	[image: image4.png][image: image5.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
4th Meeting: Daegu, Korea, 20-28 January, 2011
	Document: JCTVC-D035_r2
WG11 Number: m18782

	Title:
	Unified scaling with adaptive offset for reference frame compression with IBDI

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	
Dzung Hoang
	
Tel:
Email:
	

dzung.hoang@zenverge.com

	Source:
	Zenverge, Inc.

Abstract

Internal Bit Depth Increase (IBDI) is a technique that increases the arithmetic precision of the prediction, transform, and loop filter in a video codec by increasing the pixel bit depth at the input to the encoder and adjusting at the output of the decoder. The main benefit is additional coding gain due to better intra-prediction and inter-prediction. The main drawback is that memory storage and bandwidth requirements are increased. Several reference frame compression (RFC) techniques have been proposed to reduce the memory storage and bandwidth penalty of IBDI. In this document, we propose two RFC algorithms that improve upon Toshiba’s Dynamic Range Adaptive Scaling (DRAS), which is thus far the best performing RFC proposal. Experimental results using HM version 0.9 show that for the low-delay high-efficiency configuration, our RFC algorithms retain about 90% of the coding efficiency gains of IBDI compared to 78% for DRAS. For the random-access high-efficiency configuration, our algorithms perform comparably to DRAS and retain over 90% of the coding efficiency gains of IBDI. The complexity of our RFC algorithms is similar to that of DRAS.
Introduction
Internal Bit Depth Increase (IBDI) [1] is a technique that increases the arithmetic precision of the prediction, transform, and loop filter in a video codec by increasing the pixel bit depth at the input to the encoder and adjusting at the output of the decoder. In [2], Toshiba proposed to increase the bit depth by 4 (from 8 bits to 12 bits). The main benefit of IBDI is additional coding gain due to better intra-prediction and inter-prediction. The main drawback is that memory storage and bandwidth requirements are increased by about 50%.
There have been several proposals [3–6] to reduce the memory storage and bandwidth penalty of IBDI by compressing the reference frames before they are stored to the decoder picture buffers and decompress them as needed for inter-prediction. The results of these proposals are presented in Table 1. These results are for compressing the frame buffer storage from 12 bits per sample down to 8 bits per sample, except for Panasonic’s proposal that does 12 bits down to 5.33 bits.
Table 1: Results of proposed RFC methods with IBDI

	Method
	Class
	Random-Access

High-Efficiency

Y BD-Rate

Increase (%)
	Low-Delay

High-Efficiency

Y BD-Rate

Increase (%)

	Toshiba [3]
	A
	0.16
	

	
	B
	0.16
	0.58

	
	C
	0.14
	0.44

	
	D
	0.13
	0.36

	
	E
	
	5.47

	
	All
	0.15
	1.41

	TI [5]
	A
	0.23
	

	
	B
	0.23
	1.05

	
	C
	0.27
	1.02

	
	D
	0.27
	0.62

	
	E
	
	5.37

	
	All
	0.25
	1.74

	Panasonic [6]
(12 bits to 5.33 bits)
	A
	1.7
	

	
	B
	2.1
	2.9

	
	C
	3.9
	5.3

	
	D
	3.5
	4.3

	
	E
	
	7.6

	
	All
	2.9
	4.7

	NEC [4]
	A
	0.7
	

	
	B
	0.9
	1.7

	
	C
	0.8
	1.4

	
	D
	0.8
	1.2

	
	E
	
	9.5

	
	All
	0.8
	3.0

1 Toshiba’s Dynamic Range Adaptive Scaling

The results in Table 1 show that Toshiba’s proposal performs the best overall in terms of coding efficiency. It also appears to be the simplest in terms of algorithmic and implementation complexity. We now summarize Toshiba’s proposal. Figure 1 shows a diagram of an encoder and a decoder with IBDI and RFC. [3]
	[image: image1.png]

Figure 1: Codec diagram with IBDI and RFC [3]

Toshiba describes their compression scheme as “dynamic range adaptive scaling” (DRAS) that is performed on 4x4 blocks. The DRAS compression algorithm is presented in pseudo-code in Listing 1. (We made minor changes from Toshiba’s description, but with equivalent functionality.)
Listing 1: DRAS compression algorithm

	M = (minimum pixel value in block) & ~((1 << 4) - 1)

	R = (maximum pixel value in block) - M

	for (S=0; R≥(128 << S) && S<4; S++);

	if (S == 4) {

	 flag = 1

	 P[i] = min(255, (pixel_value[i] + 8) >> 4), for all i

	} else {

	 flag = 0

	 P[i] = (pixel_value[i] - M) >> S, for all i

	}

An example compression storage format for DRAS is shown in Listing 2. One bit is required to signal whether fixed-scaling or adaptive-scaling is used. With fixed-scaling, 129 bits are required for a 4x4 block. With adaptive-scaling 123 bits are required. The worst-case of 129 bits means that DRAS actually compresses from 12 bits per sample to 8.0625 bits.
Listing 2: DRAS compression storage format

	flag = u(1); /* fixed or adaptive scaling */

	if (flag) {

	 /* fixed scaling: 128-bit */

	 for (i=0; i<16; i++) u(8);

