
10/12/2010 1

Low-complexity, configurable
transform architecture for HEVC

(JCTVC-C226/m18266)

Mangesh Sadafale (*) and Madhukar Budagavi (**)

* Texas Instruments India

** Texas Instruments Dallas

Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

3rd Meeting: Guangzhou, CN, 7-15 October, 2010

10/12/2010 2

JCTVC-C226

Motivation (1)

• TMuC transforms types

– Large size DCT (16x16, 32x32, 64x64) implemented using Chen’s algorithm

– 4x4 and 8x8 integer AVC “DCT”

– Directional transforms (ROT and MDDT) implemented using Matrix

multiplication

• Large size transforms provide coding gain but increase implementation
complexity significantly

• Implementation complexity of large size transforms needs to be studied
carefully

– Important to study both hardware and software implementation complexity

10/12/2010 3

JCTVC-C226

Motivation (2)

• Hardware codecs are expected to play an increasingly important role in
deployment of HEVC solutions since HEVC is expected to be used for
high definition (HD) and above video resolutions

– Need for HD has already led to hardware acceleration being used for AVC

video coding in desktop, mobile, and portable devices (which are

traditionally thought of as software implementation platforms)

• In software, HEVC codecs can be expected to run on processors that support

extensive SIMD operations

– Already, 8-way SIMD architectures are becoming commonplace

• Hence transforms and architectures that are efficient to implement in both

hardware and in software on SIMD machines are needed

10/12/2010 4

JCTVC-C226

Proposal
• We propose matrix multiplication based architecture for transform

implementation

• Advantages of matrix multiplication architecture

– Friendly to parallel processing with minimal dependency and control logic

– Can be efficiently implemented on SIMD processors

– Results in high throughput architecture in hardware

– Results in low-area implementation in hardware since architecture is

configurable and can be re-used across various DCT transform block sizes

for HEVC

– Good fixed-point behavior

• No need to use existing quant/dequant matrices in TMuC

• Memory requirement for storing dequantization matrices in the TMuC decoder

goes down from 7.5 KB to 12 bytes in both encoder and decoder

– Unifying architecture in the sense that it is flexible enough to support other

transforms being considered in HEVC

• Focus of this contribution is on DCT/IDCT implementation

10/12/2010 5

JCTVC-C226

Evaluation of coding gain impact

• TMuC-0.7.3 used as reference

• JCTVC-B300 common conditions

• Two main modifications done to software

– Direct matrix multiplication implementation of DCT/IDCT

– Elimination of quant/dequant matrices

10/12/2010 6

JCTVC-C226

Direct matrix multiplication
MAX_TSIZE = 64; // Maximum transform size

DCTMatrix is of size [MAX_TSIZE][MAX_TSIZE]; // cos() values of DCT

TransposeBuffer is of size [MAX_TSIZE][MAX_TSIZE];

uiDctOffset = MAX_TSIZE/uiSize; // subsampling factor for DCTMatrix

pSrc is input data, pDst is output data

uiSize is transform block size

// D'*Input

for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++)

sum = 0;

for(k=0;k<uiSize;k++)

sum += DCTMatrix[k*uiDctOffset][i] * pSrc[k*uiSize+ j];

TransposeBuffer[i][j] = sum;

// (D'*Input)*D

for(i=0;i<uiSize;i++), for(j=0;j<uiSize;j++)

sum = 0;

for(k=0;k<uiSize;k++)

sum += TransposeBuffer[i][k] * DCTMatrix[k*uiDctOff set][j];

sum = sum*uiDctScale;

pDst[i*uiStride+j] = sum;

DCTMatrix[64][64]
gets reused for all
DCT sizes

10/12/2010 7

JCTVC-C226

Quant/Dequant matrices elimination (1)

• Following are sizes of quant/dequant matrices used in TMuC:

– Quantization of 32x32 block: UInt g_aiQuantCoef1024 [6][1024];

– Inverse quantization of 32x32 block: UInt g_aiDeQuantCoef1024 [6][1024];

– Quantization of 16x16 block: UInt g_aiQuantCoef256 [6][256];

– Inverse quantization of 16x16 block: UInt g_aiDeQuantCoef256 [6][256];

– Matrix entries vary slightly depending on position of transform coeff

• Presumably used in TMuC to offset fixed-point effects of Chen’s
DCT/IDCT

– Leads to degradation of 0.1%-0.3% if scalar values are used instead

• Total memory used about 12.5 KB in encoder and decoder

10/12/2010 8

JCTVC-C226

Quant/Dequant matrices elimination (2)

• Our implementation uses the following:

– Quantization of 32x32 block: UInt g_aiQuantCoef1024_s [6];

– Inverse quantization of 32x32 block: UInt g_aiDeQuantCoef1024_s [6];

– Quantization of 16x16 block: UInt g_aiQuantCoef256_s [6];

– Inverse quantization of 16x16 block: UInt g_aiDeQuantCoef256_s [6];

– One entry per Qstep (mod(QP,6))

• Memory required for Quant/dequant matrices goes down from
12.5KB to 12 bytes for both decoder and encoder

