	[image: image6.png][image: image7.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
5th Meeting: Geneva, CH, 16-23 March, 2011
	Document: JCTVC-E062

	Title:
	Improvement on simplified motion vector prediction

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Kimihiko Kazui, Satoshi Shimada, Junpei Koyama, and Akira Nakagawa

4-1-1 Kamikodanaka, Nakahara-ku
211-8588 Kawasaki
JAPAN
	
Tel:
Email:
	+81-44-754-2639

kazui.kimihiko@jp.fujitsu.com sshimada@jp.fujitsu.com
koyama.junpei@jp.fujitsu.com
anaka@jp.fujitsu.com

	Source:
	FUJITSU LABORATORIES LTD.

Abstract
This contribution proposes the improvement of simplified motion vector prediction (SMVP) previously adopted in HM2.0.

The proposed scheme extends the original SMVP scheme so that the possibility to obtain the maximum number of motion vector predictor candidates for a target motion vector improves with small increase of computational complexity. Specifically, a motion vector with different reference index from that of the target motion vector is also used as a candidate only if there is no motion vector with the same reference index of the target motion vector in spatially-neighboring prediction unit partitions. The proposed scheme does not require syntax change the same as the original SMVP scheme. Only the deviation process of motion vector predictor candidates list is changed.
The average coding gains of the proposed scheme over the SMVP scheme in HM2.0 for the common test sequences are 0.5% and 0.8% for random access high efficiency configuration and random access low complexity configuration, respectively. The coding gains for Keiba sequence, which have a large number of occluded background areas, are 4.2% and 4.5% for random access high efficiency configuration and random access low complexity configuration, respectively.
1 SMVP in HM2.0
1.1 Overview
The simplified motion vector prediction (SMVP) scheme in the motion vector deviation process was originally introduced in the 2nd JCT-VC meeting [1]. The CE report of SMVP was discussed in the 4th JCT-VC meeting [2]. As the result, SMVP was adopted in HM2.0.

SMVP adopted in HM2.0 utilizes at most three motion vectors, the motion vector of the centered temporal collocated PU (prediction unit) partition (hereafter referred as to MVtemp) , the motion vector of a neighboring PU partition located left to the current PU partition (hereafter referred as to MVleft), and the motion vector of a neighboring PU partition located above the current PU partition (hereafter referred as to MVtop), as the motion vector predictor candidates for the predictive coding of the motion vector of the processing PU partition.
MVleft is searched from the group of neighboring PU partitions left to the current PU partition. A motion vector is considered as available if the reference index of the motion vector of the searched PU partition is identical to the reference index of the target motion vector. The search is performed from bottom to top, and the first available motion vector is used as MVleft.

MVtop is searched from the group of neighboring PU partitions above the current PU partition. A motion vector is considered as available if the reference index of the motion vector of the searched PU partition is identical to the reference index of the target motion vector. The search is performed from right to left, and the first available motion vector is used as MVtop. If the motion vector of the searched PU partition is identical to MVleft, it is not considered as available and the search is continued.
Figure 1 depicts the group of neighboring PU partitions and the search order for MVleft and MVtop.

[image: image1.emf]Current PU

E

D

CB

A

F

G

H

I

Search direction of top predictor

S

e

a

r

c

h

d

i

r

e

c

t

i

o

n

o

f

l

e

f

t

p

r

e

d

i

c

t

o

r

Figure 1: Search directions and range for MVleft and MVtop
1.2 Problem
When the current PU partition and its neighboring PU partition belongs to a background object and the part of the background object is occluded by a foreground object in some of its reference pictures, the reference index of the current PU partition tends to be different from that of the neighboring PU partition. In this case, the feature of the motion vector prediction scheme is not fully utilized because the number of motion vector predictor candidates becomes less than the maximum value (i.e. three).

