	[image: image3.png]

[image: image4.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
4th Meeting: Daegu, KR, 20-28 January, 2011
	Document: JCTVC-D260

	Title:
	Parallel processing friendly simplified context selection of significance map

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Cheung Auyeung
1730 N. First Street, MD:3NW
San Jose, CA 95112
USA
	Tel:

Email:
	1-408-352-4725

cheung.auyeung@am.sony.com

	
	Wei Liu
1730 N. First Street, MD:3NW
San Jose, CA 95112
USA
	Tel:

Email:
	1-408-352-4712

wei.liu@am.sony.com

	Source:
	Sony Electronics Inc.

Abstract

This contribution proposes a parallel processing friendly and lower complexity alternative to the context selection of significance map in TMuC 0.9. The proposed context selection removed the data dependency on the left boundary, bottom boundary and the scan direction. It reduced the maximum size of the neighborhood needed for context selection from 10 to 5 pixels. It also resulted in % BD-Rate improvements of 0.0, 0.0, -0.1 relative to the anchor for Intra HE, Random Access HE, and Low Delay HE test cases respectively.
1 Introduction

In TMuC 0.9, the HHI_TRANSFORM_CODING implemented a highly adaptive context selection approach for significance map of 16x16 and 32x32 transform coefficients. For instance in Figure 1, it divides a 16x16 block into four regions where each position in the yellow region as its context, the blue region shares 3 context, the orange region shares another 3 contexts, and the green region shares 5 contexts.
As shown in Figure 1, in general, the context selection of X can depend on the significance of the transform coefficients in neighboring positions A to K where G and K are exclusive with each other, and the context is based on the half of the sum of the significance of positions.

Since the neighboring positions of X could include the immediate previous position G or K in scan order, this make parallel processing of the context selection more difficult.

Another cost of complexity in the context selection is that the neighboring positions have a maximum of 10 positions. If the size of the neighborhood is reduced, complexity can also be reduced.

[image: image1.emf]A

D

H

J

E

B C

F

I

G

K

X

A

D

H

J

E

B C

F

I

G

K

X

Context Mask at

position X.

The context at X is

based on the half of the

sum of the significance

at A to K positions.

TMuC 0.9 Context Mask in a

16x16 Block.

Data

dependency

of X on G or

K pixel

reduce

parallelism

Figure 1: Context of significance Map in TMuC 0.9.

[image: image2.emf]H

E

B

F

I X

H

E

B

F

I X

Context Mask at

position X.

The context at X is

based on the the sum

of the significance at

B, E, F, H, I positions.

Proposed Context Mask in a

16x16 Block.

No data

dependency

of X on G

and K pixel

improved

parallelism

Figure 2: Proposed context of significance map.
2 Parallel processing friendly simplified context selection

Simplification and parallelization of context selection of significance is a part of the studies in CE11 [1] and JCTVC-227 [2]. This contribution proposed a parallel processing friendly simplified context selection of significance map. As shown in Figure 2, the proposed context selection of X is based on the sum of the significance of a maximum of the 5 positions B, E, F, H, I. Since X is independent on other positions on the same diagonal line of X along the scan direction, the context of the significance of the pixels along a diagonal line in scan order could be compute in parallel from the previous diagonal lines in scan order.
The implementation of the TMuC-0.9 context selection of significant map is shown in Figure 3 with comments. The comments in Figure 3 showed that the TMuC-0.9 context selection has data dependency on the left boundary, bottom boundary and the scan direction.

Figure 3: A subset of the source code of context selection of significance map from TComTrQuant.cpp of TMuC 0.9 with comments.

Figure 4: The complete source code of the simplified context selection of significance map.
In contrast to the TMuC 0.9 context selection of significance map in Figure 3, the proposed simplified context selection in Figure 4 has no data dependency on the left boundary, bottom boundary and the scan direction. Therefore the number of branches is reduced. Also the neighborhood for the context selection is reduced from 10 pixels to 5 pixels.

