	[image: image3.png]


[image: image4.png]


Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
3rd Meeting: Guangzhou, CN, 7-15 October, 2010
	Document: JCTVC-C278
WG11 Number: m18321


	Title:
	Redundancy reduction in B-frame coding at temporal level zero

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Bin Li
Jizheng Xu
Gary Sullivan
Feng Wu
	
Tel: 
Email: 
	
+86-10-59173019
{v-lbi, jzxu, garysull, fengwu}@microsoft.com

	Source:
	Microsoft


_____________________________
Abstract

In the current TMuC, GPB is widely used to replace P slice with B slice using two same reference frame lists. As list 1 is identical to list 0, there is redundancy comparing using only list 0 with using only list 1 as references. This contribution presents not to use list 1 prediction in this kind of B slice (it is called B0 slice in the following of the document, as the temporal level of this kind of B slice is 0 ), just using bi-prediction and list 0 prediction. Compared to TMuC0.7 anchors, such a change leads to 0.1% bit-saving for random-access cases and 0.9% bit-saving for low-delay cases, on average.
Introduction

For B-frames without causing any delay, which can be all inter frames for low-delay cases or the B-frames at temporal level 0 for random-access cases, the current frame uses previous frames as references. Since they are B-frames, there will be two reference lists, list 0 and list 1. In the current TMuC design, list 1 is a copy of list 0 so that they are identical. Such a design provides flexibility to use bi-directional prediction from one single frame. However, when the prediction is unidirectional, it is possible to select one frame in list 0 or in list 1 as a reference. Since list 0 and list 1 are identical, such a selection is not necessary.
This contribution proposes to disable prediction from one list 1 for unidirectional prediction when list 0 and list 1 are identical. Thus, through reducing the possibility of the selection, the number of symbols to be coded can be reduced and the coding performance can be improved. Such a change is applied to B0 slices, which can be all the inter slice for low-delay cases, or the B-frames using only previous frames as references for random-access cases.
1 Solutions and experimental results

Basically there are three solutions to handle identical reference lists described in this document. They are

1. The current TMuC design

2. The proposed method, to disable prediction from list 1

3. AVC/H.264 method, when the reference lists are identical, the first two reference frames at list 1 are switched

4. Disabling prediction from list 1 by the encoder

In this document, we compare method 2, 3 and 4 to method 1.

In the proposed method, a slice is B0 slice or not is tested first. If the two reference frame lists are the same, it is B0 slice. When decoding the inter direction of B0 slice, if it is not bi-prediction, it must be list 0 prediction, no bit to signal it is list 0 prediction or list 1 prediction. 

In the current TMuC, when parsing inter prediction direction in B slice, 1 means bi-prediction, 00 means list 0 prediction and 01 means list 1 prediction. In our proposal, when parsing inter prediction direction in B0 slice, 1 means bi-prediction and 0 means list 0 prediction, no list 1 prediction exists. In other types of slice, the parsing process is the same as TMuC. The parsing processing of original TMuC 0.7 is shown in Figure 1 and the parsing process of the proposed method is shown in Figure 2.

[image: image1.emf]Is B slice? list 0 prediction

next flag == 1?

next flag == 1?

list 0 prediction

list 1 prediction

bi prediction

N

N

N

Y

Y

Y


Figure 1 Inter prediction parsing processing of TMuC 0.7

[image: image2.emf]Is B slice? list 0 prediction

list 0 == list 1? next flag == 1?

next flag == 1? next flag == 1?

list 0 prediction list 0 prediction

list 1 prediction

bi prediction

bi prediction

N

N

N

N N

Y

Y

Y

Y

Y


Figure 2 inter prediction direction parsing processing of proposed method

The proposed method is implemented in TMuC 0.7, and except all intra configurations other four configurations have been tested. Table 1 shows the results.