[image: image2.emf]Reference Picture (T-1)

L0[0]

Current Picture (T)Reference Picture (T-2)

L0[1]

Foreground objectCurrent PU

MV of Current PU

Direction/Refidx = L0[1]

MV=(-2x, 0)

MV of Left PU

Direction/Refidx = L0[0]

MV=(-x, 0)

Left PU

Figure 2: Illustrative example of the problem in SMVP. MVleft is not available for the current PU because the current PU and all neighboring PUs left to the current PUs have motion vectors with different reference indexes.
2 Proposed scheme
This contribution proposes the improvement of the existing SMVP scheme in order to solve the problem discussed in subclause 1.2.
2.1 Overview
The proposed scheme utilizes the motion vector of a neighboring PU partition which has different reference index from the target motion vector only if all motion vectors of all neighboring PU partitions do not have the same reference index of the target motion vector.

In order to realize this feature, priority is assigned to each motion vector of the neighboring PU partitions according to its reference index. A motion vector with higher priority is chosen as a motion vector predictor candidate.
Highest priority (equal to 0) is assigned to a motion vector which has the same reference index of the target motion vector. Priority for other motion vector (i.e. a motion vector with different reference index from the target motion vector) is defined according to the following rules.

· If two motion vectors have the same direction (i.e. L0 or L1), the "distance" L of those motion vectors are evaluated. The motion vector that has smaller value of L has higher priority.

· The "distance" L of a motion vector mvC is defined as
L = (abs(curr_refidx - search_refidx) << 1) + ((curr_refidx - search_refidx > 0) ? 0 : 1)
, where curr_refidx and search_refidx are the reference index of the target motion vector and the reference index of mvC, respectively.
· If two motion vectors have different directions, the motion vector with the same direction of the target motion vector has higher priority.
· If two motion vectors have the same direction X and the direction X is different from that of the target motion vector (= ~X) , the "distance" L' of those motion vectors are evaluated. The motion vector that has smaller value of L' has higher priority.

· The "distance" L' of a motion vector mvC is defined as
L = (abs(idx' - search_refidx) << 1) + ((idx' - search_refidx > 0) ? 0 : 1)
, where idx' is equal to the reference index in the reference picture list LX which corresponds to the reference picture whose POC value is closest to that of the reference picture of the target motion vector.
If two motion vectors have the same priority, then the motion vector of the lower search order is chosen.
Figure 3 depicts the example of priority of a motion vector.　In this example, the reference index of the target motion vector is equal to L0[1]. Motion vectors with the reference index L0[1] has highest priority (i.e. 0). Priority 1 is assigned to a motion vector with the reference index L0[0]. Lowest priority is assigned to motion vector with the reference index L1[0].

[image: image3.emf]Reference

index

023

013

Reference index of

predicting MV

4620

8642

Reference picture list of the

procssing picture

Priority of MV according to its

reference index/direction

Priority

Low

1

Reference

index

High

POC

POC

L0

L1

1

0

2

3

4

5

6

7

MV of L0[0]

MV of L0[2]

MV of L0[3]

MV of L1[1]

MV of L1[3]

MV of L1[0]

2

Closest L1 reference

picture to L0[0]

MV of L0[1]

MV of L1[2]

Figure 3: Example of the priority of MV according to its reference index and direction

If a motion vector is chosen (i.e., at least one neighboring PU partition is coded inter), the chosen motion vector is scaled according to the POC value of its reference picture. Finally, the scaled motion vector is used as MVleft or MVtop. The scaling method is the same as for the centered temporal predictor.
Unlike the original SMPV scheme, the proposed scheme allows that MVleft and MVtop has the same value in the motion vector search process among the groups of neighboring PU partitions.

Moreover, the candidate indexes of MVleft and MVtop are swapped if all of the following conditions are satisfied.

· MVtemp is not available.

· The reference index of MVleft is not equal to that of the target motion vector.

· The reference index of MVtop is equal to that of the target motion vector.

As the result of the swapping, the motion vector predictor candidate with index 0 is MVtop and the motion vector predictor candidate with index 1 is MVleft.

2.2 Flowchart
The flowchart of deriving MVtemp, MVleft and MVtop is depicted in Figure 4 and Figure 5.
Corresponding function in HM software is fillMvpCand(). Function getPriorityInRefidx() in Figure 4 and Figure 5 returns priority of the motion vector in a PU partition "pu", the direction of the motion vector, and the scaling value for the motion vector.