3 BD-Rate and Decoder Timing Comparison

The anchor results were from CE11 [1] coordinator except the anchor decoder timing. To generate the decoder timing, both the anchor and the proposed are compiled on Linux with GCC 4.5.1 64bit compiler. To obtain the decoder timing, the bitstreams were decoded on Intel Xeon® CPU X5355 @ 2.66Ghz with 48Gb RAM sequentially in Linux without outputting the decoded video. The significance count is also reported in accordance with CE11.
	
	Intra

	
	Y BD-rate
	U BD-rate
	V BD-rate
	% sig count

	Class A
	0.0
	-0.1
	-0.1
	-0.42%

	Class B
	0.1
	0.0
	0.0
	-0.75%

	Class C
	0.0
	0.0
	-0.1
	-0.01%

	Class D
	0.0
	0.0
	0.0
	0.05%

	Class E
	-0.1
	-0.1
	-0.2
	0.16%

	All
	0.0
	0.0
	-0.1
	-0.19%

	Enc Time[%]
	#NUM!
	

	Dec Time[%]
	100%
	

	
	
	
	
	

	
	Random access

	
	Y BD-rate
	U BD-rate
	V BD-rate
	% sig count

	Class A
	0.0
	0.1
	0.2
	-0.01%

	Class B
	0.0
	0.0
	-0.1
	-0.56%

	Class C
	0.0
	-0.1
	-0.1
	0.03%

	Class D
	-0.1
	0.0
	0.3
	0.75%

	Class E
	
	
	
	

	All
	0.0
	0.0
	0.0
	0.05%

	Enc Time[%]
	#NUM!
	

	Dec Time[%]
	100%
	

	
	
	
	
	

	
	Low delay

	
	Y BD-rate
	U BD-rate
	V BD-rate
	% sig count

	Class A
	
	
	
	

	Class B
	-0.1
	-0.1
	-0.3
	0.45%

	Class C
	-0.1
	-0.1
	-0.2
	1.47%

	Class D
	-0.1
	-0.6
	0.1
	2.61%

	Class E
	-0.2
	-0.1
	-0.4
	1.81%

	All
	-0.1
	-0.2
	-0.2
	1.58%

	Enc Time[%]
	#NUM!
	

	Dec Time[%]
	100%
	

4 Conclusion

Based on analysis of the algorithm, the proposed context selection has lower complexity than TMuC 0.9, although virtually no change was observed in the software decoding timing. It has better support for parallel processing and it achieved a small reduction in BD rate for the high efficiency test cases. This contribution could be a candidate as a part of the next HM or CE.
5 References
[1] “CE11: Coefficient scanning and coding”, JCTVC-C511, 3rd JCT-VC Meeting, Guangzhou, CN, October 2010.
[2] “Parallelization of HHI_TRANSFORM_CODING’, JCTVC-C227, 3rd JCT-VC Meeting, Guangzhou, CN, October 2010.
6 Patent rights declaration(s)
Sony Electronics Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
UInt TComTrQuant::getSigCtxInc (TCoeff* pcCoeff,

 const UInt uiPosX,

 const UInt uiPosY,

 const UInt uiLog2BlkSize,

 const UInt uiStride,

 const bool bDownLeft)

{

 UInt uiCtxInc = 0;

 UInt uiSizeM1 = (1 << uiLog2BlkSize) - 1;

 if(uiLog2BlkSize <= 3)

 {

 UInt uiShift = max<UInt>(0, uiLog2BlkSize - 2);

 uiCtxInc = ((uiPosY >> uiShift) << 2) + (uiPosX >> uiShift);

 }

 else if(uiPosX <= 1 && uiPosY <= 1)

 {

 uiCtxInc = (uiPosY << 1) + uiPosX;

 }

 else if(uiPosY == 0)

 {

 . . .

 }

 else if(uiPosX == 0)

 {

 . . .