	} else {

	 /* adaptive scaling: 122-bit */

	 u(2); /* S: [0..3] */

	 u(8); /* M >> 4 */

	 for (i=0; i<16; i++) u(7); /* pixel value P[i] */

	}

The DRAS decompression algorithm is presented below.
Listing 3: DRAS decompression algorithm

	if (flag == 1) {

	 D[i] = P[i] << 4, for all i

	} else {

	 if (S == 0)

	 D[i] = P[i] + M, for all i

	 else

	 D[i] = (P[i] << S) + M + (1 << (S-1)), for all i

	}

2 Study of 4-LSB in Frame Buffer
To get some insight into the effect of IBDI on the video codec, we coded the Vidyo1 sequence using the low-delay high-efficiency (LD-HE) configuration. Figure 2 shows the histogram of the 4-LSB for the first reconstructed frame.
	
[image: image2.emf]01000020000300004000050000600000123456789101112131415Frequency4-LSB

Histogram of 4-LSB of Frame Buffer Pixels

Figure 2: Histogram of 4-LSB for first reconstructed frame of Vidyo1

The histogram depicts a more-or-less uniform distribution. Given the histogram, the best approximation (in the least square sense) for the 4-LSB would be either 7 or 8 because the expected value is 7.5. Suppose that we can extend this result to S-LSB, where S is the scaling factor in the DRAS algorithm. Then the DRAS decompression algorithm for the adaptive-scaling case would be justified in adding the offset (1 << (S-1)) to the reconstructed pixel value.
The above histogram was generated for the entire first frame, but the scaling process is applied at the block level. It is likely that the histogram for each block would not be uniform. To test this, we computed the average of the 4-LSB for each 4x4 block and then computed the histogram of the block averages. Since the block averages can be nonintegral, we rounded the block averages. The histogram of block averages is shown in Figure 3.

	
[image: image3.emf]0200040006000800010000120001400016000180000123456789101112131415FrequencyBlock Average of 4-LSB

Histogram of Block Average of 4-LSB

Figure 3: Histogram of block average of 4-LSB for first reconstructed frame of Vidyo1
3 Unified Scaling with Adaptive Offset
Figure 3 shows that there is some variability at the block level that can be exploited to reduce the average distortion. For each block, given a scaling factor of S (right shift by S bits), the compressor can compute the optimum single S-bit reconstruction offset to be applied at the decompressor as the average of the S-LSB of the sample values within the block. This can be seen as an application of the centroid rule in the Lloyd-Max quantizer design method. The optimum offset can be sent as side information to the decompressor for reconstruction. Through experiments, we found that this block-level adaptive offset can reduce the distortion enough so that there is no need to have a fixed-scaling mode. Instead, we allow S to take on values between 0 and 5, inclusive. By eliminating fixed-scaling, we have achieved “unified scaling with adaptive offset” (USAO). The practical effect of this is that we can achieve true 12-to-8 compression ratio.
The USAO compression algorithm is described in pseudo-code in Listing 4.

Listing 4: USAO compression algorithm

	M = (minimum pixel value in block)

	R = (maximum pixel value in block)

	for (S=0; (R>>S)-(M>>S)≥128; S++);

	mask = (1 << S) - 1

	offset = (sum(pixel_value[i] & mask) + 8) / 16

	M = M & ~mask

	P[i] = (pixel_value[i] - M) >> S, for all i

The USAO decompression algorithm is described in Listing 5.
Listing 5: USAO decompression algorithm

	D[i] = (P[i] << S) + M + offset, for all i

An example compression format for USAO is presented in Listing 6. This format uses 127 bits.
Listing 6: Example compression format for USAO

	u(3); /* S: [0..5] */

	u(12-S); /* M >> S */

	u(S); /* offset */

	for (i=0; i<16; i++) u(7); /* P */

We can further reduce the number of bits in the compression format by noting that at least one of the P values is 0, which corresponds to the entry with the (quantized) minimum pixel value. We can signal the location of the minimum with 4 bits and then code the other 15 P values with 7 bits each. The total number of bits is thus reduced to 124 bits. This is an implementation optimization that does not affect the distortion, and is this non-normative. However, the extra 4 bits allows us to consider a further enhancement to the algorithm that can use the extra bits for side information.
4 Unified Scaling with Multiple Offsets
In addition to the bit savings described above, we can code 5-S with a unary code and have (S+1) bits left over. This is enough to code an additional offset value. In USAO, an offset is computed for each 4x4 block. Now we consider computing two offsets, one for each 4x2 sub-block. (2x4 sub-blocks can also be considered but we arbitrarily chose 4x2.) This can potentially reduce the distortion by better adapting the offsets to the local statistics. We call this variant Unified Scaling with Multiple Offsets (USMO). The compression and decompression algorithms are similar to USAO except that two offsets are computed for the 4x2 sub-blocks. An example compression format for USMA is shown below and uses 127 bits.
Listing 7: Example compression format for USMA
	u(6-S); /* 5-S coded in unary */

