
	1
	1
	1
	2
	
	
	
	
	
	
	

	alfTap = 7
	-3
	-2
	-2
	-2
	-1
	-1
	-1
	-1
	-1
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1

	alfTap = 9
	-3
	-3
	-3
	-2
	-2
	-2
	-2
	-2
	-1
	-1
	-1
	-1
	-1
	-1
	-1
	0
	0
	0
	0
	0

	i
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38

	alfTap = 5
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 7
	1
	2
	2
	2
	3
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-
	-

	alfTap = 9
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	2
	3
	3
	3

[image: image4.emf]0

1 2 3

4 5 6 7 8

9 10 11

12

0

1 2 3

4 5 6 7 8

21 22 23

24

9 10 11 12 13 14 15

16 17 18 19 20

0 1 2

3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21 22 23

24 25 26 27 28 29 30

31 32 33 34 35

36 37 38

(a) alfTap= 5 (a) alfTap= 7 (a) alfTap= 9

Figure 8‑7 Mapping between geometric position and luma adaptive loop filter index according to alfTap (informative)

3.1.2.3 Filtering process for chroma samples

Inputs of this process are:

–
a chroma location (xC, yC) specifying the top-left luma sample of the current coding unit relative to the top left chroma sample of the current picture,

–
a variable log2CUSize specifying the size of the current coding unit.

–
a variable cIdx specifying the chroma component index.

Output of this process is the filtered reconstruction of chroma picture.

Let s’ be a variable specifying chroma sample array which is derived as follows.

–
If cIdx is equal to 1, s’ represents the chroma sample array recPictureCb of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCb.

–
Otherwise (cIdx is equal to 2), s’ represents the chroma sample array recPictureCr of the current picture and recFiltPicture represents the filtered reconstruction of chroma picture recFiltPictureCr.

A variable nS is set equal to (1 << log2CUSize) and a variable alfTapChroma is set equal to (alf_length_chroma_minus_5_div2 << 1) + 5.

Filtered samples of chroma picture recFiltPicture[xC + x][yC + y] with x, y = 0..(nS)-1, are derived as follows.

[image: image5.wmf](

)

8

]

[

*

]

]

[

],

[

[

'

]

[

128

]

][

[

1

0

>>

þ

ý

ü

î

í

ì

+

+

+

+

+

+

=

+

+

å

-

=

N

i

C

C

i

c

i

verPos

y

yC

i

horPos

x

xC

s

N

c

y

yC

x

xC

ture

recFiltPic

(8‑465)
where

N = AlfNumCoeffChroma – 1,

(8‑466)
horPos[i] = i % alfTapChroma and verPos[i] = i / alfTapChroma
(8‑467)
Patent rights declaration(s)
SHARP Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 3
Date Saved: 2011-03-10

_1361286383.unknown

_1361286466.unknown

_1361286404.unknown

_1361286341.unknown

