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Abstract

This document provides the description for a Test Model under Consideration (TMuC). This suggested Test Model is intended to provide a coding efficiency close to the best performing proposals in the subjective test of the CfP submissions and also to provide a complexity point that is close to that of the lowest complexity submissions shown to provide substantial improvement of coding efficiency. The inclusion of a technology in this document does not indicate a final adoption of the technology as an element of an approved test model of the committee. Rather, it indicates a preliminary selection which may require further evaluation and justification to achieve that status.

This TMuC is based on the decisions taken at the 1st meeting of JCT-VC in Dresden from 15-23 April 2010 and the further refinements agreed at the 2nd meeting of JCT-VC in Geneva from 21-28 July 2010.  The principal documents agreed at the 2nd meeting of JCT-VC which affect this TMuC are:
· Unified intra prediction (JCTVC-B100)

· Rounding control and transform precision expansion (JCTVC-B074)
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[Ed.: Tables are to be numbered throughout document, so that all tables are listed]
1 Overview

This suggested Test Model is intended to provide a coding efficiency close to the best performing proposals in the subjective test of the CfP submissions and also to provide a complexity point that is close to that of the lowest complexity submissions shown to provide substantial improvement of coding efficiency. The inclusion of a technology in this document does not indicate a final adoption of the technology as an element of an approved test model of the committee. Rather, it indicates a preliminary selection which may require further evaluation and justification to achieve that status.

Note that the bit depth for signal processing flow elements in this design is increased relative to that for conventional 8 bit video coding design elements, although the picture buffer storage bit depth may be 8 bits when coding 8 bit source video.
2 Definitions

· coding tree block (CTB): A basic unit for specifying the quadtree segmentation of the given square region. CTB can have various sizes of a square shape.

· largest coding tree block (LCTB): Coding tree block of the largest size allowed in the slice. A slice consists of non-overlapped LCTBs.

· smallest coding tree block (SCTB): Coding tree block of the smallest size allowed in the slice. SCTB is not allowed to be split into smaller CTBs. 

· prediction unit (PU): A basic unit for specifying the prediction process. The size of PU is the same to that of the CU which is not allowed to be split any more. PU can be split into multiple partitions which may have arbitrary shapes whereas CU is allowed to be split into four square shapes.

· transform unit (TU): A basic unit for specifying transform and quantization process.

· coding unit (CU): Same as coding tree block.

· largest coding unit (LCU): Same as largest coding tree block.

· smallest coding unit (SCU): Same as smallest coding tree block.

[Ed.: every CU, LCU and SCU in the text to be replaced by CTB, LCTB and SCTB]
· smallest unit size: Smallest size among the various allowed unit sizes of CTB, PU and TU.

· prediction unit partition: A basic unit for specifying the arbitrary shape region inside the PU.
· maximum hierarchy depth: The maximum number of allowed splitting from the LCTB.
· V2V: Variable Length to Variable Length code

3 Source, coded, decoded and output data formats, scanning processes, and neighbouring relationships

[Ed.: Consider giving the section a shorter name]
3.1 Spatial subdivision of pictures and slices

This subclause specifies how a picture is partitioned into slices and various kinds of units. Pictures are divided into slices. A slice is a sequence of largest coding units. Location of largest coding unit is specified by the largest coding unit address lcuAddr.
Each coding unit including the largest coding unit is divided into four coding units recursively. It results to the quadtree segmentation of the larges coding unit. Location of coding unit is specified by the coding unit index cuIdx relative to the upper-left sample of the largest coding unit.
Once the coding unit is not allowed to be split, it shall be considered as the prediction unit. Similar to the coding unit, location of prediction unit is specified by the prediction unit index puIdx relative to the upper-left sample of the largest coding unit.
The prediction unit may have multiple partitions. Location of prediction unit partition is specified by the prediction unit partition index puPartIdx relative to the upper-left sample of the prediction unit.
The prediction unit may have multiple transform units. Similar to the coding unit, transform unit may be split into four small size transform units recursively, which allows quadtree segmentation of the residue signal. Location of the transform unit is specified by the transform unit index tuIdx relative to the upper-left sample of the prediction unit.
Fig. 3‑1 summarizes the spatial subdivision of one slice with various units and their indices.
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Fig. 3‑1 Spatial subdivision of the slice using various units and indices (informative)

3.2 Inverse scanning processes
This subclause specifies inverse scanning processes; i.e, the mapping of indices to locations.

3.2.1 Inverse largest coding unit scanning process

Input to this process is a largest coding unit address lcuAddr.
Output of this process is the location ( x, y ) of the upper-left luma sample for the largest coding unit with address lcuAddr relative to the upper-left sample of the picture.

The inverse largest coding unit scanning process is specified as follows.

