	[image: image4.bmp][image: image5.png]

[image: image6.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
4th Meeting: Daegu, KR, 20-28 January, 2011
	Document: JCTVC-D243
WG11 Number: m19004

	Title:
	Analysis of entropy slices approaches

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Vivienne Sze
Texas Instruments Inc.

Madhukar Budagavi
Texas Instruments Inc.
	Email:

Email:

	sze@ti.com

madhukar@ti.com

	Source:
	Texas Instruments Inc.

Abstract

Low power and high frame rate/resolution requirements for future video coding applications make the need for parallelism in the video codec implementation ever more important. The CABAC entropy coding engine has been identified as a key bottleneck in the H.264/AVC video decoder. This contribution begins by describing the differences between regular slices, entropy slices and interleaved entropy slices. It then provides an analysis of these tools based on throughput, coding efficiency, implementation complexity and latency. Based on these metrics, interleaved entropy slices is recommended as a favorable approach for parallel CABAC processing due to its high throughput, low memory bandwidth, low latency and high coding efficiency.

1 Introduction
Parallelism can be used to achieve the high processing speed that is necessary to deliver high resolution and frame rates. At the same time, power consumption is becoming increasingly important as more video codecs are found in battery-operated devices. An effective method of reducing power consumption is to increase throughput (via parallelism) and then trade-off of the processing speed for power savings with voltage scaling. Thus the amount of parallelism extends beyond the minimum necessary to achieve a given frame rate or resolution. In other words, if it takes a minimum of N parallel cores to achieve 4kx2k @ 60fps, for power reduction, we may want to have 2N cores running at half speed and a lower voltage. Accordingly, parallel processing can be used to address both the power and performance requirements of future video codecs. One of the key throughput bottlenecks in the video codec is entropy coding. In particular, parallelism is difficult to achieve with the existing AVC CABAC due to its inherent serial nature.
Various forms of parallelism have been proposed for HEVC at the bin, syntax element, and slice level; for each form, various methods have been proposed. For instance, for slice level parallelism Regular Slices (i.e. slices used in AVC), Entropy Slices [1][2], Ordered Entropy Slices [3]

 REF _Ref282887031 \r \h
[4] and Interleaved Entropy Slices [5][6] have been proposed for HEVC. It is important to understand the impact of the various parallel processing methods in terms of
· Throughput
· Coding efficiency

· Implementation complexity (e.g. memory bandwidth)

· Latency

This contribution begins by describing the differences between regular slices, entropy slices and interleaved entropy slices. It then provides an analysis of these tools based on the above metrics.
2 Description of the Slice Parallelism Tools
This section explains how parallelism is achieved in a video decoder using regular slices, entropy slices and interleaved entropy slices. For the purpose of highlighting the differences between the different approaches, the decoder will be broken into two parts as shown in Fig. 1. The entropy decoding portion (which will be referred to as entropy decoder), and the rest for the decoder (which will be referred to as pixel decoder). Furthermore, the definition of “dependencies” in the subsequent discussion refers to the top and left neighboring macroblocks or coding unit (CU).

[image: image1]
Fig. 1 – Video decoder is broken into entropy decoder and pixel decoder.

In AVC, a frame can be broken into regular slices. In most cases
 the slices are independent of each other, meaning each slice can be fully decoded (i.e. reconstruct all pixels) without any information from the other slices. This allows regular slices to be fully decoded in parallel. Accordingly, the entropy decoder and pixel decoder can run in parallel. One key drawback of having slices that are entirely independent is that redundant information cannot be removed across slices, which results in coding loss.
Entropy slices enable independent entropy decoding, where all the syntax elements can be decoded without information from other entropy slices. However, to achieve better coding efficiency than fully independent slices (i.e. regular slices in AVC), there remains dependencies between the entropy slices when using the syntax elements to decode pixels (e.g. for spatial and motion vector prediction). In other words, the entropy decoder can run in parallel; however, it does not enable parallelism in the pixel decoder. In order for both the entropy decoder and pixel decoder to operate in parallel, frame level buffering is required. This observation was first highlighted in [3].
Interleaved entropy slices allow dependencies across slices for both syntax element and pixel decoding which helps improve coding efficiency. To enable parallel processing of slices that have dependencies, interleaved entropy slices divides a frame into slices in a different manner than entropy slices and regular slices. A typical spatial location of the macroblocks allocated to regular slices and entropy slices is shown in Fig. 2. For interleave entropy slices, the macroblocks are allocated as shown in Fig. 3. Different rows of macroblocks are assigned to each slice. In Fig. 3, as long as slice A is one or two macroblocks ahead of slice B, both slices can be decoded in parallel. This form of processing is often referred to wavefront process. With interleaved entropy slices, both the entropy decoder and pixel decoder can process different slices in parallel.

