Low-complexity, configurable
transform architecture for HEVC

(JCTVC-C226/m18266)

Mangesh Sadafale (*) and Madhukar Budagavi (**)
* Texas Instruments India
** Texas Instruments Dallas

Joint Collaborative Team on Video Coding (JCT-VC)
of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
3rd Meeting: Guangzhou, CN, 7-15 October, 2010

{i’ TEXAS
INSTRUMENTS

Motivation (1)

« TMuC transforms types
— Large size DCT (16x16, 32x32, 64x64) implemented using Chen’s algorithm

— 4x4 and 8x8 integer AVC “DCT”
— Directional transforms (ROT and MDDT) implemented using Matrix
multiplication

» Large size transforms provide coding gain but increase implementation
complexity significantly

« Implementation complexity of large size transforms needs to be studied

carefully
— Important to study both hardware and software implementation complexity

10/12/2010

\JC-I-V(-:-(-:226 g ¥§§?§UMENTS

Motivation (2)

Hardware codecs are expected to play an increasingly important role in
deployment of HEVC solutions since HEVC is expected to be used for
high definition (HD) and above video resolutions

— Need for HD has already led to hardware acceleration being used for AVC

video coding in desktop, mobile, and portable devices (which are
traditionally thought of as software implementation platforms)

In software, HEVC codecs can be expected to run on processors that support
extensive SIMD operations

— Already, 8-way SIMD architectures are becoming commonplace

Hence transforms and architectures that are efficient to implement in both
hardware and in software on SIMD machines are needed

10/12/2010 3

\JC-I-V(-:-(-:226 g ¥§§?§UMENTS

Proposal

« We propose matrix multiplication based architecture for transform
implementation

« Advantages of matrix multiplication architecture
— Friendly to parallel processing with minimal dependency and control logic
— Can be efficiently implemented on SIMD processors
— Results in high throughput architecture in hardware

— Results in low-area implementation in hardware since architecture is
configurable and can be re-used across various DCT transform block sizes
for HEVC

— Good fixed-point behavior
* No need to use existing quant/dequant matrices in TMuC
« Memory requirement for storing dequantization matrices in the TMuC decoder
goes down from 7.5 KB to 12 bytes in both encoder and decoder
— Unifying architecture in the sense that it is flexible enough to support other
transforms being considered in HEVC

» Focus of this contribution is on DCT/IDCT implementation

10/12/2010

\JC-I-V(-:-(-:226 g ¥§§?§UMENTS

Evaluation of coding gain impact

« TMuC-0.7.3 used as reference

« JCTVC-B300 common conditions

 Two main modifications done to software

— Direct matrix multiplication implementation of DCT/IDCT

— Elimination of quant/dequant matrices

10/12/2010

JCTVC-C226

13 TEXAS
INSTRUMENTS

Direct matrix multiplication

MAX_TSIZE = 64; /| Maximum transform size

DCTMatrix is of size [MAX_TSIZE][MAX_TSIZE]; /I cos() values of DCT
TransposeBuffer is of size [MAX_TSIZE][MAX_TSIZE];
uiDctOffset = MAX_TSIZE/uiSize; I/ subsampling factor for DCTMatrix

pSrc is input data, pDst is output data
uiSize is transform block size

DCTMatrix[64][64]
/I D*Input gets reused for all
for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++) '
e DCT sizes
for(k=0;k<uiSize;k++)
sum += DCTMatrix[k*uiDctOffset][i] * pSrc[k*uiSize+ i;
TransposeBuffer][i][j] = sum;
Il (D*Input)*D
for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++)
sum = 0;
for(k=0;k<uiSize;k++)
sum += TransposeBuffer[i][k] * DCTMatrix[k*uiDctOff set][];

sum = sum*uiDctScale;
pDst[i*uiStride+j] = sum;

10/12/2010

JCTVC-CZ26 g ¥§§?SUMENTS

Quant/Dequant matrices elimination (1)

 Following are sizes of quant/dequant matrices used in TMuC:
— Quantization of 32x32 block: Ulnt g_aiQuantCoef1024 [6][1024];
— Inverse quantization of 32x32 block: Ulnt g_aiDeQuantCoef1024 [6][1024];
— Quantization of 16x16 block: Ulnt g_aiQuantCoef256 [6][256];
— Inverse quantization of 16x16 block: Ulnt g_aiDeQuantCoef256 [6][256];
— Matrix entries vary slightly depending on position of transform coeff

* Presumably used in TMuC to offset fixed-point effects of Chen’s
DCT/IDCT

— Leads to degradation of 0.1%-0.3% if scalar values are used instead

« Total memory used about 12.5 KB in encoder and decoder

10/12/2010

JCTVC-CZ26 g ¥§§?§UMENTS

Quant/Dequant matrices elimination (2)

« Our implementation uses the following:
— Quantization of 32x32 block: Ulnt g_aiQuantCoef1024_s [6];
— Inverse quantization of 32x32 block: Ulnt g_aiDeQuantCoef1024_s [6];
— Quantization of 16x16 block: Ulnt g_aiQuantCoef256_s [6];
— Inverse quantization of 16x16 block: Ulnt g_aiDeQuantCoef256 s [6];
— One entry per Qstep (mod(QP,6))

« Memory required for Quant/dequant matrices goes down from
12.5KB to 12 bytes for both decoder and encoder