Table 1 The RD performance of disabling list 1 prediction in B0 slice (BD-rate Y)

( RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	N/A
	-0.1
	
	

	PeopleOnStreet
	0.0
	0.0
	
	

	
	
	
	
	

	Kimono
	-0.1
	-0.1
	-0.6
	-0.7

	ParkScene
	-0.2
	-0.1
	-0.7
	-0.9

	Cactus
	-0.2
	N/A
	-0.9
	-0.9

	BasketballDrive
	N/A
	0.0
	-0.5
	-0.6

	BQTerrace
	-0.1
	0.0
	-0.5
	-0.5

	
	
	
	
	

	BasketballDrill
	0.0
	0.0
	-0.7
	-0.7

	BQMall
	-0.1
	-0.2
	-1.3
	-1.1

	PartyScene
	-0.2
	-0.2
	-0.7
	-0.6

	RaceHorses
	0.0
	0.0
	-0.6
	-0.8

	
	
	
	
	

	BasketballPass
	0.1
	0.0
	-0.8
	-0.9

	BQSquare
	-0.4
	-0.2
	-1.1
	-0.6

	BlowingBubbles
	-0.2
	-0.2
	-0.9
	-0.9

	RaceHorses
	0.0
	-0.1
	-0.9
	-1.1

	
	
	
	
	

	Vidyo1
	
	
	-1.5
	-1.2

	Vidyo3
	
	
	-1.0
	-1.1

	Vidyo4
	
	
	-1.1
	-1.2

	
	
	
	
	

	Average Class A
	0.0
	-0.1
	
	

	Average Class B
	-0.1
	-0.1
	-0.7
	-0.7

	Average Class C
	-0.1
	-0.1
	-0.8
	-0.8

	Average Class D
	-0.2
	-0.1
	-0.9
	-0.8

	Average Class E
	
	
	-1.2
	-1.2

	Average All
	-0.1
	-0.1
	-0.9
	-0.9


It can be seen that the proposal method can save 0.1% bits in random access case, and 0.9% bits in low delay case. Because there is only less than 1/8 B0 slices under the current configuration of random access case, so the proposed method improves the RD performance slightly. In low delay case, only the first slice is I slice and all the other slices are B0 slices, so the proposed method can save about 0.9% bits.

Another method to handle this issue (list 1 is identical to list 0) is switching the first two frames in list 1 as H.264/AVC. In 8.2.4.2.3 of “T-REC-H.264-201003-I!!”, when the reference picture list RefPicList1 has more than one entry and RefPicList1 is identical to the reference picture list RefPicList0, the first two entries RefPicList1[ 0 ] and RefPicList1[ 1 ] are switched. The result of switching is shown in Table 2.

Table 2 The RD performance of switching the first two frames in list 1 in B0 slice (BD-rate Y)

( RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	0.0
	0.1
	
	

	PeopleOnStreet
	0.0
	0.0
	
	

	
	
	
	
	

	Kimono
	0.0
	0.0
	-0.2
	0.9

	ParkScene
	0.0
	0.0
	-0.5
	0.9

	Cactus
	0.0
	0.1
	-0.5
	1.1

	BasketballDrive
	-0.1
	0.0
	0.6
	1.8

	BQTerrace
	0.1
	0.1
	N/A
	1.3

	
	
	
	
	

	BasketballDrill
	0.0
	0.1
	0.3
	1.4

	BQMall
	0.1
	0.1
	0.0
	1.7

	PartyScene
	0.2
	0.1
	0.0
	2.0

	RaceHorses
	0.0
	0.0
	0.2
	1.6

	
	
	
	
	

	BasketballPass
	0.0
	0.0
	0.3
	1.7

	BQSquare
	0.7
	0.3
	-0.5
	2.4

	BlowingBubbles
	0.2
	0.2
	-0.1
	1.8

	RaceHorses
	0.0
	0.1
	0.2
	1.9

	
	
	
	
	

	Vidyo1
	
	
	-1.0
	0.8

	Vidyo3
	
	
	-0.8
	1.3

	Vidyo4
	
	
	-0.3
	0.8

	
	
	
	
	

	Average Class A
	0.0
	0.1
	
	

	Average Class B
	0.0
	0.0
	-0.2
	1.2

	Average Class C
	0.1
	0.1
	0.1
	1.7

	Average Class D
	0.2
	0.1
	-0.1
	1.9

	Average Class E
	
	
	-0.7
	1.0

	Average All
	0.1
	0.1
	-0.2
	1.5


Compared with the anchor, the method used in H.264/AVC does not always save bits, especially in low complexity case. It can be seen that disabling list 1 prediction in the B slice with the same list 0 and list 1 will always help to improve the RD performance. And compared with the method used in H.264/AVC, the proposed method can save more bits, both in high efficiency case and low complexity case.

