	[image: image4.png][image: image5.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
4th Meeting: Daegu, KR, 20-28 January, 2011
	Document: JCTVC-D312
WG11 Number: m19078

	Title:
	Fine granularity slice partition

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Qiu Shen
Qingpeng Xie
Haoping Yu
Section B1, Huawei Industrial Base,
Bantian Longgang Shenzhen, China
	
Tel:
Email:
	

shenqiu@huawei.com
alicxie@huawei.com
haopingyu@huawei.com

	Source:
	Huawei Technologies Co., Ltd.

Abstract

In the last meeting, Ericsson proposed to change the definition of slice from being a sequence of largest coding units (LCU:s) to a sequence of coding units (CU:s) in order to increase the control of the slice sizes in terms of bytes. This contribution proposes some detailed changes for the new slice partition and reports the performance.
Background
The TMuC specification [1] currently supports slice boundaries on largest coding unit (LCU) resolution. The current common condition [2] specifies the LCU size to be 64x64 which is 16 times larger than the traditional 16x16 macroblocks. The problem with such coarse slice boundaries is that it becomes difficult to control the size of slices in terms of bytes.
In order to increase the granularity of slice boundaries for e.g. low delay video applications in error prone environments, Ericsson proposed to define slices to be a sequence of the coding units (CU:s) instead of a sequence of LCUs [3]. Figure 1 shows a slice boundary example.

[image: image1.png]
Figure 1
 - LCU with a SCU slice boundary

1 Proposal

1.1 Alternative Slice Partition
The sizes of LCU are diversified for different video sequences, different bitrates and different coding modes. Take sequence RaceHorses_832x480_20.yuv on QP 32 for example, the LCU sizes for intra coded frame and inter coded frame are greatly different. As shown in Figure 2, for intra mode the LCU sizes are almost in the range of 100 bytes to 500bytes; while for inter mode most LCU sizes are smaller than 150bytes. On the other hand, the LCU size gets bigger while QP getting smaller and/or sequence getting more complicated.

[image: image2.emf]Intra

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

3.00%

3.50%

4.00%

4.50%

5.00%

27517599

123147171195219243267291315339363387411435459483507531555579603627

LCU size(Byte)

Probablity

LCU size distribution

[image: image3.emf]Inter

0.00%

1.00%

2.00%

3.00%

4.00%

5.00%

6.00%

7.00%

09

182736455564738291

101110119128137147156165174183193202211220229

LCU size(Bytes)

Probability

LCU size distribution

Figure 2 – LCU size distribution for different coding mode
Accordingly, picture can be partitioned into slices based on CUs for large LCU size, and based on LCUs for small LCU size. In order to sign the type of slice partition, a flag can be written in the SPS, PPS or slice header. Table 1 gives an example of using a flag in the slice header.

Table 1 – signal slice partition type in slice header

	slice_header() {
	C
	Descriptor

	
lcu_slice_flag
	2
	u(1)

	}
	
	

lcu_slice_flag defines the slice partition type of current slice. If lcu_slice_flag is equal to 1, the picture is partitioned into slices based on LCUs. If lcu_slice_flag is equal to 0, the picture is partitioned into slices based on CUs.
1.2 Slice Start Address Signaling
To support the new slice partition, there should be some changes to the syntax and semantics for slice start address. As shown in Table 2, the slice start address is signaled hierarchically.

Table 2 – signal slice start address in slice header
	slice_header() {
	C
	Descriptor

	slice_start_is_pic_start_flag
	2
	u(1)

	if(slice_start_is_pic_start_flag){
	
	

	
first_lcu_in_slice_minus_1
	2
	u(v)

	 if(lcu_slice_flag==0){
	
	

	 first_scu_is_zero_flag
	2
	u(1)

	 if(first_scu_is_zero_flag == 0) {
	
	

	 first_scu_in_slice_minus_1
	2
	u(v)

	 }
	
	

	 }
	
	

	}
	
	

	}
	
	

slice_start_is_pic_start_flag equal to 1 specifies that the slice start from the start of picture, which means the first CU in slice is the first CU in picture. If slice_start_is_pic_start_flag is equal to 0, the slice starts from the middle of picture, and the additional information is required to signal the slice start address.

first_lcu_in_slice_minus_1 specifies the address in the picture of the first LCU in the slice. The address of the first LCU in slice (SliceStartLCUAddress) shall be computed as
SliceStartLCUAddress = first_lcu_in_slice_minus1+1
first_scu_is_zero_flag equal to 1 specifies the first SCU in the slice is the first one in the LCU. first_scu_is_zero_flag equal to 0 specifies the first SCU in the slice is not the first one in the LCU, and the accurate address in the LCU of the first SCU in the slice is specified by first_lcu_in_slice_minus_1.

first_scu_in_slice_minus_1 specifies the address in the LCU of the first SCU in the slice. The address of the first SCU in Slice (StartSCUAddress) shall be computed as

SliceStartSCUAddress = first_scu_in_slice_minus1+1

In addition, if lcu_slice_flag can be obtained from the bitstream, it can be used to determine whether SCU address signaling is necessary. When lcu_slice_flag is equal to 1, there is no need to signal the start SCU address.
1.3 Slice End Address Signaling
For context-based adaptive binary arithmetic coding (CABAC), it is necessary to indicate the end of slice. In this case, the syntax and semantics for slice end signaling need some changes as well. Since TMuC encoder writes slice header to the bitstream after compressing the slice data completely, the slice end address can be obtained when it writes slice header. So, the slice end address can be signaled hierarchically in slice header as shown in Table 3.