Highlighted steps in those figures are the additional steps according to the proposed scheme. Non-highlighted steps are the same as in the original SMVP scheme.

[image: image4.emf]bExist[0] = true

fillMvpCand(CurrPU, refdix, LX)

START

mvCand[] = {}, N = 0

Does MVtemp exist?

YES

pu = CurrPU->getPUBelowLeft()

refidx == pu->getRefIdx(LX)

MVleft = pu->getMv(LX)

mvCand[N ++] = MVleft

(temp_priority > 0)

&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =

pu->getPriorityInRefidx()

best_priority = temp_priority

MVleft = scale* pu->getMv(temp_dir)

pu == CurrPU->getPULeft()

pu <-“upper PU of pu”

best_priority != INF

mvCand[N ++] = MVleft

priority_left = best_priority

bExist[1] = true

priority_left = 0

NO

YESNO

YES

NO

YES

NO

To next figure

YES

NO

priority_left = priority_above = INF

bExist[] = {false}

best_priority = INF

mvCand[N ++] = MVtemp

Figure 4: Flowchart of the search of MV predictor candidates

[image: image5.emf]mvTop = pu->getMv(LX)

mvCand[N ++] = mvTop

(temp_priority > 0)

&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =

pu->getPriorityInRefidx()

best_priority = temp_priority

MVtop = scale * pu->getMv(temp_dir)

pu == CurrPU->getPUUpperLeft()

pu <-“right PU of pu”

best_priority != INF

mvCand[N ++] = MVtop

priority_left = best_priority

bExist[2] = true

priority_above = 0

YES

NO

YES

NO

From previous figure

pu = CurrPU->getPUUpperRight()

refidx == pu->getRefIdx(LX)

YESNO

mvCand[N ++] = MVtop

priority_left = best_priority

!bExist[0] && bExist[1] && bExist[2] &&

(priority_left != INF) && (priority_above == 0)

YES

Swaping mvCand[0] and

mvCand[1]

Removing redundant

mvCand[]

Output mvCand[] and N

END

NO

YES

NO

best_priority = INF

Figure 5: Flowchart of the search of MV predictor candidates (Continued)
3 Implementation
The proposed scheme is implemented onto HM2.0 software.

4 Results
Table 1 summarizes the coding gain in BD-Bitrate of the proposed scheme over HM2.0. The test condition accords with the condition specified in JCTVC-D600 [3].

Table 1: Summary results of BD-Rate comparing Proposal to HM2.0

	Proposal vs. HM2.0

	
	Random access
	Random access LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	-0.6
	-1.1
	-1.4
	-1.0
	-1.3
	-1.4

	Class B
	-0.4
	-0.3
	-0.2
	-0.7
	-0.5
	-0.4

	Class C
	-0.6
	-0.7
	-0.7
	-0.8
	-0.7
	-0.7

	Class D
	-0.5
	-0.6
	-0.6
	-0.7
	-0.7
	-0.6

	Class E
	
	
	
	
	
	

	All
	-0.5
	-0.6
	-0.7
	-0.8
	-0.8
	-0.8

	Enc Time[%]
	104%
	102%

	Dec Time[%]
	103%
	105%

	Proposal vs. HM2.0

	
	Low Delay
	Low Delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	-0.1
	0.2
	-0.1
	-0.3
	-0.2
	0.2

	Class C
	-0.1
	0.0
	0.0
	-0.5
	-0.3
	-0.3

	Class D
	-0.2
	-0.3
	-0.1
	-0.2
	0.4
	0.1

	Class E
	-0.5
	-0.2
	-0.2
	-0.7
	-0.1
	-0.4

	All
	-0.2
	0.0
	-0.1
	-0.4
	-0.1
	-0.1

	Enc Time[%]
	110%
	103%

	Dec Time[%]
	103%
	104%

The coding gains of the proposed scheme are 0.5% on average for random access high efficiency configuration and 0.8% on average for random access low delay configuration. The coding gains for low delay configurations are less than that for random access configurations.
The measured increases of computation complexity for encoding are 103% for random access configurations and 106% for low delay configurations. The measured increases of computation complexity for decoding are 104% for random access configurations and 103% for low delay configurations.