Another solution to this case is that only disabling the list 1 prediction by encoder, and there is no change in syntax in this solution. The result of this solution is shown in Table 3.

Table 3 The RD performance of disabling list 1 prediction by encoder (BD-rate Y)

( RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	-0.2
	0.2
	
	

	PeopleOnStreet
	0.0
	0.2
	
	

	
	
	
	
	

	Kimono
	0.0
	0.1
	-0.5
	0.4

	ParkScene
	-0.1
	0.1
	-0.7
	0.3

	Cactus
	-0.2
	0.2
	-0.8
	0.4

	BasketballDrive
	0.0
	0.1
	-0.5
	0.4

	BQTerrace
	N/A
	0.2
	N/A
	0.2

	
	
	
	
	

	BasketballDrill
	-0.1
	0.1
	-0.4
	0.6

	BQMall
	0.0
	0.1
	-1.1
	0.4

	PartyScene
	-0.2
	0.1
	-0.7
	0.3

	RaceHorses
	0.1
	0.0
	-0.5
	0.4

	
	
	
	
	

	BasketballPass
	0.1
	0.2
	-0.6
	0.6

	BQSquare
	-0.4
	0.2
	-0.8
	0.1

	BlowingBubbles
	-0.2
	0.2
	-0.6
	0.4

	RaceHorses
	0.0
	0.2
	-0.7
	0.7

	
	
	
	
	

	Vidyo1
	
	
	-1.1
	0.5

	Vidyo3
	
	
	-0.8
	0.7

	Vidyo4
	
	
	-0.9
	0.3

	
	
	
	
	

	Average Class A
	-0.1
	0.2
	
	

	Average Class B
	-0.1
	0.2
	-0.6
	0.3

	Average Class C
	-0.1
	0.1
	-0.7
	0.4

	Average Class D
	-0.1
	0.2
	-0.7
	0.4

	Average Class E
	
	
	-0.9
	0.5

	Average All
	-0.1
	0.2
	-0.7
	0.4


All the low delay test result is shown in Table 4. As some of the BQTerrace crashed, the computing excludes BQTerrace.

Table 4 Low delay test result average

	Method
	high efficiency
	Low complexity

	Proposed
	-0.9
	-0.9

	Switch
	-0.2
	1.5

	Encoder only
	-0.7
	0.4


It is clear that the proposed method works better than anchor and the other two methods.
Since unidirectional predictions from list 1 are disabled, the motion search and mode decision for these predictions can be skipped. Thus, the encoding time can be reduced.

Table 5. Encoding time of the proposed scheme compared to TE12 anchor, for the low delay high efficiency case

	Seq
	Qp
	Encoding time compared to the anchor

	
	22
	84.20%

	Kimono
	27
	84.11%

	
	32
	84.42%

	
	37
	84.70%

	
	22
	88.91%

	Parkscene
	27
	88.09%

	
	32
	87.14%

	
	37
	88.26%

	
	22
	88.52%

	BasketballDrill
	27
	88.01%

	
	32
	87.19%

	
	37
	86.64%

	
	22
	86.87%

	BQMall
	27
	87.14%

	
	32
	86.56%

	
	37
	86.25%

	
	22
	90.38%

	PartyScene
	27
	90.57%

	
	32
	88.92%

	
	37
	88.31%

	
	22
	85.30%

	RaceHorses
	27
	85.05%

	
	32
	84.01%

	
	37
	83.42%

	
	22
	87.92%

	BasketballPass
	27
	86.05%

	
	32
	86.06%

	
	37
	85.55%

	
	22
	92.11%

	BQSquare
	27
	90.80%

	
	32
	89.06%

	
	37
	88.41%

	
	22
	91.59%

	BlowingBubbles
	27
	90.47%

	
	32
	88.34%

	
	37
	88.15%

	
	22
	88.86%

	RaceHorses
	27
	87.55%

	
	32
	86.03%

	
	37
	84.98%

	
	Average
	87.20%


 Thus, in the current TMuC0.7 software, the encoding time can be saved about 12.8%.
2 Patent rights declaration(s)
Microsoft Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 7
Date Saved: 2010-10-11