	u(12-S); /* M >> S */

	u(S); /* offset 1 */

	u(S); /* offset 2 */

	u(4); /* M_index */

	for (i=0; i<15; i++) u(7); /* P array excluding P[M_index] */

5 Experimental Results
5.1 Implementation Notes

We ran encoding simulations using the configurations where IBDI is enabled, namely random-access high-efficiency and low-delay high-efficiency. Revision 426 of HM version 0.9 was used with the configuration switch IBDI_NOCLIP_RANGE set to 0 in CommonDef.h. This change was necessary to disable the clipping that would otherwise interfere with USAO and USMA. Due to this change and possibly other fixes in revision 426, the results without RFC differ from the anchor bitstreams generated by an earlier revision of HM version 0.9. We quantify the differences between revision 426 and the “anchor” in Table 2. APSNR was used for computing the BD-rate for Y, Cb, and Cr. For further details about APSNR and the RGB column, please see JCTVC-D040. The differences are small enough not to raise any concerns.
Table 2: BD-rate increase of revision 426 compared to “anchor 0.9”

	
	
	LD-HE
	RA-HE

	
	
	BD-Rate Increase
	BD-Rate Increase

	
	
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB

	Class A
	Traffic
	
	
	
	
	0.0
	0.1
	0.0
	0.0

	4K
	PeopleOnStreet
	
	
	
	
	0.0
	0.0
	0.0
	0.0

	
	Average
	
	
	
	
	0.0
	0.0
	0.0
	0.0

	Class B
	Kimono
	0.0
	0.0
	0.1
	0.0
	0.0
	0.0
	0.0
	0.0

	1080p
	ParkScene
	0.0
	0.1
	0.2
	0.0
	0.0
	0.0
	0.0
	0.0

	
	Cactus
	0.0
	0.1
	0.1
	0.1
	0.0
	0.2
	0.1
	0.0

	
	BasketballDrive
	0.0
	-0.2
	0.3
	0.1
	0.0
	0.1
	0.0
	0.0

	
	BQTerrace
	0.0
	0.3
	-0.7
	0.1
	-0.1
	0.0
	0.0
	0.0

	
	Average
	0.0
	0.1
	0.0
	0.0
	0.0
	0.1
	0.0
	0.0

	Class C
	BasketballDrill
	0.2
	-0.2
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	WVGA
	BQMall
	-0.1
	-0.1
	0.2
	0.0
	-0.1
	-0.1
	-0.1
	0.0

	
	PartyScene
	0.0
	0.1
	0.1
	0.0
	0.0
	0.0
	0.0
	0.0

	
	RaceHorses
	0.0
	0.0
	0.0
	0.0
	0.1
	0.0
	0.0
	0.0

	
	Average
	0.0
	-0.1
	0.1
	0.0
	0.0
	0.0
	0.0
	0.0

	Class D
	BasketballPass
	0.1
	-0.1
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	WQVGA
	BQSquare
	0.1
	-2.2
	0.0
	-0.1
	-0.2
	0.0
	-0.1
	0.0

	
	BlowingBubbles
	0.0
	-0.5
	0.0
	-0.1
	0.0
	0.0
	0.0
	0.0

	
	RaceHorses
	-0.1
	-0.2
	0.6
	0.0
	0.1
	0.2
	0.0
	0.0

	
	Average
	0.0
	-0.7
	0.2
	0.0
	0.0
	0.0
	0.0
	0.0

	ClassE
	Vidyo1
	-0.2
	1.3
	-0.1
	0.1
	
	
	
	

	WQVGA
	Vidyo3
	0.0
	0.0
	0.0
	0.0
	
	
	
	

	
	Vidyo4
	-0.1
	-0.4
	0.3
	0.0
	
	
	
	

	
	Average
	-0.1
	0.3
	0.1
	0.0
	
	
	
	

	All
	Average
	0.0
	-0.1
	0.1
	0.0
	0.0
	0.0
	0.0
	0.0

In integrating the RFC algorithms into HM version 0.9, we make one deviation from Figure 1. Instead of tapping the decoder’s output from the in-loop filter through the rounding module, we take the compressed content of the DPB, decompress it, and then perform rounding. The reason for this is that in a practical decoder implementation, the output frames will need to be reordered for display and it makes sense to use the compressed DPB for this purpose instead of requiring additional reordering buffers. For non-reference B frames that do not need reordering, the dataflow shown in Figure 1 could generate less distortion for these B frames. However, for simplicity of implementation, we apply RFC to all frames including non-reference frames.
5.2 Low Delay High Efficiency