The authors are not sure whether those values are accurate enough especially in low delay high efficiency configuration since it is observed that the ratio of the encoding time of the proposal and that of the anchor fluctuates widely among different test sequences or QP values. The authors think this is because the simulation was performed in a cluster computing environment.
In order to verify the correctness of the assumption, additional simulation for measuring the exact time increment is performed. In this case, the lengths of all test sequences are reduced to 2 GOPs (i.e. 2 seconds) due to the time constraints and the simulation is executed sequentially in one CPU. The results are 103% for encoder and 101% for decoder.
The authors conclude that further evaluation of computational complexity is necessary.
In addition to the test common sequences, we also evaluated the coding gain of Keiba sequence (416x240, 30Hz).

The coding gain of Keiba sequence is summarized in Table 2. Table 2 also contains the results of SteamLocomotive sequence and RaceHorses sequence, whose coding gains are noticeably large among the common test sequences.
Table 2: Summary results of BD-Rate comparing Proposal to HM2.0 for Keiba sequence
	
	Random access
	Random access LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Keiba
	-4.2
	-4.0
	-3.8
	-4.5
	-4.1
	-3.7

	SteamLocomotive
	-1.6
	-2.6
	-3.6
	-2.2
	-2.2
	-2.4

	RaceHorses
	-0.8
	-1.0
	-1.0
	-1.2
	-1.4
	-1.3

	
	Low Delay
	Low Delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Keiba
	-0.6
	-0.5
	-0.4
	-0.8
	0.1
	-0.5

	SteamLocomotive
	N/A
	N/A
	N/A
	N/A
	N/A
	N/A

	RaceHorses
	-0.2
	0.0
	-0.1
	-0.8
	-0.6
	-0.8

The coding gains of Keiba are 4.2% for random access high efficiency configuration and 4.5% for random access low delay configuration.

The common feature of those sequences is that objects in the scene have different movement and occlusion of background objects frequently occurs. In this case, the possibility of having different reference index among current PU and neighbouring PUs becomes large. As the result, the coding gain of the proposed scheme becomes larger for those sequences.
Conclusions and Recommendations
The coding gains of the proposed scheme over the SMVP scheme in HM2.0 are 0.5% on average for random access high efficiency configuration and 0.8% on average for random access low delay configuration. The coding gain becomes 4.2-4.5% for Keiba sequence in which occlusion of background objects frequently occurs.
We request to set up a CE in order to evaluate the computational complexity of the proposed scheme in detail, as well as to do cross-verification.
References

[1] F.Bossen, P.Kosse, "Simplified motion vector coding method", JCTVC-B094, July 2010, Geneva CH

[2] A.Fujibayashi, F.Bossen, " CE9 3.2d Simplified Motion vector prediction", JCTVC-D231, January 2011, Daegu Korea
[3] F.Bossen, "Common test conditions and software reference configurations", JCTVC-D600, January 2011, Daegu Korea

[4] J.Jung, G.Clare, "Temporal MV predictor modification for MV-Comp, Skip, Direct and Merge schemes", JCTVC-D164, Daegu Korea
5 Patent rights declaration(s)
FUJITSU LIMITED may have current or pending patent rights relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 7
Date Saved: 2011-03-17

_1360912802.vsd
�

�

�

Reference  index

0

1

2

3

Reference  index

0

1

2

3

Reference index of predicting MV

4

6

2

0

8

6

4

2

Reference picture list of the procssing picture

Priority of MV according to its reference index/direction

Priority

Low

MV of L0[1]

Closest L1 reference picture to L0[0]

High

POC

POC

L0

L1

1

0

2

3

4

5

6

7

MV of L0[0]

MV of L0[2]

MV of L1[2]

MV of L0[3]

MV of L1[1]

MV of L1[3]

MV of L1[0]