[image: image2]
Fig. 2 Macroblock allocation for regular slices and entropy slices.

[image: image3]
Fig. 3 Macroblock allocation for interleaved entropy slices.

3 Evaluation of Tools
This section evaluates regular slices, entropy slices and interleaved entropy slices based

· Throughput
· Implementation complexity (e.g. Memory bandwidth)

· Latency

· Coding efficiency

3.1 Throughput
While throughput is correlated with degree of parallelism, it not equal to it. It depends strongly on the workload balance between the parallel engines. If the workload is not equally distributed, some engines will be idle, and the effective throughput is reduced (i.e. Nx parallel hardware blocks will not result in an Nx throughput increase). Thus workload balance should be evaluated for each tool. When CABAC is used for entropy coding, the workload can be measured in terms of number of binary symbols (bins).
The effective throughput was measured for each tool. Each frame was broken into the same number of slices and, as much as possible, an equal number of macroblocks were assigned to each slice. The number of bins per slice was measured for a given frame. To account for any workload imbalance, the slice with the largest number of bins per frame was used to compute the throughput. Table 1 shows the measured results of this experiment. The experiment was performed using JM12.0 under VCEG common conditions [8]. The macroblock allocation used in interleaved entropy slices has better workload balance than the one used for regular and entropy slices. This is due to the fact that the slices in interleaved entropy slices cover similar areas, while the slices for regular or entropy slices cover distinct parts of the frame which are more likely to be different and thus resulting in different workload for each slice. As fewer cores are needed for interleaved entropy slices to achieve the same throughput as entropy slices and regular slices, the area cost of interleaved entropy slices is also reduced relative to the other approaches.
	Tool
	1 slice per frame
	15 slices per frame
	23 slices per frame

	Regular Slices
	1
	9.6x
	14.0x

	Entropy Slices
	1
	10.3x
	15.0x

	Interleaved Entropy Slices
	1
	12.2x
	17.0x

Table 1: Summary of effective throughput of each slice parallelism approach for different number of slices per frame. Values were obtained from averaging across 720p sequences.
3.2 Implementation complexity (e.g. Memory Bandwidth)
Regular slices have the simplest implementation as the entire video decoder core can be replicated and no communication is required between the cores.
In entropy slices, the entropy decoder is replicated. However, the syntax elements produced by the entropy decoders cannot be immediately decoded by the pixel decoders due to the top dependencies. This issue was first highlighted in [3]. Thus, the syntax elements produced by the parallel entropy decoders must be stored in memory before the pixel decoder begins decoding. This increases memory bandwidth. Specifically, according to [3], the memory overhead of frame buffering syntax elements for 4kx2k @ 60fps is 3 Gbytes/sec. Memory bandwidth impacts both power and processing speed. The number of ports available on a memory is limited. Thus increasing memory bandwidth can results in more read/write conflicts, which can cause stalls leading to degradation in processing speed.
In interleaved entropy slices, both the entropy decoder and the pixel decoder can run in parallel. Communication is required between the cores, which can be managed simply with a FIFO (first-in-first-out memory).
In all tools, the entire context memory must be replicated. A line buffer is required in the video decoder to store information about the entire previous row of macroblocks in order to satisfy top dependencies. This buffer can either be stored on-chip, at the cost of area, or off-chip at the cost of increases memory bandwidth. High resolutions require a large line buffer, and accessing a large memory also increases power consumption. For single slice per frame, regular slices and entropy slices, this large memory is accessed for every row. Furthermore, if an on-chip buffer is used, regular slices and entropy slices require the buffer to be replicated for each core. With interleaved entropy slices, only a single line buffer is required, independent of the number of cores, and the number of accesses to the line buffer is reduced. For N interleaved entropy slices per frame, the line buffer is accessed 1/N as compared with single slice, regular slices, and entropy slice.