Table 3 shows the BD-rate increase of the competing RFC algorithms under the LD-HE test configuration versus no RFC. Averaged over all sequences, both USAO and USMO exhibit about half the rate increase of DRAS. The improvements of USAO and USMO over DRAS are more pronounced for Cactus and the Class E sequences. The results for the BasketballDrill sequence demonstrate the usefulness of the RGB PSNR measure in that it settles the contradictory results among the Y, Cb, and Cr scores. Comparing USAO and USMO, the latter shows very slight and arguably negligible improvements over the former.
Table 3: BD-rate increase of RFC algorithms in LD-HE versus no-RFC IBDI
	
	
	Dynamic Range
Adaptive Scaling
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offset

	
	
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase

	
	
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB

	Class B
	Kimono
	0.2
	0.3
	-0.1
	0.2
	0.2
	0.0
	-0.1
	0.1
	0.1
	0.0
	-0.5
	0.0

	1080p
	ParkScene
	0.3
	0.4
	0.4
	0.4
	0.3
	0.2
	-0.2
	0.2
	0.3
	0.1
	0.3
	0.3

	
	Cactus
	1.6
	2.3
	2.4
	2.1
	0.8
	0.5
	0.2
	0.6
	0.7
	0.6
	0.4
	0.7

	
	BasketballDrive
	0.1
	0.4
	0.3
	0.3
	0.3
	0.1
	0.0
	0.2
	0.3
	0.1
	0.1
	0.2

	
	BQTerrace
	0.7
	2.6
	1.4
	1.1
	0.9
	0.1
	-0.2
	0.7
	0.8
	-0.2
	0.1
	0.6

	
	Average
	0.6
	1.2
	0.9
	0.8
	0.5
	0.2
	-0.1
	0.4
	0.4
	0.1
	0.1
	0.4

	Class C
	BasketballDrill
	0.5
	1.3
	1.6
	1.1
	0.6
	0.4
	0.7
	0.5
	0.5
	0.3
	0.4
	0.4

	WVGA
	BQMall
	0.7
	0.9
	0.9
	0.8
	0.7
	0.3
	-0.3
	0.4
	0.6
	0.4
	0.0
	0.4

	
	PartyScene
	0.3
	0.8
	0.3
	0.5
	0.5
	0.4
	0.0
	0.5
	0.4
	0.6
	0.1
	0.4

	
	RaceHorses
	0.2
	0.0
	0.0
	0.1
	0.2
	0.0
	0.2
	0.2
	0.2
	0.1
	-0.1
	0.2

	
	Average
	0.4
	0.7
	0.7
	0.6
	0.5
	0.3
	0.2
	0.4
	0.4
	0.4
	0.1
	0.4

	Class D
	BasketballPass
	0.3
	0.2
	0.0
	0.3
	0.2
	0.1
	0.0
	0.1
	0.2
	0.3
	0.1
	0.2

	WQVGA
	BQSquare
	0.4
	0.8
	3.4
	0.6
	0.8
	1.5
	0.8
	0.8
	0.7
	1.8
	1.0
	0.8

	
	BlowingBubbles
	0.4
	1.0
	-0.1
	0.6
	0.4
	0.4
	-0.3
	0.3
	0.4
	0.3
	-0.3
	0.3

	
	RaceHorses
	0.3
	0.3
	-0.1
	0.2
	0.3
	0.1
	0.0
	0.1
	0.3
	-0.2
	0.1
	0.1

	
	Average
	0.4
	0.6
	0.8
	0.4
	0.4
	0.5
	0.1
	0.4
	0.4
	0.6
	0.2
	0.4

	Class E
	Vidyo1
	6.9
	1.8
	3.5
	5.7
	2.0
	0.1
	0.5
	1.5
	1.7
	-0.2
	0.7
	1.2

	WQVGA
	Vidyo3
	5.2
	0.8
	3.5
	4.5
	2.4
	0.0
	1.0
	1.9
	2.4
	1.0
	0.2
	1.9

	
	Vidyo4
	5.8
	1.8
	1.6
	4.6
	2.1
	0.3
	-0.4
	1.4
	2.0
	-0.2
	0.4
	1.4

	
	Average
	5.9
	1.5
	2.9
	4.9
	2.2
	0.1
	0.4
	1.6
	2.0
	0.2
	0.4
	1.5

	All
	Average
	1.5
	1.0
	1.2
	1.4
	0.8
	0.3
	0.1
	0.6
	0.7
	0.3
	0.2
	0.6

Table 4 shows the (negative) BD-rate increase of the RFC algorithms with IBDI against the configuration without IBDI. This comparison shows how much compression efficiency is to be gained by combining IBDI with each RFC algorithm. Overall, looking at RGB BD-rate, DRAS retains about 78% of the compression efficiency of IBDI. USAO and USMO retain 90% and 91%, respectively. For the Class E sequences, which show the most gain from IBDI, USAO and USMO retain 85% and 86%, respectively, compared to only 54% for DRAS.
Table 4: BD-rate increase of RFC algorithms in LD-HE versus no-IBDI