_1361122355.vsd
�

�

�

�

�

�

Current PU

E

D

C

B

A

F

G

H

I

Search direction of top predictor

Search direction of left predictor

iN = 0
ｐMVTemp[] = {}

Collocated PUはInter予測

Collocated PUの動きベクトルmvColを取得
pMVCand[iN ++] = mvCol

探索PUの参照インデックスが
処理PUの参照インデックスと同じ

探索PU＝処理PUの左下隣接PU

YES

NO

YES

探索PUの動きベクトルmvLeftを取得
pMVCand[iN ++] = mvLeft

NO

探索PUの参照インデックスが
無効ではない

探索PUの動きベクトルmvLeftを取得
mvLeftを、処理ピクチャと処理PUの参照インデックスを用いてスケーリング
探索PUの参照インデックスidxを獲得
pMVTemp[idx] = mvLeft

YES

NO

探索PU=探索PUの左隣

探索PUは処理PUの左上隣接PU

NO

YES

pMVTemp[]が空

mvLeft = F (pMVTemp, refidx)

NO

pMVCand[iN ++] = mvLeft

YES

START

Next page

ｐMVTemp[] = {}

END

左候補と上候補とが同じ場合、元提案と同じように、探索を続けることは行わないのか？

探索PUの参照インデックスが
処理PUの参照インデックスと同じ

探索PU＝処理PUの上隣接PU

YES

探索PUの動きベクトルmvAboveを取得
pMVCand[iN ++] = mvAbove

NO

探索PUの参照インデックスが
無効ではない

探索PUの動きベクトルmvAboveを取得
mvAboveを、処理ピクチャと処理PUの参照インデックスを用いてスケーリング
探索PUの参照インデックスidxを獲得
pMVTemp[idx] = mvAbove

YES

NO

探索PU=探索PUの左隣

探索PUは処理PUの上右隣接PU

NO

YES

mvAbove = F (pMVTemp, refidx)

pMVTemp[]が空

NO

pMVCand[iN ++] = mvAbove

YES

m = 0

F (pMVTemp, refidx)

Idx = refidx *+ ((((m + 1) & 0x01) ? (1) : (-1)) * ((m + 1) >> 1))

(idx > 0) && (idx < Max) && (pMVTemp[idx] が空白でない)

YES

NO

pMVTemp[idx]を出力

END

m ++

 m >= (2 * Max)

NO

YES

bExist[0] = true

YES

Does MVtemp exist?

MVleft = pu->getMv(LX)
mvCand[N ++] = MVleft

(temp_priority > 0)
&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx()

best_priority = temp_priority
MVleft = scale* pu->getMv(temp_dir)

pu == CurrPU->getPULeft()

pu <- “upper PU of pu”

best_priority != INF

mvCand[N ++] = MVleft
priority_left = best_priority
bExist[1] = true

priority_left = 0

NO

fillMvpCand(CurrPU, refdix, LX)
START

mvCand[] = {}, N = 0

YES

pu = CurrPU->getPUBelowLeft()

refidx == pu->getRefIdx(LX)

YES

NO

YES

NO

YES

NO

To next figure

NO

priority_left = priority_above = INF
bExist[] = {false}

best_priority = INF

mvCand[N ++] = MVtemp

From previous figure

pu = CurrPU->getPUUpperRight()

refidx == pu->getRefIdx(LX)

YES

NO

mvCand[N ++] = MVtop
priority_left = best_priority

mvTop = pu->getMv(LX)
mvCand[N ++] = mvTop

(temp_priority > 0)
&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx()

best_priority = temp_priority
MVtop = scale * pu->getMv(temp_dir)

pu == CurrPU->getPUUpperLeft()

pu <- “right PU of pu”

best_priority != INF

mvCand[N ++] = MVtop
priority_left = best_priority
bExist[2] = true

priority_above = 0

!bExist[0] && bExist[1] && bExist[2] &&
(priority_left != INF) && (priority_above == 0)

YES

Swaping mvCand[0] and mvCand[1]

Removing redundant mvCand[]

Output mvCand[] and N
END

YES

NO

YES

NO

NO

YES

NO

best_priority = INF

L1

Reference index

0

1

2

3

Reference index of predicting MV

POC

4

6

2

0

8

6

1

Reference index

0

2

3

L0

4

2

POC

Reference picture list of the procssing picture

Priority of reference index/direction for predicting MV whose direction and reference index are L0, 1

