	[image: image1.png]

[image: image2.png]

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
3rd Meeting: Guangzhou, CN, 7-15 October, 2010
	Document: JCTVC-C226
WG11 Number: m18266

	Title:
	Low-complexity, configurable transform architecture for HEVC

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Mangesh Sadafale
Texas Instruments Inc., India

Madhukar Budagavi
Texas Instruments Inc., USA
	Tel:
Email:

Tel:
Email:
	mangesh@ti.com
madhukar@ti.com

	Source:
	Texas Instruments Inc.

Abstract

This contribution proposes matrix multiplication architecture for DCT/IDCT implementation that is configurable and can be re-used across various transform block sizes for HEVC. Matrix multiplication implementation has the advantage that it is friendly to parallel processing with minimal dependency and control logic. In hardware, matrix multiplication results in low-area architecture, while in software it leads to efficient implementation on SIMD processors. Another advantage of matrix multiplication architecture is that it is a unifying architecture in the sense that is flexible enough to support other transforms being considered in HEVC such as directional transform and 1D transforms. Also matrix multiplication has better fixed-point behavior than Chen’s DCT/IDCT which allows for elimination of existing quantization matrices in TMuC. The memory requirement for storing dequantization matrices in the TMuC decoder goes down from 7.5 KB to 12 bytes. There is a similar memory savings in the TMuC encoder. Fixed-point version of matrix multiplication DCT/IDCT along with reduced size quantization/dequantization matrices optimization was implemented in TMuC-0.7.3. Simulation results indicate that there is no significant loss is coding efficiency (average 0 to -0.1%) when compared to Chen’s DCT/IDCT in TMuC-0.7.3.
1 Introduction
In the TMuC software [1], 4x4, 8x8, 16x16, 32x32 and 64x64 DCT transforms are supported. In addition to DCT, directional transforms which require full matrix multiplication are also supported in TMuC software. Large block size transforms (16x16, 32x32 and 64x64 transforms) and directional transforms improve the coding efficiency, but also increase the implementation complexity significantly. Hence implementation complexity of large block transforms and directional transforms need to be studied carefully to ensure feasibility of HEVC implementations.
Hardware codecs are expected to play an important role in deployment of HEVC solutions since HEVC is expected to be used for high definition and above video resolution. Hardware acceleration for video is already standard in desktop, mobile, and portable devices. In software, HEVC codecs can be expected to run on processors that support extensive SIMD operations. Already, 8-way SIMD architectures are becoming commonplace. Hence transforms that are efficient to implement in both hardware and in software on SIMD machines are needed. This contribution proposes matrix multiplication based architecture for transform implementation to meet the needs of efficient implementation in both hardware and in software/SIMD. Matrix multiplication implementation has the advantage that it is friendly to parallel processing with minimal dependency and control logic. In hardware, matrix multiplication results in high throughput/low-area architecture, while in software it leads to efficient implementation on SIMD processors. The matrix multiplication architecture is configurable and can be re-used across various DCT transform block sizes for HEVC. Another advantage of matrix multiplication architecture is that it is a unifying architecture in the sense that is flexible enough to support other transforms being considered in HEVC such as directional transform and 1D transforms. Also matrix multiplication has better fixed-point behavior than Chen’s DCT/IDCT which allows for elimination of existing quantization matrices in TMuC. The memory requirement for storing dequantization matrices in the TMuC decoder goes down from 7.5 KB to 12 bytes. There is a similar memory savings in the TMuC encoder.

2 Matrix multiplication implementation
TMuC-0.7.3 code was modified as follows to study rate-distortion performance of matrix multiplication implementation.
2.1 DCT/IDCT by matrix multiplication

uiSize is transform block size

MAX_TSIZE = 64; // Maximum transform size
DCTMatrix is of size [MAX_TSIZE][MAX_TSIZE];
TransposeBuffer is of size [MAX_TSIZE][MAX_TSIZE];

uiDctOffset = MAX_TSIZE/uiSize;
pSrc is input data

pDst is output data

// D'*Input

for(i=0;i<uiSize;i++) {

 for(j=0;j<uiSize;j++) {

sum = 0;

 for(k=0;k<uiSize;k++)

 sum += DCTMatrix[k*uiDctOffset][i] * pSrc[k*uiSize+j];

TransposeBuffer[i][j] = sum;

 }

}

// (D'*Input)*D

for(i=0;i<uiSize;i++) {

 for(j=0;j<uiSize;j++) {

sum = 0;

 for(k=0;k<uiSize;k++)

 sum += TransposeBuffer[i][k] * DCTMatrix[k*uiDctOffset][j];

 sum = sum*uiDctScale;

 pDst[i*uiStride+j] = (Pel)(sum);