	
	
	No RFC
	Dynamic Range
Adaptive Scaling
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offset

	
	
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase

	
	
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB

	Class B
	Kimono
	-2.2
	-4.3
	-4.6
	-3.3
	-2.0
	-4.0
	-4.7
	-3.1
	-1.9
	-4.3
	-4.7
	-3.2
	-2.1
	-4.3
	-5.1
	-3.3

	1080p
	ParkScene
	-2.6
	-7.0
	-10.0
	-5.0
	-2.3
	-6.7
	-9.7
	-4.6
	-2.3
	-6.8
	-10.2
	-4.8
	-2.3
	-6.9
	-9.8
	-4.7

	
	Cactus
	-4.0
	-5.3
	-6.7
	-5.0
	-2.4
	-3.2
	-4.5
	-2.9
	-3.2
	-4.9
	-6.5
	-4.4
	-3.3
	-4.8
	-6.3
	-4.3

	
	BasketballDrive
	-3.2
	-9.1
	-7.2
	-5.7
	-3.0
	-8.7
	-6.9
	-5.5
	-2.9
	-9.0
	-7.3
	-5.5
	-2.9
	-8.9
	-7.1
	-5.5

	
	BQTerrace
	-5.1
	-24.9
	-31.0
	-11.1
	-4.5
	-22.9
	-30.1
	-10.1
	-4.3
	-24.8
	-31.2
	-10.4
	-4.3
	-25.1
	-31.0
	-10.5

	
	Average
	-3.4
	-10.1
	-11.9
	-6.0
	-2.8
	-9.1
	-11.2
	-5.2
	-2.9
	-9.9
	-12.0
	-5.7
	-3.0
	-10.0
	-11.9
	-5.7

	Class C
	BasketballDrill
	-2.8
	-6.4
	-5.4
	-4.6
	-2.2
	-5.1
	-3.9
	-3.5
	-2.2
	-6.0
	-4.7
	-4.1
	-2.2
	-6.0
	-5.0
	-4.2

	WVGA
	BQMall
	-3.7
	-9.1
	-10.0
	-6.0
	-3.0
	-8.3
	-9.2
	-5.3
	-3.0
	-8.8
	-10.3
	-5.6
	-3.1
	-8.8
	-10.0
	-5.6

	
	PartyScene
	-1.8
	-9.7
	-10.7
	-4.8
	-1.5
	-9.0
	-10.5
	-4.4
	-1.3
	-9.3
	-10.7
	-4.4
	-1.4
	-9.1
	-10.7
	-4.4

	
	RaceHorses
	-1.1
	-2.8
	-2.7
	-1.9
	-0.9
	-2.8
	-2.7
	-1.8
	-0.9
	-2.8
	-2.5
	-1.7
	-0.9
	-2.7
	-2.8
	-1.7

	
	Average
	-2.3
	-7.0
	-7.2
	-4.3
	-1.9
	-6.3
	-6.6
	-3.7
	-1.8
	-6.7
	-7.1
	-3.9
	-1.9
	-6.7
	-7.1
	-4.0

	Class D
	BasketballPass
	-1.0
	-4.6
	-1.9
	-2.2
	-0.7
	-4.5
	-1.9
	-1.9
	-0.8
	-4.5
	-1.9
	-2.1
	-0.8
	-4.3
	-1.8
	-2.0

	WQVGA
	BQSquare
	-2.2
	-29.2
	-28.7
	-7.5
	-1.8
	-28.6
	-26.1
	-6.9
	-1.4
	-28.4
	-28.1
	-6.7
	-1.5
	-28.2
	-27.9
	-6.8

	
	BlowingBubbles
	-1.9
	-10.0
	-11.3
	-5.3
	-1.4
	-9.1
	-11.4
	-4.8
	-1.5
	-9.7
	-11.5
	-5.1
	-1.5
	-9.8
	-11.5
	-5.0

	
	RaceHorses
	-1.1
	-2.8
	-2.5
	-1.9
	-0.8
	-2.5
	-2.7
	-1.6
	-0.8
	-2.7
	-2.5
	-1.7
	-0.8
	-2.9
	-2.4
	-1.7

	
	Average
	-1.5
	-11.7
	-11.1
	-4.2
	-1.2
	-11.2
	-10.5
	-3.8
	-1.1
	-11.3
	-11.0
	-3.9
	-1.1
	-11.3
	-10.9
	-3.9

	Class E
	Vidyo1
	-10.0
	-10.8
	-10.5
	-10.1
	-3.8
	-9.2
	-7.4
	-5.0
	-8.2
	-10.8
	-10.1
	-8.8
	-8.5
	-11.0
	-9.8
	-9.0