Priority

High

Low

1

0

2

3

2

1

3

0

Reference  index

0

1

2

3

Reference  index

0

1

2

3

Reference index of predicting MV

4

6

2

0

8

6

4

2

Reference picture list of the procssing picture

Priority of MV according to its reference index/direction

Priority

Low

MV of L0[1]

Closest L1 reference picture to L0[0]

High

POC

POC

L0

L1

1

0

2

3

4

5

6

7

MV of L0[0]

MV of L0[2]

MV of L1[2]

MV of L0[3]

MV of L1[1]

MV of L1[3]

MV of L1[0]

refidx == pu->getRefIdx(LX)

mvLeft = pu->getMv(LX)
mvCand[N ++] = mvLeft

NO

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx(refidx, LX)

(temp_priority < best_priority)

YES

best_priority = temp_priority
mvLeft = scale* pu->getMv(temp_dir)

pu = CurrPU->getPUBelowLeft()

YES

NO

refidx: Reference index of predicting MV
LX: Direction of predicting MV

mvCand[]: List of candidate MV

END

START

Additional operation by proposed method

pu == CurrPU->getPULeft()

YES

NO

pu <- “upper PU of pu”

best_priority = INF

NO

YES

best_priority != INF

mvCand[N ++] = mvLeft

Reference Picture (T-2)
L0[1]

Reference Picture (T-1)
L0[0]

Current Picture (T)

Foreground object

Current PU

MV of Current PU
Direction/Refidx = L0[1]
MV=(-2x, 0)

MV of Left PU
Direction/Refidx = L0[0]
MV=(-x, 0)

Left PU

_1361122386.vsd
�

�

�

�

�

�

Current PU

E

D

C

B

A

F

G

H

I

Search direction of top predictor

Search direction of left predictor

iN = 0
ｐMVTemp[] = {}

Collocated PUはInter予測

Collocated PUの動きベクトルmvColを取得
pMVCand[iN ++] = mvCol

探索PUの参照インデックスが
処理PUの参照インデックスと同じ

探索PU＝処理PUの左下隣接PU

YES

NO

YES

探索PUの動きベクトルmvLeftを取得
pMVCand[iN ++] = mvLeft

NO

探索PUの参照インデックスが
無効ではない

探索PUの動きベクトルmvLeftを取得
mvLeftを、処理ピクチャと処理PUの参照インデックスを用いてスケーリング
探索PUの参照インデックスidxを獲得
pMVTemp[idx] = mvLeft

YES

NO

探索PU=探索PUの左隣

探索PUは処理PUの左上隣接PU

NO

YES

pMVTemp[]が空

mvLeft = F (pMVTemp, refidx)

NO

pMVCand[iN ++] = mvLeft

YES

START

Next page

ｐMVTemp[] = {}

END

左候補と上候補とが同じ場合、元提案と同じように、探索を続けることは行わないのか？

探索PUの参照インデックスが
処理PUの参照インデックスと同じ

探索PU＝処理PUの上隣接PU

YES

探索PUの動きベクトルmvAboveを取得
pMVCand[iN ++] = mvAbove

NO

探索PUの参照インデックスが
無効ではない

探索PUの動きベクトルmvAboveを取得
mvAboveを、処理ピクチャと処理PUの参照インデックスを用いてスケーリング
探索PUの参照インデックスidxを獲得
pMVTemp[idx] = mvAbove

YES

NO

探索PU=探索PUの左隣

探索PUは処理PUの上右隣接PU

NO

YES

mvAbove = F (pMVTemp, refidx)

pMVTemp[]が空

NO

pMVCand[iN ++] = mvAbove

YES

m = 0

F (pMVTemp, refidx)

Idx = refidx *+ ((((m + 1) & 0x01) ? (1) : (-1)) * ((m + 1) >> 1))

(idx > 0) && (idx < Max) && (pMVTemp[idx] が空白でない)

YES

NO

pMVTemp[idx]を出力

END

m ++

 m >= (2 * Max)

NO

YES

bExist[0] = true

YES

Does MVtemp exist?