One should also consider how the encoder memory bandwidth would be affected by slice parallelism. For instance, one could consider the implications of running multiple motion estimation cores in parallel. Motion estimation has significant bandwidth requirements which will grow with higher resolutions. With interleave entropy slices, there is high opportunity for caching across motion estimation cores since they operate on similar areas. This is not an advantage afforded to regular slices or entropy slices.
	Tool
	Frequency of Access to Line Buffer
	Buffer between entropy decoder and pixel decoder

	Single slice per frame
	Every Row
	No

	Regular Slices
	0
	No

	Entropy Slices
	Every Row
	Yes

	Interleaved Entropy Slices
	Every Nth Row
	No

Table 2: Summary of memory bandwidth characteristics of each slice parallelism approach.

3.3 Latency

Low latency is critical for applications such as video conferencing. The latency of each tool should be evaluated at both the encoder and decoder. We consider the case where transmission can begin before the entire NALU is encoded, and display can begin before entire NALU is decoded.
3.3.1 Encoder

All regular slices can begin encoding at the same time. For interleaved entropy slices, slice N can only begin encoding once slice N-1 has encoded one macroblock. Similarly, slice N-1 can only begin encoding once slice N-2 has encoded one macroblock. Thus, the latency for a frame with N slices, is N-1 macroblocks.

For parallel entropy coding with entropy slices, the first entropy slices can begin encoding immediately. However, the other entropy slices cannot run in parallel without cost in latency. Recall that the dependencies still remain in pixel encoding for entropy slices. Pixel encoding can be done in a serial manner, in which case the other entropy slices must way until their input syntax elements are generated. Alternatively, if the pixel encoding is done in a parallel manner, frame buffering is needed so that all syntax elements would be ready for each entropy encoder, which would lead to one frame latency.
3.3.2 Decoder

The decoder latency of regular and interleaved entropy slices is the same as the encoder. All regular slices can begin decoding at the same time. For interleaved entropy slices, slice N can only begin decoding once slice N-1 has decoded at least one macroblock. Similarly, slice N-1 can only begin decoding once slice N-2 has decoded at least one macroblock. Thus, the latency for a frame with N slices is N-1 macroblocks.

As mentioned earlier, the syntax elements generated by the parallel entropy decoders cannot be immediately processed by the pixel decoder due to top dependencies. Thus these syntax elements need to be stored in memory. In order to have parallel processing for the pixel decoder as well (so that the processing speed of pixel decoding is the same as syntax element decoding), a full frame of data needs to be stored. This leads to a minimum one frame latency in the decoding of entropy slices.
3.4 Coding efficiency

In regular slices, entropy slices and interleaved entropy slices, each slice is contained in NAL unit. This enables all slices to be accessed in parallel. Entropy slices and interleaved entropy slices both have reduced slices headers as proposed in [1].

The coding loss required to achieve a 10x increase in effective throughput, was measured for each tool. As much as possible, an equal number of macroblocks where assigned to each slice. The anchor was single regular slice per frame. The measurements for interleaved entropy slices were done using JM12.0 under VCEG common conditions. The BD-rates for Entropy Slices proposal are taken directly from [3]. For the same throughput, interleaved entropy slices has up to 3x less coding penalty than the other tools. This can be attributed to three reasons: 1) interleaved entropy slices (and entropy slices) allow for dependencies across slices for the pixel decoding; 2) interleaved entropy slices allows using information from other slices to perform context selection; 3) The improved workload balancing of interleaved entropy slices means that fewer slices are needed to achieve the same effective throughput. This means that interleaved entropy slices will have less start code overhead compared with entropy slices and regular slices.
	Tool
	Coding Loss for 10x throughput
	Number of Slices required for 10x throughput