	WQVGA
	Vidyo3
	-10.4
	1.3
	-5.6
	-8.0
	-5.7
	2.1
	-2.4
	-3.9
	-8.2
	1.3
	-4.7
	-6.2
	-8.2
	2.3
	-5.5
	-6.2

	
	Vidyo4
	-10.4
	-11.0
	-9.9
	-10.5
	-5.2
	-9.4
	-8.5
	-6.3
	-8.5
	-10.8
	-10.3
	-9.2
	-8.6
	-11.2
	-9.6
	-9.3

	
	Average
	-10.3
	-6.9
	-8.7
	-9.5
	-4.9
	-5.5
	-6.1
	-5.1
	-8.3
	-6.8
	-8.4
	-8.1
	-8.4
	-6.6
	-8.3
	-8.2

	All
	Average
	-4.0
	-9.1
	-9.9
	-5.8
	-2.6
	-8.2
	-8.9
	-4.5
	-3.2
	-8.9
	-9.8
	-5.2
	-3.3
	-8.9
	-9.8
	-5.3

5.3 Random-Access High-Efficiency
Table 5 shows the BD-rate increase of the competing RFC algorithms under the RA-HE test configuration versus no RFC. All three RFC algorithms perform competitively with RGB BD-rate increase of 0.2% overall.
Table 5: BD-rate increase of RFC algorithms in RA-HE versus no-RFC IBDI

	
	
	Dynamic Range
Adaptive Scaling
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offset

	
	
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase

	
	
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB

	Class A
	Traffic
	0.2
	0.1
	0.0
	0.2
	0.4
	0.0
	0.0
	0.2
	0.3
	0.0
	-0.1
	0.2

	4K
	PeopleOnStreet
	0.2
	0.2
	0.2
	0.2
	0.2
	0.3
	0.3
	0.2
	0.2
	0.0
	0.0
	0.1

	
	Average
	0.2
	0.1
	0.1
	0.2
	0.3
	0.1
	0.1
	0.2
	0.3
	0.0
	-0.1
	0.1

	Class B
	Kimono
	0.1
	0.1
	0.0
	0.1
	0.1
	0.1
	0.0
	0.1
	0.1
	-0.1
	0.2
	0.1

	1080p
	ParkScene
	0.1
	0.2
	0.0
	0.2
	0.2
	0.1
	0.1
	0.2
	0.2
	0.1
	0.0
	0.2

	
	Cactus
	0.3
	0.2
	0.1
	0.3
	0.3
	0.1
	0.0
	0.2
	0.2
	0.0
	-0.1
	0.2

	
	BasketballDrive
	0.0
	-0.1
	0.2
	0.0
	0.2
	-0.3
	0.0
	0.1
	0.2
	-0.2
	-0.1
	0.1

	
	BQTerrace
	0.2
	0.6
	0.4
	0.3
	0.7
	0.3
	0.2
	0.6
	0.6
	0.4
	-0.3
	0.6

	
	Average
	0.1
	0.2
	0.1
	0.2
	0.3
	0.1
	0.0
	0.2
	0.3
	0.0
	0.0
	0.2

	Class C
	BasketballDrill
	0.2
	0.2
	0.2
	0.2
	0.3
	0.0
	0.3
	0.2
	0.2
	0.0
	0.4
	0.2

	WVGA
	BQMall
	0.3
	0.3
	0.2
	0.3
	0.4
	0.0
	0.0
	0.3
	0.4
	0.2
	0.1
	0.3

	
	PartyScene
	0.2
	0.1
	0.1
	0.2
	0.4
	0.0
	0.1
	0.3
	0.4
	0.0
	0.1
	0.3

	
	RaceHorses
	0.1
	0.2
	0.0
	0.1
	0.2
	0.3
	0.1
	0.2
	0.1
	0.1
	0.2
	0.1

	
	Average
	0.2
	0.2
	0.1
	0.2
	0.3
	0.1
	0.1
	0.2
	0.3
	0.1
	0.2
	0.2

	Class D
	BasketballPass
	0.1
	0.1
	-0.2
	0.1
	0.1
	0.0
	-0.1
	0.0
	0.1
	-0.4
	0.0
	0.0

	WQVGA
	BQSquare
	0.3
	0.4
	0.1
	0.3
	0.8
	0.0
	0.3
	0.6
	0.7
	0.1
	0.0
	0.5

	
	BlowingBubbles
	0.1
	0.1
	0.2
	0.1
	0.3
	0.1
	0.0
	0.2
	0.3
	-0.1
	0.1
	0.2

	
	RaceHorses
	0.1
	0.2
	0.5
	0.2
	0.1
	0.2
	0.3
	0.2
	0.1
	0.1
	0.3
	0.1

	
	Average
	0.2
	0.2
	0.2
	0.2
	0.3
	0.0
	0.1
	0.3
	0.3
	-0.1
	0.1
	0.2

	All
	Average
	0.2
	0.2
	0.1
	0.2
	0.3
	0.1
	0.1
	0.2
	0.3
	0.0
	0.1
	0.2

Table 6 shows the (negative) BD-rate increase of the RFC algorithms with IBDI against the configuration without IBDI. Overall, the RFC algorithms perform similarly and result in 3.0% to 3.1% rate decrease compared with no-IBDI.