MVleft = pu->getMv(LX)
mvCand[N ++] = MVleft

(temp_priority > 0)
&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx()

best_priority = temp_priority
MVleft = scale* pu->getMv(temp_dir)

pu == CurrPU->getPULeft()

pu <- “upper PU of pu”

best_priority != INF

mvCand[N ++] = MVleft
priority_left = best_priority
bExist[1] = true

priority_left = 0

NO

fillMvpCand(CurrPU, refdix, LX)
START

mvCand[] = {}, N = 0

YES

pu = CurrPU->getPUBelowLeft()

refidx == pu->getRefIdx(LX)

YES

NO

YES

NO

YES

NO

To next figure

NO

priority_left = priority_above = INF
bExist[] = {false}

best_priority = INF

mvCand[N ++] = MVtemp

From previous figure

pu = CurrPU->getPUUpperRight()

refidx == pu->getRefIdx(LX)

YES

NO

mvCand[N ++] = MVtop
priority_left = best_priority

mvTop = pu->getMv(LX)
mvCand[N ++] = mvTop

(temp_priority > 0)
&& (temp_priority < best_priority)

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx()

best_priority = temp_priority
MVtop = scale * pu->getMv(temp_dir)

pu == CurrPU->getPUUpperLeft()

pu <- “right PU of pu”

best_priority != INF

mvCand[N ++] = MVtop
priority_left = best_priority
bExist[2] = true

priority_above = 0

!bExist[0] && bExist[1] && bExist[2] &&
(priority_left != INF) && (priority_above == 0)

YES

Swaping mvCand[0] and mvCand[1]

Removing redundant mvCand[]

Output mvCand[] and N
END

YES

NO

YES

NO

NO

YES

NO

best_priority = INF

L1

Reference index

0

1

2

3

Reference index of predicting MV

POC

4

6

2

0

8

6

1

Reference index

0

2

3

L0

4

2

POC

Reference picture list of the procssing picture

Priority of reference index/direction for predicting MV whose direction and reference index are L0, 1

Priority

High

Low

1

0

2

3

2

1

3

0

Reference  index

0

1

2

3

Reference  index

0

1

2

3

Reference index of predicting MV

4

6

2

0

8

6

4

2

Reference picture list of the procssing picture

Priority of MV according to its reference index/direction

Priority

Low

MV of L0[1]

Closest L1 reference picture to L0[0]

High

POC

POC

L0

L1

1

0

2

3

4

5

6

7

MV of L0[0]

MV of L0[2]

MV of L1[2]

MV of L0[3]

MV of L1[1]

MV of L1[3]

MV of L1[0]

refidx == pu->getRefIdx(LX)

mvLeft = pu->getMv(LX)
mvCand[N ++] = mvLeft

NO

(temp_priority, temp_dir, scale) =
pu->getPriorityInRefidx(refidx, LX)

(temp_priority < best_priority)

YES

best_priority = temp_priority
mvLeft = scale* pu->getMv(temp_dir)

pu = CurrPU->getPUBelowLeft()

YES

NO

refidx: Reference index of predicting MV
LX: Direction of predicting MV

mvCand[]: List of candidate MV

END

START

Additional operation by proposed method

pu == CurrPU->getPULeft()

YES

NO

pu <- “upper PU of pu”

best_priority = INF

NO

YES

best_priority != INF

mvCand[N ++] = mvLeft

Reference Picture (T-2)
L0[1]

Reference Picture (T-1)
L0[0]

Current Picture (T)

Foreground object

Current PU

MV of Current PU
Direction/Refidx = L0[1]
MV=(-2x, 0)

MV of Left PU
Direction/Refidx = L0[0]
MV=(-x, 0)

Left PU

_1361118883.vsd
Reference Picture (T-2)
L0[1]

Reference Picture (T-1)
L0[0]

Current Picture (T)

Foreground object

Current PU

MV of Current PU
Direction/Refidx = L0[1]
MV=(-2x, 0)

MV of Left PU
Direction/Refidx = L0[0]
MV=(-x, 0)

Left PU

_1360343534.vsd
Current PU

E

D

C

B

A

F

G

H

I

Search direction of top predictor

Search direction of left predictor