10/12/2010

JCTVC-CZ26 g ¥§§?SUMENTS

Coding gain results — Intra

Intra Intra LoCo

Y BD- U BD- V BD- Y BD- U BD- V BD-

rate rate rate rate rate rate
Class A 0.0 0.0 -0.1 -0.1 0.0 -0.1
Class B 0.0 0.0 0.0 0.0 0.0 0.0
Class C 0.0 0.0 0.0 0.0 0.0 0.0
Class D 0.0 0.0 0.0 0.0 0.0 0.0
Class E 0.0 0.0 0.0 0.0 -0.1 0.0
All 0.0 0.0 0.0 0.0 0.0 0.0

10/12/2010

JCTVC-C226

13 TEXAS

INSTRUMENTS

Coding gain results — Random access

Random access

Random access LoCo

YBD- | UBD- | VBD- | YBD- | UBD- | VBD-
rate rate rate rate rate rate
Class A 0.0 0.0 -0.1 0.0 0.0 0.0
Class B 0.0 -0.1 -0.1 0.0 0.1 0.0
Class C 0.0 -0.1 0.0 0.0 0.0 0.0
Class D 0.0 0.0 0.1 0.0 0.1 -0.2
Class E
All 0.0 -0.1 0.0 0.0 0.0 -0.1
10/12/2010 10
JCTVC-C226 i3 Texas

INSTRUMENTS

Coding gain results — Low delay

10/12/2010

Low delay Low delay LoCo

Y BD- U BD- V BD- Y BD- U BD- V BD-
rate rate rate rate rate rate
Class A
Class B
Class C
Class D
Class E
All

11

JCTVC-CZ26 g ¥§§?SUMENTS

Complexity analysis

Throughput

Buffer sizes

Area

10/12/2010

Multiplication/accumulation bit-width sizes

12

JCTVC-C226

13 TEXAS
INSTRUMENTS

Complexity analysis - Throughput

« Chen’s algorithm uses multiple stages of butterfly-type of structure

— Introduces serial dependency and leads to multipliers getting cascaded one after the

other

— Leads to increased delay in hardware implementation and limits the maximum
frequency at which the IDCT block can be run

frm s mm = e e e m s g s m e mm e -_--.._'.4-..-----.___ P = S

2 Aq-"'—-_.... LR

\—r“\-m-*-*-—" i &

NN vdi—~—— Fa b

\“&\-{f;} ‘K— = TSP iy

- ’ 7 i m 5 I'.- 1"1|: 1

N7 N -l 1 Figure
"‘_"J’ ;.-__ — .-",............___-._______“.-..____--_mwfin_.._:E': E"“ from
A\ . e SR
ﬁnﬁww* e i o Ref [1]
= o Y e
’j_’&m SO e --r u

TMuC-0.7.3 Chen's IDCT | Matrix multiplication IDCT

5 for (64x64)
zl:mbﬁ; rc;f cascaded 4 (for 32x32) 0 for all
P 3 for (16x16)

Max frequency in

10/12/,

Low-power 45nm
(with NO Pipeline) 115MHz 230MHz

13

TVWOTINOIVICIN T O

Complexity analysis -
Multiplication/accumulation bit-width sizes

 |BDI off

Inverse transform input bit- Inverse transform transpose

width (after transform, buffer bit-width (after
TU guantization, inverse horizontal OR vertical inverse
Size quantization) transform)

TMuC-0.7.3 TMuC-0.7.3

Chen's IDCT Matrix mult Chen's IDCT Matrix mult
64x64 19 16 19 16
32x32 20 16 20 16
16x16 20 16 20 16
8x8 15 16 16 16
4x4 15 16 17 16

« Software implication (IBDI off)

TMuC-0.7.3 Chen's IDCT | Matrix multiplication IDCT
CPU multiplier | 32-bit instruction 16-bit instruction

1onzzot0 | CPU adder/sub | 64-bit instruction 32-bit instruction

JCTVC-CZ26 g ¥§§?§UMENTS

Complexity analysis — Buffer sizes

« Hardware implementation complexity for IDCT
— Compute logic (~50%) + Transpose buffer (~50%)

* Reduction in transpose buffer size leads to direct area savings

« Transpose buffer element size for 16x16, 32x32 transform for IBDI-off
— TMuC-0.7.3: 20 bits
— Matrix mult: 16 bits
— 20% savings in area for transpose buffer in hardware
— Similar savings for IBDI-on

» For IBDI-off in software, number of cycles for fetching data goes down by a
factor of 2 (32b data fetch for Chen v/s 16 bit data fetch for matrix
multiplication))

10/12/2010

JCTVC-CZ26 g ¥§§?§UMENTS

Complexity analysis —

Hardware sharing and Area

« Hardware sharing

TMuC-0.7.3 Chen's IDCT

Matrix multiplication IDCT

HW Sharing between
different transform sizes

Limited as multiplier size
and constants are
different

High degree of reuse

 Area

— Example area number ratios for 1D 32x32 transform implementation in RTL

TMuC-0.7.3 Chen's IDCT

Matrix multiplication IDCT

Area @ 115MHz

1X

0.8X

— 20% savings in area

10/12/2010

16

JCTVC-C226

13 TEXAS
INSTRUMENTS

Conclusions

Important to study both hardware and software implementation
complexity
— Something to think about: Are “Fast” DCTs really fast on today’s architecture?

« Matrix multiplication is an attractive architecture, propose that matrix
multiplication be made the default DCT/IDCT implementation in TM
after cross-verification

— Future optimizations if any can be built on top of it
— Request core experiment be started on matrix multiplication DCT/IDCT

* Propose that we remove quantization matrices in TM

* Request AhG on Efficient implementation of IDCT in hardware and
software

10/12/2010

JCTVC-C226 -l

INSTRUMENTS