Table 6: BD-rate increase of RFC algorithms in RA-HE versus no-IBDI

	
	
	No RFC
	Dynamic Range
Adaptive Scaling
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offset

	
	
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase
	BD-Rate Increase

	
	
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB
	Y
	Cb
	Cr
	RGB

	Class A
	Traffic
	-2.4
	-5.5
	-6.9
	-4.5
	-2.3
	-5.5
	-6.8
	-4.3
	-2.1
	-5.5
	-6.9
	-4.3
	-2.1
	-5.6
	-7.0
	-4.4

	4K
	PeopleOnStreet
	-0.4
	-2.1
	-2.2
	-0.8
	-0.3
	-1.9
	-2.0
	-0.7
	-0.2
	-1.8
	-1.9
	-0.6
	-0.2
	-2.1
	-2.2
	-0.7

	
	Average
	-1.4
	-3.8
	-4.5
	-2.7
	-1.3
	-3.7
	-4.4
	-2.5
	-1.1
	-3.7
	-4.4
	-2.5
	-1.2
	-3.8
	-4.6
	-2.5

	Class B
	Kimono
	-2.0
	-4.6
	-7.0
	-3.8
	-1.9
	-4.5
	-7.0
	-3.7
	-1.8
	-4.6
	-7.0
	-3.7
	-1.9
	-4.7
	-6.8
	-3.8

	1080p
	ParkScene
	-1.7
	-4.8
	-7.0
	-3.9
	-1.6
	-4.7
	-6.9
	-3.7
	-1.6
	-4.7
	-6.9
	-3.7
	-1.6
	-4.7
	-6.9
	-3.7

	
	Cactus
	-1.7
	-5.5
	-6.7
	-3.9
	-1.4
	-5.4
	-6.6
	-3.7
	-1.4
	-5.4
	-6.7
	-3.7
	-1.5
	-5.5
	-6.8
	-3.8

	
	BasketballDrive
	-2.1
	-6.8
	-5.1
	-4.0
	-2.1
	-7.0
	-4.9
	-3.9
	-1.9
	-7.1
	-5.1
	-3.9
	-1.9
	-7.0
	-5.1
	-3.9

	
	BQTerrace
	-3.0
	-19.8
	-24.7
	-8.5
	-2.7
	-19.4
	-24.4
	-8.2
	-2.3
	-19.5
	-24.5
	-7.9
	-2.4
	-19.5
	-24.8
	-8.0

	
	Average
	-2.1
	-8.3
	-10.1
	-4.8
	-1.9
	-8.2
	-10.0
	-4.7
	-1.8
	-8.3
	-10.0
	-4.6
	-1.8
	-8.3
	-10.1
	-4.6

	Class C
	BasketballDrill
	-1.4
	-3.7
	-3.9
	-2.7
	-1.3
	-3.5
	-3.7
	-2.5
	-1.1
	-3.7
	-3.6
	-2.5
	-1.2
	-3.7
	-3.5
	-2.5

	WVGA
	BQMall
	-1.8
	-6.1
	-6.4
	-3.6
	-1.6
	-5.9
	-6.2
	-3.4
	-1.4
	-6.1
	-6.3
	-3.4
	-1.4
	-6.0
	-6.3
	-3.3

	
	PartyScene
	-1.1
	-4.4
	-4.6
	-2.4
	-0.9
	-4.3
	-4.5
	-2.2
	-0.7
	-4.4
	-4.5
	-2.1
	-0.7
	-4.4
	-4.6
	-2.1

	
	RaceHorses
	-0.7
	-1.8
	-2.4
	-1.3
	-0.6
	-1.6
	-2.3
	-1.2
	-0.5
	-1.6
	-2.3
	-1.1
	-0.6
	-1.7
	-2.2
	-1.2

	
	Average
	-1.3
	-4.0
	-4.3
	-2.5
	-1.1
	-3.8
	-4.2
	-2.3
	-0.9
	-3.9
	-4.2
	-2.3
	-1.0
	-3.9
	-4.2
	-2.3

	Class D
	BasketballPass
	-0.7
	-2.9
	-1.4
	-1.5
	-0.7
	-2.8
	-1.5
	-1.4
	-0.6
	-2.9
	-1.5
	-1.5
	-0.6
	-3.3
	-1.4
	-1.5

