	[image: image1.png][image: image2.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

3rd Meeting: Guangzhou, CN, 7-15 October, 2010
	Document: JCTVC-C277

	
	WG11 Number: m18320

	Title:
	Redundancy reduction in Cbf and Merging coding

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Bin Li
Jizheng Xu
Feng Wu
Gary Sullivan
	
Email:
	
{v-lbi, jzxu, fengwu, garysull }@microsoft.com

	Source:
	Microsoft

Abstract

In the current TMuC, tree based coding is widely used to provide a hierarchical representation of information. In some cases, the attribute of one block can be derived from the attributes of the parent block and other brother blocks so that the encoder does not have to code the attribute. This document presents the methods to reduce redundancy in coding Cbf and merge.

1 Introduction

In the current TMuC, CU and TU can be further split. CU can be split into sub-CUs or partitioned to PUs; TU can also be split into sub-TUs. Since the encoder can select the best encoding method among various coding methods, once the decision is made, the coding method selected itself conveys certain of information about the signals to be coded. Such information can be used to reduce the number of symbols that need to be sent to the decoder.
Let S(X) denote the splitting flag for block X, where S(X)=1 means the block is split. Let A(X) denote the attribute of block X. In this kind of tree representation, if a block X has a uniform attribute A(X), the block can be represented by two symbols: S(X)=0, A(X). Or it can be split into n sub nodes, i.e. , block X1, X2, …, Xn, and represented by S(X)=1, S(X1)=0, A(X), S(X2)=0, A(X),…, S(Xn)=0, A(X). Clearly these two methods represent the same thing, but the later method is inefficient because it need to transmit more symbols. Thus, when we know that a block X is split into block X1, X2, …, Xn, and X1, X2, …, Xn-1 have the same attribute, we can derive that block Xn must have a different attribute. Otherwise the representation is inefficient and the encoder should not select such a representation.
In this document, we use the above principle to handle Cbf and Merging coding to reduce the number of symbols to be coded in some special cases. Although this document only describes the details in Cbf and merging handling, the method can also applied to other tree representation methods also, e.g., on/off signaling in adaptive loop filter(ALF).
2 Cbf Coding
In the current TMuC, the residue is coded using the quad-tree, which means one block can be split into four sub-blocks. When splitting, each sub-block will have its own Cbf (Coded block flag, similar to cbp) to indicate it has none zero residue or not. If all the four blocks in the current layer have no residue (Cbf equals to 0), not splitting costs less flags, as shown in Table 1.

Thus, if the Cbf of the first 3 sub-blocks are all 0, the last one’s Cbf should be 1; otherwise there is no need to split the block into four sub-blocks. So the last one’s Cbf do not need to be signaled some time.
Table 1 Flags needed to present all zero residue case

	
	No splitting
	Splitting

	The size of current layer equals to smallest transform size (no split flag need to be sent in current layer)
	0 (no splitting)

0 (Cbf = 0)

Total = 2
	1 (splitting)

0 0 0 0(Cbf = 0)

Total = 5

	The size of current layer larger than smallest transform size
	0 (no splitting)

0 (Cbf = 0)

Total = 2
	1 (splitting)

0 0 0 0 0 0 0 0(no more splitting and Cbf = 0)

Total = 9

The syntax is changed as Table 2.

Table 2 Transform unit syntax

	transform_unit(x0, y0, currTransformUnitSize, bNeedToDecode) {
	C
	Descriptor

	
if(currTransformUnitSize > MinTransformUnitSize &&

 currTransformUnitSize <= MaxTransformUnitSize)
	
	

	

split_transform_unit_flag
	3 | 4
	u(1) | ae(v)

	
if(split_transform_unit_flag) {
	
	

	

splitTransformUnitSize = currTransformUnitSize >> 1
	
	

	

x1 = x0 + splitTransformUnitSize
	
	

	

y1 = y0 + splitTransformUnitSize
	
	

	

if(!entropy_coding_mode_flag)
	
	

	

getVLCCBP()
	
	

	

transform_unit(x0, y0, splitTransformUnitSize, bNeedToDecode)
	3 | 4
	

	

if(x1 < PicWidthInSamplesL)
	
	

	

transform_unit(x1, y0, splitTransformUnitSize, bNeedToDecode)
	3 | 4
	

	

if(y1 < PicHeightInSamplesL)
	
	