	Single slice per frame
	0
	Not possible

	Regular Slices
	5.3 to 9.7 %
	15

	Entropy Slices
	1.3 to 8.8%
	15

	Interleaved Entropy Slices
	1.5 to 3.2%
	12

Table 1. A comparison of the coding efficiency penalty (BD-rate [9]

 REF _Ref233178404 \r \h
[10]) versus throughput for Parallel CABAC proposals.
4 Conclusions

In this contribution, the various forms of slice level parallelism were compared in terms of throughput, coding efficiency, implementation complexity (memory bandwidth), and latency. Based on this analysis, interleaved entropy slices has shown to provide the following benefits:
1) high effective throughput

2) low area cost

3) good coding efficiency

4) reduced memory bandwidth

5) simple synchronization and implementation

6) low latency

7) enables full decoder parallelism

5 Acknowledgements

The authors would like to acknowledge Daniel Finchelstein (MIT) for his participation in the initial conception of the interleaved entropy slices.

6 References

[1] A. Segall and J. Zhao, “Entropy slices for parallel entropy decoding,” ITU-T SGI 6/Q.6 Doc. COM16-C405, Geneva, CH, April 2008.
[2] A. Segall, T. Yamamoto, J. Zhao, Y. Kitaura, Y. Yasugi, and T. Ikai, “Video coding technology proposal by Sharp,” JCTVC-A105, Joint Collaborative Team on Video Coding meeting, 15-23 April 2010, Dresden, Germany.

[3] Xun Guo, Yu-Wen Huang, and Shawmin Lei “Ordered Entropy Slices for Parallel CABAC,” ITU-T Q.6/SG16 VCEG, VCEG-AK25, Yokohama, Japan, 15-18 April, 2009.

[4] Yu-Wen Huang, Xun Guo, Chih-Ming Fu, Yu-Pao Tsai and Shawmin Lei “Ordered Entropy Slices for Parallel CABAC,” ITU-T Q.6/SG16 VCEG, VCEG-AL25, Geneva, July 2009.

[5] Daniel F. Finchelstein, Vivienne Sze, and Anantha P. Chandrakasan, “Multi-Core Processing and Efficient On-Chip Caching for H.264 and Future Video Decoders”, IEEE Transactions on Circuits and Systems for Video Technology, November 2009.

[6] V. Sze. M. Budagavi, and A. P. Chandrakasan, "Massively Parallel CABAC," ITU-T Q.6/SG16 VCEG, VCEG-AL21, Geneva, July 2009.
[7] M. Budagavi, V. Sze, M. U. Demircin, S. Dikbas, M. Zhou, and A. P. Chandrakasan, “Video coding technology proposal by Texas Instruments,” JCTVC-A101, Joint Collaborative Team on Video Coding meeting, 15-23 April 2010, Dresden, Germany.

[8] TK Tan, G. Sullivan, and T. Wedi, "Recommended Simulation Common Conditions for Coding Efficiency Experiments Revision 1," ITU–T Standardization Sector, Document VCEG-AE010, January 2007.

[9] G. Bjøntegaard, "Calculation of Average PSNR Differences between RD curves",
VCEG-M33, Austin, TX, USA, April 2001.

[10] Stéphane Pateux and Joel Jung, “An Excel Add-In for Computing Bjøntegaard Metric and Its Evolution,” ITU-T SG16 Q.6 Document, VCEG-AE07, Marrakech, January 2007.
7 Patent rights declaration(s)

Texas Instruments may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

To the best of our personal awareness TI does not have patent rights to the content of the document.

Video Decoder

Decoded Pixels

Syntax Elements

Encoded Bits

pixel

decoder

entropy

decoder

(Slice B

(Slice A

B

E

C

I

L

S

A

E

C

I

L

S

� An exception is when deblocking is enabled across regular slices.

Page: 5
Date Saved: 2011-01-14