Table 3 – signal slice end address in slice header
	slice_header() {
	C
	Descriptor

	if(entropy_coding_mode_flag){
	
	

	
slice_end_is_pic_end_flag
	2
	u(1)

	
if(slice_end_is_pic_end_flag==0) {
	
	

	
 num_of_lcus_in_slice_minus1
	2
	u(v)

	 if(lcu_slice_flag==0){
	
	

	 last_scu_is_zero_flag
	2
	u(1)

	 if(last_scu_is_zero_flag == 0) {
	
	

	 last_scu_in_slice_minus_1
	2
	u(v)

	 }
	
	

	 }
	
	

	}
	
	

	}
	
	

	}
	
	

slice_end_is_pic_end_flag equal to 1 specifies that the slice continues to the end of picture, which means the last CU in slice is the last CU in picture. If slice_end_is_pic_end_flag is equal to 0, the slice ends at the middle of picture, and the additional information is required to signal the slice end address.
num_of_lcus_in_slice_minus_1 specifies the number of LCUs included in slice. The address of the last LCU in slice (SliceEndLCUAddress) shall be computed as

SliceEndLCUAddress = SliceStartLCUAddress + num_of_lcus_in_slice_minus_1
last_scu_is_zero_flag equal to 1 specifies the last SCU in the slice is the first one in the LCU. last_scu_is_zero_flag equal to 0 specifies the last SCU in the slice is not the first one in the LCU, and the accurate address in the LCU of the last SCU in the slice is specified by last_scu_in_slice_minus_1.

last_scu_in_slice_minus_1 specifies the address in the LCU of the last SCU in the slice. The address of the last SCU in slice (SliceEndSCUAddress) shall be computed as

SliceEndSCUAddress = last_scu_in_slice_minus1+1

In addition, if lcu_slice_flag can be obtained from the bitstream, it can be used to determine whether SCU address signaling is necessary. When lcu_slice_flag is equal to 1, there is no need to signal the end SCU address.
1.4 Split Flag Deducing
If the first SCU in the slice is not the first one in the LCU, the split flag for the first LCU in the slice can be deduced for some particular cases, and there is no need to write that flag. The corresponding derivation process can be seen from Table 4.
Table 4 – split flag deducing for first LCU in slice
	coding_unit() {
	C
	Descriptor

	
if(CurrentCUInPicRange &&

CurrCodingUnitSize > MinCodingUnitSize){
	
	

	 if(LCUAddress != SliceStartLCUAddress){
	
	

	 split_coding_unit_flag
	
	

	 }else{
	
	

	if(StartAddress>=SliceStartSCUAddress)
	
	

	split_coding_unit_flag
	2
	u(1) | ae(v)

	else if(StartAddress+ CurrCodingUnitSize
 < SliceStartSCUAddress)
	
	

	 split_coding_unit_flag=0
	
	

	else
	
	

	 split_coding_unit_flag=1
	
	

	}
	
	

	}
	
	

	…
	
	

	}
	
	

CurrentCUInPicRange specifies whether the current CU is in the picture range.

CurrCodingUnitSize specifies the size of current CU.

MinCodingUnitSize specifies the minimum size of CU.
LCUAddress specifies the LCU address of current CU.
SliceStartLCUAddress specifies the address of the first LCU in the slice.

split_coding_unit_flag specifies whether a coding unit is split into coding units with half horizontal and vertical size.
StartSCUAddress specifies the address in LCU of first SCU of current CU.
SliceStartSCUAddress specifies the address in LCU of the first SCU in the slice.
2 Simulation results
This section reports the performance of slice partition based on LCU and CU respectively. In the experiments, the slice setting is 1500bytes per slice. Table 5 gives the Y BD-rate increase compared to TMuC 0.9. The result for slice partition based on LCU is from the reference code of AHG-slices.
Table 5 – Y BD-rate loss of different slice partition
	
	Slice partition based on LCU
	Slice partition based on CU

	Randomaccess
	3.54%
	4.0%

	Lowdelay
	2.10%
	2.5%

	Intra
	4.76%
	5.4%

	Randomaccess_loco
	3.61%
	4.0%

	Lowdelay_loco
	2.09%
	2.3%

	Intra_loco
	5.42%
	6.0%

Conclusions
Huawei proposed to adopt slice partition based on not only LCU but also CU. And the proposed syntax changes can support both kinds of slices. The simulation results shown that for both kinds of slices, effects on coding efficiency is acceptable.
References
[1] "Test Model under Consideration", JCTVC-B205_draft005, Geneva, Switzerland, July 2010.
[2] Frank Bossen, “Common test conditions and software reference configurations”, JCTVC-B300, Geneva, Switzerland, July 2010.
[3] Rickard Sjöberg, “Fine Granularity slices”, JCTVC-C154, Guangzhou, China, October 2010.
3 Patent rights declaration(s)

Huawei Technologies Co., Ltd. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 3
Date Saved: 2011-01-21