	

transform_unit(x0, y1, splitTransformUnitSize, bNeedToDecode)
	3 | 4
	

	

if(x1 < PicWidthInSamplesL && y1 < PicHeightInSamplesL)
	
	

	

transform_unit(x1, y1, splitTransformUnitSize, bNeedToDecode)
	3 | 4
	

	
} else {
	
	

	

if(entropy_coding_mode_flag)
	
	

	

if(bNeedToDecode)
	
	

	

coded_block_flag
	3 | 4
	u(1) | ae(v)

	

else
	
	

	

coded_block_flag = 1;
	
	

	

if(coded_block_flag) {
	
	

	

rotational_transform_idx
	3 | 4
	ue(v) | ae(v)

	

if(!entropy_coding_mode_flag)
	
	

	

residual_block_vlc()
	
	

	

else
	
	

	

residual_block_v2v()
	
	

	

}
	
	

	
}
	
	

	}
	
	

The “bNeedToDecode” equals to 0 when the block is the last block after quad-tree splitting, and all the Cbf of the first three blocks are 0; otherwise bNeedToDecode equals to 1.

Table 3 and 4 shows the RD performance of the proposed method and how many flags can be saved using the proposed method.

Table 3 The RD performance of saving Cbf (BD-rate Y)

(RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	-0.1
	-0.1
	
	

	PeopleOnStreet
	-0.1
	-0.1
	
	

	
	
	
	
	

	Kimono
	-0.1
	0.0
	-0.2
	-0.1

	ParkScene
	-0.2
	-0.1
	-0.5
	-0.3

	Cactus
	-0.1
	0.0
	-0.1
	-0.1

	BasketballDrive
	-0.1
	-0.1
	-0.1
	-0.1

	BQTerrace
	-0.1
	-0.1
	N/A
	-0.1

	
	
	
	
	

	BasketballDrill
	-0.1
	-0.1
	-0.3
	-0.1

	BQMall
	-0.1
	-0.1
	-0.1
	-0.1

	PartyScene
	-0.1
	-0.1
	-0.2
	-0.1

	RaceHorses
	-0.1
	-0.1
	-0.2
	-0.2

	
	
	
	
	

	BasketballPass
	0.0
	0.0
	-0.1
	-0.1

	BQSquare
	0.0
	-0.1
	-0.3
	-0.2

	BlowingBubbles
	-0.1
	-0.2
	-0.1
	-0.2

	RaceHorses
	-0.1
	0.0
	-0.2
	0.0

	
	
	
	
	

	Vidyo1
	
	
	-0.2
	-0.1

	Vidyo3
	
	
	-0.1
	0.0

	Vidyo4
	
	
	-0.1
	-0.1

	
	
	
	
	

	Average Class A
	-0.1
	-0.1
	
	

	Average Class B
	-0.1
	-0.1
	-0.2
	-0.1

	Average Class C
	-0.1
	-0.1
	-0.2
	-0.1

	Average Class D
	-0.1
	-0.1
	-0.2
	-0.1

	Average Class E
	
	
	-0.1
	-0.1

	Average All
	-0.1
	-0.1
	-0.2
	-0.1

Table 4 Number of saving Cbfs(Y+U+V)

	Sequence
	QP
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	22
	54606
	70392
	
	

	
	27
	20639
	26444
	
	

	
	32
	9061
	10993
	
	

	
	37
	4488
	4920
	
	

	PeopleOnStreet
	22
	80201
	116299
	
	

	
	27
	51518
	64095
	
	

	
	32
	29244
	32849
	
	

	
	37
	17677
	18281
	
	