	WQVGA
	BQSquare
	-1.5
	-11.9
	-15.3
	-4.0
	-1.2
	-11.6
	-15.2
	-3.7
	-0.7
	-11.9
	-15.0
	-3.3
	-0.8
	-11.8
	-15.2
	-3.5

	
	BlowingBubbles
	-1.0
	-4.1
	-4.8
	-2.4
	-0.8
	-3.9
	-4.6
	-2.3
	-0.7
	-4.0
	-4.8
	-2.3
	-0.7
	-4.1
	-4.7
	-2.3

	
	RaceHorses
	-0.5
	-1.4
	-2.2
	-1.2
	-0.4
	-1.3
	-1.6
	-1.0
	-0.4
	-1.3
	-1.9
	-1.0
	-0.5
	-1.3
	-1.9
	-1.1

	
	Average
	-0.9
	-5.1
	-5.9
	-2.3
	-0.8
	-4.9
	-5.7
	-2.1
	-0.6
	-5.0
	-5.8
	-2.0
	-0.7
	-5.1
	-5.8
	-2.1

	All
	Average
	-1.5
	-5.7
	-6.7
	-3.2
	-1.3
	-5.5
	-6.6
	-3.1
	-1.2
	-5.6
	-6.6
	-3.0
	-1.2
	-5.7
	-6.6
	-3.0

6 Running Time

Our simulations were run on a mix of commercial cloud cluster, in-house Linux cluster, and a Windows 7 PC. The encoder and decoder running times for USAO and USMO are only weakly comparable against DRAS, but not against the no-RFC anchor. We present the running time results with DRAS as the reference in Table 7.
Table 7: Running times compared against DRAS

	
	LD-HE
	RA-HE

	
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offsets
	Unified Scaling
Adaptive Offset
	Unified Scaling
Multiple Offsets

	Enc Time %
	97%
	104%
	96%
	104%

	Dec Time %
	104%
	106%
	104%
	105%

7 Conclusion
We describe two algorithms for RFC to be used in conjunction with IBDI. Experimental results using HM version 0.9 show that for the low-delay high-efficiency configuration, our RFC algorithms retain about 90% of the coding efficiency gains of IBDI compared to 78% for Toshiba’s DRAS. For the random-access high-efficiency configuration, our algorithms perform comparably to DRAS and retain over 90% of the coding efficiency gains of IBDI. The complexity of our RFC algorithms is similar to that of DRAS. One advantage of our algorithms is that they use less than 128 bits to compress each 4x4 block, whereas DRAS can use 129 bits in the worst case.
8 References

T. Chujoh and R. Noda, “Internal bit depth increase except frame memory,” ITU-T SG16 Q.6 Document, VCEG-AF07, San Jose, April 2007.

T. Chujoh, A. Tanizawa and T. Yamakage, “Description of video coding technology proposal by TOSHIBA,” JCT-VC Document, JCTVC-A117, Dresden, April 2010.
T. Chujoh and T. Yamakage, “TE2: Adaptive scaling for bit depth compression on IBDI,” JCT-VC Document, JCTVC-C075, Guangzhou, October 2010.

H. Aoki, et. al., “TE2: 1-D DPCM-based memory compression,” JCT-VC Document, JCTVC-C060, Guangzhou, October 2010.

M. Zhou and M. Budagavi, “TE2: TI reference frame compression proposal,” JCT-VC Document, JCTVC-C060, Guangzhou, October 2010.

V. Wahadaniah, et. al., “TE2: Reference frame compression using image coder,” JCT-VC Document, JCTVC-C073, Guangzhou, October 2010.

9 Patent rights declaration(s)
Zenverge, Inc., may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 12
Date Saved: 2011-01-19

_1356638582.xls
Chart1

		0

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

Count

4-LSB

Frequency

Histogram of 4-LSB of Frame Buffer Pixels

56750

57551

57229

58235

57572

58327

58075

57417

57603

57878

57671

57896

57595

58160

57007

56634

Sheet1

		4-LSB		Count

		0		56750

		1		57551

		2		57229

		3		58235

		4		57572

		5		58327

		6		58075

		7		57417

		8		57603

		9		57878

		10		57671

		11		57896

		12		57595

		13		58160

		14		57007

		15		56634

				To resize chart data range, drag lower right corner of range.

_1356638598.xls
Chart1

		0

		1

		2

		3

		4

		5

		6

		7

		8

		9

		10

		11

		12

		13

		14

		15

Frequency

Block Average of 4-LSB

Frequency

Histogram of Block Average of 4-LSB

12

78

169

376

825

2658

7990

16238

16297

8487

2925

869

380

219

58

19

Sheet1

		Bin		Frequency

		0		12

		1		78

		2		169

		3		376

		4		825

		5		2658

		6		7990

		7		16238

		8		16297

		9		8487

		10		2925

		11		869

		12		380

		13		219

		14		58

		15		19

				To resize chart data range, drag lower right corner of range.