· x = InverseRasterScan( lcuAddr, LcuSize, LcuSize, PicWidthInSamplesN, 0 )

y = InverseRasterScan( lcuAddr, LcuSize, LcuSize, PicWidthInSamplesN, 1 )

3.2.2 Recursive coding unit scanning process

Location of coding unit is specified by a raster index cuIdx defined by the smallest unit size, SuSize, as shown in Fig. 3‑2.
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Fig. 3‑2 Raster index based on smallest unit size
Coding unit of size CuSize may be split into four smaller coding units, CU0, CU1, CU2 and CU3 of size CuSize / 2 as shown in Fig. 3‑3.
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Fig. 3‑3 coding unit split

For each split coding unit, the size is equal to CuSize / 2 and the split coding unit index cuIdx is specified as follows.
· cuIdx of CU0 is assigned to be equal to cuIdx
· cuIdx of CU1 is assigned to be equal to cuIdx + CuSizeInSu / 2
· cuIdx of CU2 is assigned to be equal to cuIdx + CuSizeInSu / 2 * LcuSizeInSu
· cuIdx of CU3 is assigned to be equal to cuIdx + CuSizeInSu / 2 + CuSizeInSu / 2 * LcuSizeInSu
Four each split coding unit, the splitting may be done repeatedly until the size of coding unit is equal to that of the smallest coding unit or the splitting is not allowed any more. It results in the typical z-scan or depth-first quad-tree scanning as shown in Fig. 3‑4.
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Fig. 3‑4 Recursive coding unit scanning example (informative)
3.2.3 Inverse coding unit scanning process

Input to this process is a coding unit index cuIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the coding unit with index cuIdx relative to the upper-left sample of the largest coding unit.

The inverse coding unit scanning process is specified as follows.

· x = InverseRasterScan( cuIdx, SuSize, SuSize, LcuSize, 0 )

y = InverseRasterScan( cuIdx, SuSize, SuSize, LcuSize, 1 )

3.2.4 Inverse prediction unit, partition and transform unit scanning process

Once coding unit is decided not to be split any more, it shall be considered to be the prediction unit. Similar to coding unit, location of prediction unit is specified by puIdx defined by the smallest unit size, SuSize. However, prediction unit may be partitioned without any restrictions of a square shape. Fig. 3‑5 shows the possible partitions and scans for the prediction unit. [Ed.: geometric partition to be added] The number in each partition specifies the index of the inverse prediction unit partition scan.
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Fig. 3‑5 Prediction unit partitions and scans
The functions PuPartWidth( ) and PuPartHeight( ) describing the width and height of prediction unit partitions are specified in Table 4‑12 and the function PuPartOffset( ) describing the offset value for the prediction unit partition is specified in Table 4‑13. PuPartWidth( ), PuPartHeight( ) and PuPartOffset( ) are set to appropriate values for each prediction unit, depending on the prediction mode and the partitioning type.
3.2.4.1 Inverse prediction unit scanning process

Input to this process is a prediction unit index puIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the prediction unit with index puIdx relative to the upper-left sample of the largest coding unit.

The inverse prediction unit scanning process is specified as follows.

· x = InverseRasterScan( puIdx, SuSize, SuSize, LcuSize, 0 )


y = InverseRasterScan( puIdx, SuSize, SuSize, LcuSize, 1 )

3.2.4.2 Inverse prediction unit partition scanning process

Input to this process is a prediction unit partition index puPartIdx.
Output of this process is the location ( x, y ) of the upper-left luma sample for the prediction unit partition with index puPartIdx relative to the upper-left sample of the prediction unit.

The inverse prediction unit partition scanning process is specified as follows.

· x = InverseRasterScan( PuPartOffset( puPartIdx ), SuSize, SuSize, PuSize, 0 )

y = InverseRasterScan( PuPartOffset( puPartIdx ), SuSize, SuSize, PuSize, 1 )
3.2.4.3 Inverse transform unit scanning process

Input to this process is a transform unit index tuIdx.

Output of this process is the location ( x, y ) of the upper-left luma sample for the transform unit with index tuIdx relative to the upper-left sample of the prediction unit.

The inverse transform unit scanning process is specified as follows.

· x = InverseRasterScan( tuIdx, SuSize, SuSize, PuSize, 0 )


y = InverseRasterScan( tuIdx, SuSize, SuSize, PuSize, 1 )
3.3 Derivation processes for neighbours

3.3.1 Derivation process of the availability for largest coding unit addresses
Input to this process is a largest coding unit address lcuAddr.

Output of this process is the availability of the lcuAddr.