	Kimono
	22
	19095
	29008
	31181
	68234

	
	27
	10791
	11878
	19844
	35386

	
	32
	5117
	5041
	12711
	17246

	
	37
	2699
	2286
	8154
	7702

	ParkScene
	22
	57688
	73301
	144699
	217321

	
	27
	26635
	30799
	87901
	120948

	
	32
	11700
	13211
	42066
	49019

	
	37
	5324
	5655
	16415
	16364

	Cactus
	22
	86294
	131858
	182294
	286191

	
	27
	22467
	34302
	54134
	113917

	
	32
	10712
	14162
	25650
	52135

	
	37
	5590
	7745
	13716
	20104

	BasketballDrive
	22
	44411
	90634
	95781
	222463

	
	27
	19282
	30235
	41057
	94313

	
	32
	9587
	12937
	22378
	44128

	
	37
	5114
	6042
	12876
	22042

	BQTerrace
	22
	160434
	300967
	N/A
	638328

	
	27
	56221
	88836
	184029
	326439

	
	32
	19028
	33152
	47987
	93500

	
	37
	6072
	10429
	17200
	24761

	BasketballDrill
	22
	12291
	18500
	17849
	33023

	
	27
	7092
	10146
	12261
	23901

	
	32
	3789
	5219
	7257
	14586

	
	37
	2234
	2509
	4552
	8089

	BQMall
	22
	17747
	29513
	37977
	77675

	
	27
	9960
	14791
	23986
	45021

	
	32
	5022
	7147
	14409
	23131

	
	37
	2551
	3428
	7715
	10724

	PartyScene
	22
	22771
	47777
	62913
	111191

	
	27
	12872
	23889
	42279
	93876

	
	32
	7040
	11815
	21111
	53159

	
	37
	3529
	5842
	9602
	19300

	RaceHorses
	22
	17066
	21963
	21370
	30679

	
	27
	9763
	12263
	22286
	31248

	
	32
	3917
	5038
	14583
	22113

	
	37
	1923
	2339
	6638
	9825

	BasketballPass
	22
	4956
	7009
	6840
	10833

	
	27
	3053
	4073
	5972
	9709

	
	32
	1578
	2099
	4367
	7261

	
	37
	898
	1045
	2514
	4195

	BQSquare
	22
	11325
	21893
	30284
	37251

	
	27
	3983
	9179
	19822
	31447

	
	32
	2034
	3580
	7559
	22858

	
	37
	853
	2152
	2085
	7185

	BlowingBubbles
	22
	6542
	11086
	23570
	32574

	
	27
	4063
	5610
	14096
	25138

	
	32
	2270
	3224
	7187
	12560

	
	37
	1321
	1643
	3088
	4693

	RaceHorses
	22
	5121
	6363
	7627
	10540

	
	27
	2712
	3595
	6760
	9617

	
	32
	1238
	1662
	4316
	6414

	
	37
	655
	827
	1995
	2831

	Vidyo1
	22
	
	
	42603
	64532

	
	27
	
	
	11056
	20004

	
	32
	
	
	4207
	7357

	
	37
	
	
	1923
	3029

	Vidyo3
	22
	
	
	37083
	70344

	
	27
	
	
	13654
	26921

	
	32
	
	
	5373
	9200

	
	37
	
	
	2232
	3542

	Vidyo4
	22
	
	
	41699
	72075

	
	27
	
	
	10054
	21526

	
	32
	
	
	3651
	6715

	
	37
	
	
	1785
	2801

3 Merging Coding

3.1 PU based merging
In TMuC 0.7.4, PU based merging mode can be enable by HHI_MRG_PU. PU based merging mode can handle complex motion better than CU based merging mode. But unfortunately, the overhead of PU based merging mode is heavier than CU based merging mode. When one PU is not merging mode, it will need one flag to indicate. When one PU is merging mode, it will need one flag to indicate it is and may need another flag one flag to indicate which block it merges to. So one or two bits at PU level may be needed. But in some kind of partition, such as SIZE_2NxN, the PU below should not merging to the PU above. If it merges to the PU above, the two PUs will have the same motion and SIZE_2Nx2N will handle it better (cost less flags, more details of the flags needed to express SIZE_2Nx2N and SIZE_2NxN when the partition 1 (below one) merges to partition 0 (above one) can be found in Table 5). The similar situation occurs at SIZE_2NxN, SIZE_2NxnU, SIZE_2NxnD and also SIZE_Nx2N, SIZE_nLx2N, SIZE_nRx2N.

Table 5 The flags needed in merging mode

	SIZE_2Nx2N
	SIZE_2NxN

	1 (partition 2Nx2N)
	01 or 010 (partition 2NxN, depending on the size)

	X (motion information)
	X (motion information of partition 0)

	
	10 or 1 (merging information, depending on whether the above block and the left block have the same motion)

	Total: 1+X
	Total: (3~5)+X

In this proposal, the semantic of NumMergeCandidates is changed. When CU is SIZE_2NxN, SIZE_2NxnU or SIZE_2NxnD, the motion of PU above cannot be the candidate of the PU below. When CU is SIZE_Nx2N, SIZE_nLx2N or SIZE_nRx2N, the motion of PU on the left cannot be the candidate of the PU on the right. When CU is SIZE_NxN, NumMergeCandidates will be zero, because the overhead is too heavy.