10/12/2010 9

JCTVC-C226

Coding gain results – Intra

0.0 0.0 0.0 0.0 0.0 0.0 All

0.0 -0.1 0.0 0.0 0.0 0.0 Class E

0.0 0.0 0.0 0.0 0.0 0.0 Class D

0.0 0.0 0.0 0.0 0.0 0.0 Class C

0.0 0.0 0.0 0.0 0.0 0.0 Class B

-0.1 0.0 -0.1 -0.1 0.0 0.0 Class A

V BD-

rate

U BD-

rate

Y BD-

rate

V BD-

rate

U BD-

rate

Y BD-

rate

Intra LoCoIntra

10/12/2010 10

JCTVC-C226

Coding gain results – Random access

-0.1 0.0 0.0 0.0 -0.1 0.0 All

Class E

-0.2 0.1 0.0 0.1 0.0 0.0 Class D

0.0 0.0 0.0 0.0 -0.1 0.0 Class C

0.0 0.1 0.0 -0.1 -0.1 0.0 Class B

0.0 0.0 0.0 -0.1 0.0 0.0 Class A

V BD-

rate

U BD-

rate

Y BD-

rate

V BD-

rate

U BD-

rate

Y BD-

rate

Random access LoCoRandom access

10/12/2010 11

JCTVC-C226

Coding gain results – Low delay

0.0 0.0 0.0 0.0 0.0 0.0 All

0.3 -0.1 0.0 0.3 0.3 0.0 Class E

-0.1 0.1 0.0 -0.3 -0.1 0.0 Class D

0.1 0.0 0.0 0.1 -0.1 -0.1 Class C

-0.1 0.0 0.0 0.1 -0.1 0.0 Class B

Class A

V BD-

rate

U BD-

rate

Y BD-

rate

V BD-

rate

U BD-

rate

Y BD-

rate

Low delay LoCoLow delay

10/12/2010 12

JCTVC-C226

Complexity analysis

• Throughput

• Multiplication/accumulation bit-width sizes

• Buffer sizes

• Area

10/12/2010 13

JCTVC-C226

Complexity analysis - Throughput
• Chen’s algorithm uses multiple stages of butterfly-type of structure

– Introduces serial dependency and leads to multipliers getting cascaded one after the

other

– Leads to increased delay in hardware implementation and limits the maximum

frequency at which the IDCT block can be run

230MHz115MHz

Max frequency in

Low-power 45nm

(with NO Pipeline)

0 for all
5 for (64x64)

4 (for 32x32)

3 for (16x16)

Number of cascaded

multipliers

Matrix multiplication IDCTTMuC-0.7.3 Chen's IDCT

Figure

from

Ref [1]

10/12/2010 14

JCTVC-C226

Complexity analysis -
Multiplication/accumulation bit-width sizes
• IBDI off

• Software implication (IBDI off)

32-bit instruction64-bit instructionCPU adder/sub

16-bit instruction32-bit instructionCPU multiplier

Matrix multiplication IDCTTMuC-0.7.3 Chen's IDCT

161716154x4

161616158x8

1620162016x16

1620162032x32

1619161964x64

Matrix mult

TMuC-0.7.3

Chen's IDCTMatrix mult

TMuC-0.7.3

Chen's IDCT

Inverse transform transpose

buffer bit-width (after

horizontal OR vertical inverse

transform)

Inverse transform input bit-

width (after transform,

quantization, inverse

quantization)

TU

Size

10/12/2010 15

JCTVC-C226

Complexity analysis – Buffer sizes

• Hardware implementation complexity for IDCT

– Compute logic (~50%) + Transpose buffer (~50%)

• Reduction in transpose buffer size leads to direct area savings

• Transpose buffer element size for 16x16, 32x32 transform for IBDI-off

– TMuC-0.7.3: 20 bits

– Matrix mult: 16 bits

– 20% savings in area for transpose buffer in hardware

– Similar savings for IBDI-on

• For IBDI-off in software, number of cycles for fetching data goes down by a

factor of 2 (32b data fetch for Chen v/s 16 bit data fetch for matrix

multiplication))

10/12/2010 16

JCTVC-C226

Complexity analysis –
Hardware sharing and Area

• Hardware sharing

• Area

– Example area number ratios for 1D 32x32 transform implementation in RTL

– 20% savings in area

High degree of reuse

Limited as multiplier size

and constants are

different

HW Sharing between

different transform sizes

Matrix multiplication IDCTTMuC-0.7.3 Chen's IDCT

0.8X1XArea @ 115MHz

Matrix multiplication IDCTTMuC-0.7.3 Chen's IDCT

10/12/2010 17

JCTVC-C226

Conclusions

• Important to study both hardware and software implementation
complexity

– Something to think about: Are “Fast” DCTs really fast on today’s architecture?

• Matrix multiplication is an attractive architecture, propose that matrix
multiplication be made the default DCT/IDCT implementation in TM
after cross-verification

– Future optimizations if any can be built on top of it

– Request core experiment be started on matrix multiplication DCT/IDCT

• Propose that we remove quantization matrices in TM

• Request AhG on Efficient implementation of IDCT in hardware and
software