The largest coding unit is marked as available, unless any of the following conditions is true in which case the largest coding unit is marked as not available:

· lcuAddr < 0
· lcuAddr > CurrLcuAddr
· the largest coding unit with address lcuAddr belongs to a different slice than the largest coding unit with address CurrLcuAddr
3.3.2 Derivation process for neighbouring largest coding unit addresses and their availability

The outputs of this process are
· lcuAddrA: the address and availability status of the largest coding unit to the left of the current largest coding unit
· lcuAddrB: the address and availability status of the largest coding unit above the current largest coding unit
· lcuAddrC: the address and availability status of the largest coding unit above-right of the current largest coding unit
· lcuAddrD: the address and availability status of the largest coding unit above-left of the current largest coding unit
· lcuAddrE: the address and availability status of the largest coding unit below-left of the current largest coding unit

Fig. 3‑6 shows the relative spatial locations of the largest coding units with lcuAddrA, lcuAddrB, lcuAddrC, lcuAdddrD and lcuAddrE relative to the current largest coding unit with CurrLcuAddr.
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Fig. 3‑6 Neighbouring largest coding units for a given largest coding unit


Input to the process in subclause 3.3.1 is lcuAddrA = CurrlcuAddr - 1 and the output is whether the largest coding unit lcuAddrA is available. In addition, lcuAddrA is marked as not available when CurrLcuAddr % PicWidthInLCUs is equal to 0.

Input the process in subclause 3.3.1 is lcuAddrB = CurrLcuAddr - PicWidthInLCUs and the output is whether the largest coding unit lcuAddrB is available.

Input the process in subclause 3.3.1 is lcuAddrC = CurrLcuAddr - PicWidthInLCUs + 1 and the output is whether the largest coding unit lcuAddrC is available. In addition, lcuAddrC is marked as not available when ( CurrLcuAddr + 1 ) % PicWidthInLCUs is equal to 0.

Input the process in subclause 3.3.1 is lcuAddrD = CurrLcuAddr - PicWidthInLCUs − 1 and the output is whether the largest coding unit lcuAddrD is available. In addition, lcuAddrD is marked as not available when CurrLcuAddr % PicWidthInLCUs is equal to 0.
Input the process in subclause 3.3.1 is lcuAddrE = CurrLcuAddr + PicWidthInLCUs − 1 and the output is whether the largest coding unit lcuAddrE is available. In addition, lcuAddrE is marked as not available when CurrLcuAddr % PicWidthInLCUs is equal to 0.
3.3.3 Derivation process of the availability for coding units

Input to this process is a coding unit index cuIdx and the corresponding largest coding unit address lcuAddr.

Output of this process is the availability of the coding unit.
The coding unit is marked as available, unless any of the following conditions is true in which case the coding unit marked as not available:

· lcuAddr < 0

· lcuAddr > CurrLcuAddr

· the LCU address lcuAddr belongs to a different slice than the current slice

· ConvertRasterToZscan( cuIdx ) > ConvertRasterToZscan( CurrCuIdx )

3.3.4 Derivation process for neighbouring units and partitions
Subclause 3.3.4.1 specifies the derivation process for neighbouring largest coding units.

Subclause 3.3.4.2 specifies the derivation process for neighbouring coding units.

Subcaluse 3.3.4.3 specifies the derivation process for neighbouring prediction units.

Subcaluse 3.3.4.4 specifies the derivation process for neighbouring partitions.

Table 3‑1 specifies the values for the difference of luma location ( xD, yD ) for the input and the replacement for N in lcuAddrN, cuIdxN, puIdxN and puPartIdxN for the output. These input and output assignments are used in subclauses 3.3.4.1 to 3.3.4.4. The variables PuPartWidth and PuPartHeight are specified when Table 4‑12 is referred to.
Table 3‑1 Specification of input and output assignments for subclauses 3.3.4 to 3.3.5
	N
	xD
	yD

	A
	−1
	0

	B
	0
	-1

	C
	PuPartWidth
	-1

	D
	-1
	-1

	E
	-1
	PuPartHeight
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Fig. 3‑7 Determination of the neighbouring largest coding units, coding units, prediction units and partitions (informative)
3.3.4.1 Derivation process for neighbouring largest coding units

Input to this process is a largest coding unit index lcuAddr.

The outputs of this process are
· lcuAddrA: the address and its availability status of the largest coding unit to the left of the current largest coding unit

· lcuAddrB: the address and its availability status of the largest coding unit above the current largest coding unit

lcuAddN (with N being A or B) are derived as follows.

· The difference of luma location ( xD, yD ) is set according to Table 3‑1.

· The derivation process for neighbouring locations as specified in subclause 3.3.5 is invoked for luma locations with ( xN, yN ) equal to ( xD, yD ), and the output is assigned to lcuAddrN.

3.3.4.2 Derivation process for neighbouring coding units

Input to this process is a largest coding unit index lcuAddr and a coding unit index cuIdx.