There are some bugs in TMuC 0.7.4 when PU based merging mode is enabled. It is mainly that the calculations of the distortion of common inter motion estimation and merging estimation is different. This bug is fixed in the result of this document. The RD performance of the proposed method compared with the PU based merging in TMuC 0.7.4 is shown in Table 6. It can be seen that the proposed method works better than the PU based method in TMuC 0.7.4.
Table 6 The RD performance of proposed PU based method (BD-rate Y)

(RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	-0.5
	0.0
	
	

	PeopleOnStreet
	-0.4
	-0.1
	
	

	
	
	
	
	

	Kimono
	-0.5
	-0.1
	-0.8
	-0.1

	ParkScene
	-0.6
	-0.1
	-1.3
	-0.2

	Cactus
	0.0
	-0.1
	N/A
	-0.3

	BasketballDrive
	N/A
	0.0
	N/A
	-0.2

	BQTerrace
	N/A
	-0.2
	N/A
	-0.1

	
	
	
	
	

	BasketballDrill
	-0.5
	-0.1
	-0.6
	-0.4

	BQMall
	-0.5
	-0.1
	-0.9
	-0.3

	PartyScene
	-0.4
	-0.2
	-0.6
	-0.2

	RaceHorses
	-0.4
	-0.4
	-0.4
	-0.3

	
	
	
	
	

	BasketballPass
	-0.4
	-0.2
	-0.4
	-0.4

	BQSquare
	-0.5
	0.2
	-1.1
	-0.3

	BlowingBubbles
	-0.6
	-0.3
	-1.0
	-0.5

	RaceHorses
	-0.5
	-0.2
	-0.5
	-0.5

	
	
	
	
	

	Vidyo1
	
	
	-1.4
	-0.3

	Vidyo3
	
	
	-1.5
	0.1

	Vidyo4
	
	
	-0.9
	0.1

	
	
	
	
	

	Average Class A
	-0.4
	0.0
	
	-0.2

	Average Class B
	-0.6
	-0.1
	-1.0
	-0.3

	Average Class C
	-0.5
	-0.2
	-0.6
	-0.4

	Average Class D
	-0.5
	-0.1
	-0.8
	0.0

	Average Class E
	
	
	-1.3
	-0.2

	Average All
	-0.5
	-0.1
	-0.9
	-0.1

3.2 CU based merging
In TMuC 0.7, CU based merging is adopted. For CU based merging mode, when one CU split into four sub-CUs, if the first three sub-CUs have the same motion information, the last sub-CU should not be merging mode. If the last sub-CU is merging mode, it must have the same motion to the left sub-CU or the up sub-CU. As the first three sub-CUs have the same motion, the all four sub-CUs will have the same motion. And a large CU without splitting can present this case well. So the last one’s merging flag do not need to be signaled some time. Table 7 and 8 shows the RD performance of the proposed method and how many flags can be saved using the proposed method.

Table 7 The RD performance of saving merging flag (BD-rate Y)

(RA: random access, LD: low delay, LoCo: low complexity, N/A means either anchor or proposed test crashed)

	Sequence
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	0.0
	0.0
	
	

	PeopleOnStreet
	0.0
	0.0
	
	

	
	
	
	
	

	Kimono
	-0.1
	0.0
	-0.1
	0.0

	ParkScene
	-0.1
	0.0
	0.1
	-0.1

	Cactus
	0.0
	0.0
	0.0
	0.0

	BasketballDrive
	0.0
	0.0
	0.0
	0.0

	BQTerrace
	-0.1
	0.0
	N/A
	0.0

	
	
	
	
	

	BasketballDrill
	0.0
	-0.1
	-0.2
	0.0

	BQMall
	0.0
	0.0
	0.0
	0.0

	PartyScene
	0.0
	0.0
	0.0
	0.0

	RaceHorses
	0.0
	0.0
	0.0
	-0.1

	
	
	
	
	

	BasketballPass
	0.0
	0.0
	0.1
	0.0

	BQSquare
	0.0
	0.0
	-0.2
	0.0

	BlowingBubbles
	0.0
	0.0
	0.1
	0.0

	RaceHorses
	0.0
	0.0
	0.0
	0.0

	
	
	
	
	