 }

 else

 {

 const int* pData = &pcCoeff[uiPosX + uiPosY * uiStride];

 int iStride = uiStride;

 int iStride2= iStride << 1;

 UInt uiCnt = (pData[-iStride] ? 1 : 0);

 uiCnt += (pData[-1] ? 1 : 0);

 uiCnt += (pData[-1 -iStride] ? 1 : 0);

 if(uiPosX > 1)

 {

 uiCnt += (pData[-2] ? 1 : 0);

 uiCnt += (pData[-2 -iStride] ? 1 : 0);

 if(uiPosY < uiSizeM1) // data dependency on bottom boundary

 {

 uiCnt += (pData[-2 +iStride] ? 1 : 0);

 }

 }

 if(uiPosY > 1)

 {

 uiCnt += (pData[-iStride2] ? 1 : 0);

 uiCnt += (pData[-1 -iStride2] ? 1 : 0);

 if(uiPosX < uiSizeM1) // data dependency on right boundary

 {

 uiCnt += (pData[1 -iStride2] ? 1 : 0);

 }

 }

 if(bDownLeft) // data dependency on scan direction

 {

 if(uiPosX < uiSizeM1) // data dependency on right boundary

 {

 uiCnt += (pData[1 -iStride] ? 1 : 0);

 }

 }

 else

 {

 if(uiPosY < uiSizeM1) // data dependency on bottom boundary

 {

 uiCnt += (pData[-1 +iStride] ? 1 : 0);

 }

 }

 uiCtxInc = 10 + min<UInt>(4, (uiCnt + 1) >> 1);

 }

 return uiCtxInc;

}

Int TComTrQuant::getSigCtxInc (TCoeff* pcCoeff,

 const UInt uiPosX,

 const UInt uiPosY,

 const UInt uiLog2BlkSize,

 const UInt uiStride,

 const bool bDownLeft)

{

 UInt uiCtxInc = 0;

 if(uiLog2BlkSize <= 3)

 {

 UInt uiShift = max<UInt>(0, uiLog2BlkSize - 2);

 uiCtxInc = ((uiPosY >> uiShift) << 2) + (uiPosX >> uiShift);

 }

 else if(uiPosX <= 1 && uiPosY <= 1)

 {

 uiCtxInc = (uiPosY << 1) + uiPosX;

 }

 else if(uiPosY == 0)

 {

 const int* pData = &pcCoeff[uiPosX + uiPosY * uiStride];

 UInt uiCnt = (pData[-1] ? 1 : 0);

 uiCnt += (pData[-2] ? 1 : 0);

 uiCtxInc = 4 + uiCnt;

 }

 else if(uiPosX == 0)

 {

 const int* pData = &pcCoeff[uiPosX + uiPosY * uiStride];

 int iStride = uiStride;

 int iStride2= iStride << 1;

 UInt uiCnt = (pData[-iStride] ? 1 : 0);

 uiCnt += (pData[-iStride2] ? 1 : 0);

 uiCtxInc = 7 + uiCnt;

 }

 else

 {

 const int* pData = &pcCoeff[uiPosX + uiPosY * uiStride];

 int iStride = uiStride;

 int iStride2= iStride << 1;

 UInt uiCnt = (pData[-1 -iStride] ? 1 : 0);

 uiCnt += (pData[-iStride] ? 1 : 0);

 uiCnt += (pData[-1] ? 1 : 0);

 if(uiPosX > 1)

 {

 uiCnt += (pData[-2] ? 1 : 0);

 }

 if (uiPosY > 1)

 {

 uiCnt += (pData[-iStride2] ? 1 : 0);

 }

 uiCtxInc = 10 + min<UInt>(4, uiCnt);

 }

 return uiCtxInc;

}

Page: 5
Date Saved: 2011-01-15

_1356520380.ppt

A

D

H

J

E

B

C

F

I

G

K

X

A

D

H

J

E

B

C

F

I

G

K

X

Context Mask at position X.

The context at X is based on the half of the sum of the significance at A to K positions.

TMuC 0.9 Context Mask in a 16x16 Block.

Data dependency of X on G or K pixel reduce parallelism

_1356264036.ppt

H

E

B

F

I

X

H

E

B

F

I

X

Context Mask at position X.

The context at X is based on the the sum of the significance at B, E, F, H, I positions.

Proposed Context Mask in a 16x16 Block.

No data dependency of X on G and K pixel improved parallelism