}

 }

}

Direct matrix multiplication DCT/IDCT was implemented for all block sizes – 4x4 to 64x64. Note that separate transform matrices need not be stored for different block sizes. The largest transform matrix contents can be re-used by proper indexing leading to significant savings in memory for storing transform matrix entries.
2.2 Replacement of quantization matrices for 32x32 and 16x16 block sizes

In TMuC, the quantization and inverse quantization is carried out by using quantization matrices for transforms of sizes 32x32 and 16x16. Note that these matrices are different than scaling matrices in the traditional sense. There is a small variation in the values in the matrices, presumably used to offset quantization effects of Chen’s DCT/IDCT. The matrices for quantization and inverse quantization are of the following sizes:
· Quantization of 32x32 block: UInt g_aiQuantCoef1024[6][1024];

· Inverse quantization of 32x32 block: UInt g_aiDeQuantCoef1024[6][1024];
· Quantization of 16x16 block: UInt g_aiQuantCoef256[6][256];

· Inverse quantization of 16x16 block: UInt g_aiDeQuantCoef256[6][256];

The above quantization matrices were found to provide about 0.1-0.2% gain in limited tests versus not using the quantization matrices.

Direct matrix multiplication has better quantization behavior. So we replace the above quantization matrices with scalar values, one for each QP mod value as follows:

· Quantization of 32x32 block: UInt g_aiQuantCoef1024_s[6];

· Inverse quantization of 32x32 block: UInt g_aiDeQuantCoef1024_s[6];

· Quantization of 16x16 block: UInt g_aiQuantCoef256_s[6];

· Inverse quantization of 16x16 block: UInt g_aiDeQuantCoef256_s[6];
The memory requirement in the decoder goes down from 7.5 KB to 12 bytes. There is a similar memory savings in the encoder.
3 Simulation results

	
	Intra
	Intra LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.0
	0.0
	-0.1
	-0.1
	0.0
	-0.1

	Class B
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	Class C
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	Class D
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	Class E
	0.0
	0.0
	0.0
	0.0
	-0.1
	0.0

	All
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	
	
	
	
	

	
	
	Random access
	
	
	Random access LoCo
	

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	0.0
	0.0
	-0.1
	0.0
	0.0
	0.0

	Class B
	0.0
	-0.1
	-0.1
	0.0
	0.1
	0.0

	Class C
	0.0
	-0.1
	0.0
	0.0
	0.0
	0.0

	Class D
	0.0
	0.0
	0.1
	0.0
	0.1
	-0.2

	Class E
	
	
	
	
	
	

	All
	0.0
	-0.1
	0.0
	0.0
	0.0
	-0.1

	
	Low delay
	Low delay LoCo

	
	Y BD-rate
	U BD-rate
	V BD-rate
	Y BD-rate
	U BD-rate
	V BD-rate

	Class A
	
	
	
	
	
	

	Class B
	0.0
	-0.1
	0.1
	0.0
	0.0
	-0.1

	Class C
	-0.1
	-0.1
	0.1
	0.0
	0.0
	0.1

	Class D
	0.0
	-0.1
	-0.3
	0.0
	0.1
	-0.1

	Class E
	0.0
	0.3
	0.3
	0.0
	-0.1
	0.3

	All
	0.0
	0.0
	0.0
	0.0
	0.0
	0.0

4 Complexity analysis

4.1 Throughput

Chen’s IDCT uses several stages of butterfly type of structure to reduce computational complexity. This structure introduces serial dependency and leads to multipliers getting cascaded one after the other. This leads to increased delay in hardware implementation and limits the maximum frequency at which the IDCT block can be run. This problem is more acute for large block sizes since the number of stages in Chen’s IDCT increases with block size. Table below illustrates the issue with an example implementation in hardware.
	
	TMuC-0.7.3 Chen's IDCT
	Matrix multiplication IDCT

	Number of cascaded multipliers
	5 for (64x64)

4 (for 32x32)
3 for (16x16)
	0 for all

	Max frequency in Low-power 45nm
(with NO Pipeline)
	115MHz
	230MHz

	
	
	

	
	
	

	
	
	

4.2 Hardware sharing and area

	
	TMuC-0.7.3 Chen's IDCT
	Matrix multiplication IDCT

	HW Sharing between different transform size
	Limited as multiplier size and values are different
	100% reuse (without constant mult)

4.3 Software code size

Matrix multiplication is around 25 lines of code where as Chen’s IDCT implementation is around 1500-2000 lines of code.
5 References
[1] JCT-VC, “Common test conditions and software reference configurations”, JCTVC-B300, 2nd. JCT-VC Meeting, Geneva, CH, July 2010.
6 Patent rights declaration(s)

Texas Instruments Inc. may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 4
Date Saved: 2010-10-05