	Vidyo1
	
	
	-0.1
	0.0

	Vidyo3
	
	
	0.1
	0.0

	Vidyo4
	
	
	0.1
	0.0

	
	
	
	
	

	Average Class A
	0.0
	0.0
	
	

	Average Class B
	-0.1
	0.0
	0.0
	0.0

	Average Class C
	0.0
	0.0
	0.0
	0.0

	Average Class D
	0.0
	0.0
	0.0
	0.0

	Average Class E
	
	
	0.0
	0.0

	Average All
	0.0
	0.0
	0.0
	0.0

Table 8 Number of saving merging flags

	Sequence
	QP
	RA
	RA LoCo
	LD
	LD LoCo

	Traffic
	22
	15979
	8330
	
	

	
	27
	10146
	3718
	
	

	
	32
	6404
	1860
	
	

	
	37
	3861
	879
	
	

	PeopleOnStreet
	22
	20512
	8798
	
	

	
	27
	18952
	6484
	
	

	
	32
	14079
	3763
	
	

	
	37
	9497
	2099
	
	

	Kimono
	22
	5379
	2404
	7329
	4930

	
	27
	3833
	1215
	5307
	2343

	
	32
	2562
	643
	3763
	1270

	
	37
	1599
	335
	2385
	599

	ParkScene
	22
	11706
	5526
	21610
	13292

	
	27
	6918
	2328
	15381
	5545

	
	32
	3829
	992
	8675
	2259

	
	37
	1945
	448
	3950
	890

	Cactus
	22
	20337
	11792
	26535
	19873

	
	27
	10950
	4320
	16190
	8272

	
	32
	6986
	2132
	10825
	4282

	
	37
	4224
	982
	6295
	2117

	BasketballDrive
	22
	12142
	7425
	17069
	14148

	
	27
	8052
	3384
	11331
	7124

	
	32
	5249
	1730
	8475
	3917

	
	37
	3363
	817
	5730
	2075

	BQTerrace
	22
	45707
	23503
	N/A
	38360

	
	27
	17048
	6674
	29410
	13199

	
	32
	N/A
	2343
	14445
	4562

	
	37
	3862
	991
	7673
	1609

	BasketballDrill
	22
	5143
	3244
	5350
	4577

	
	27
	4260
	1995
	4905
	3227

	
	32
	2998
	1087
	4023
	2069

	
	37
	1901
	567
	3015
	1249

	BQMall
	22
	5634
	3159
	7825
	5575

	
	27
	4491
	1820
	6695
	3255

	
	32
	3215
	1045
	5337
	1980

	
	37
	2186
	545
	3902
	1137

	PartyScene
	22
	6106
	5884
	9626
	11640

	
	27
	4427
	2936
	7457
	6195

	
	32
	2914
	1356
	5502
	2793

	
	37
	1761
	576
	3520
	1319

	RaceHorses
	22
	2460
	1868
	3102
	3241

	
	27
	2138
	991
	3032
	2063

	
	32
	1556
	497
	2568
	1282

	
	37
	1004
	237
	1747
	671

	BasketballPass
	22
	1404
	851
	1616
	1254

	
	27
	1235
	559
	1488
	1003

	
	32
	918
	310
	1353
	685

	
	37
	659
	147
	1038
	363

	BQSquare
	22
	1928
	1924
	4131
	3739

	
	27
	866
	915
	2498
	2054

	
	32
	445
	298
	1371
	936

	
	37
	271
	119
	813
	269

	BlowingBubbles
	22
	1554
	1413
	2920
	3094

	
	27
	1216
	632
	2410
	1662

	
	32
	792
	316
	1836
	753

	
	37
	474
	135
	1080
	293

	RaceHorses
	22
	760
	461
	836
	823

	
	27
	687
	306
	920
	691

	
	32
	553
	157
	907
	486

	
	37
	290
	75
	598
	228

	Vidyo1
	22
	
	
	8143
	3116

	
	27
	
	
	4531
	1328

	
	32
	
	
	3063
	701

	
	37
	
	
	2042
	228

	Vidyo3
	22
	
	
	6563
	3069

	
	27
	
	
	3734
	1087

	
	32
	
	
	2731
	769

	
	37
	
	
	2072
	312

	Vidyo4
	22
	
	
	7489
	3106

	
	27
	
	
	3864
	1391

	
	32
	
	
	2490
	695

	
	37
	
	
	1743
	346

4 Patent rights declaration(s)

Microsoft Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2010-10-08