The outputs of this process are
· lcuAddrA: the address and its availability status of the largest coding unit to the left of the current largest coding unit

· cuIdxA: the index and its availability status of the coding unit to the left of the current coding unit

· lcuAddrB: the address and its availability status of the largest coding unit above the current largest coding unit

· cuIdxB: the index and its availability status of the coding unit above the current coding unit

lcuAddrN and cuIdxN (with N being A or B) are derived as follows.

· The difference of luma location ( xD, yD ) is set according to Table 3‑1.

· Input to the process in subclause 3.2.3 is cuIdxN and the output is the luma location ( x, y ).

· The luma location ( xN, yN ) is specified by




xN = x + xD



yN = y + yD
· The derivation process for neighbouring locations as specified in subclause 3.3.5 is invoked for luma locations with ( xN, yN ) as the input and the output is assigned to lcuAddrN and ( xW, yW ).
· The variable cuIdxN is derived as follows.
· If lcuAddrN is not available, cuIdxN is marked as not available.
· Otherwise (lcuAddrN is available), the coding unit index in the largest coding unit lcuAddrN covering the luma location ( xW, yW ) shall be assigned to cuIdxN.

3.3.4.3 Derivation process for neighbouring prediction units

Input to this process is a largest coding unit index lcuAddr and a prediction unit index puIdx.

The outputs of this process are
· lcuAddrA: the address and its availability status of the largest coding unit to the left of the current largest coding unit

· puIdxA: the index and its availability status of the prediction unit to the left of the current prediction unit

· lcuAddrB: the address and its availability status of the largest coding unit above the current largest coding unit

· puIdxB: the index and its availability status of the prediction unit above the current prediction unit

· lcuAddrC: the address and its availability status of the largest coding unit above-right of the current largest coding unit

· puIdxC: the index and availability status of the prediction unit above-right of the current prediction unit

· lcuAddrD: the address and its availability status of the largest coding unit above-left of the current largest coding unit

· puIdxD: the index and availability status of the prediction unit above-left of the current prediction unit

· lcuAddrE: the address and its availability status of the largest coding unit below-left of the current largest coding unit

· puIdxE: the index and availability status of the largest coding unit below-left of the current prediction unit

lcuAddrN and puIdxN (with N being A, B, C, D or E) are derived as follows.

· The difference of luma location ( xD, yD ) is set according to Table 3‑1.

· Input to the process in subclause 3.2.4.1 is puIdxN and the output is the luma location ( x, y ).

· The luma location ( xN, yN ) is specified by



xN = x + xD




yN = y + yD
· The derivation process for neighbouring locations as specified in subclause 3.3.5 is invoked for luma locations with ( xN, yN ) as the input and the output is assigned to lcuAddrN and ( xW, yW ).
· The variable puIdxN is derived as follows.
· If lcuAddrN is not available, puIdxN is marked as not available.
· Otherwise (lcuAddrN is available), the prediction unit index in the largest coding unit lcuAddN covering the luma location ( xW, yW ) shall be assigned to puIdxN.
3.3.4.4 Derivation process for neighbouring partitions

Input to this process is a largest coding unit index lcuAddr, a prediction unit index puIdx and a partition index puPartIdx.

The outputs of this process are
· lcuAddrA: the address and its availability status of the largest coding unit to the left of the current largest coding unit
· puIdxA: the index and its availability status of the prediction unit to the left of the current prediction unit
· puPartIdxA: the index and its availability status of the partition index to the left of the current partition index
· lcuAddrB: the address and its availability status of the largest coding unit above the current largest coding unit
· puIdxB: the index and its availability status of the prediction unit above the current prediction unit
· puPartIdxB: the index and its availability status of the partition index above the current partition index
· lcuAddrC: the address and its availability status of the largest coding unit above-right of the current largest coding unit
· puIdxC: the index and availability status of the prediction unit above-right of the current prediction unit
· puPartIdxC: the index and its availability status of the partition index above-right of the current partition index
· lcuAddrD: the address and its availability status of the largest coding unit above-left of the current largest coding unit
· puIdxD: the index and availability status of the prediction unit above-left of the current prediction unit
· puPartIdxD: the index and its availability status of the partition index above-left of the current partition index
· lcuAddrE: the address and its availability status of the largest coding unit below-left of the current largest coding unit
· puIdxE: the index and availability status of the largest coding unit below-left of the current prediction unit
· puPartIdxE: the index and its availability status of the partition index below-left of the current partition index
lcuAddrN, puIdxN and puPartIdxN (with N being A, B, C, D or E) are derived as follows.

· The difference of luma location ( xD, yD ) is set according to Table 3‑1.
· Input to the process in subclause 3.2.4.1 is puIdxN and the output is the luma location ( x, y ).
· Input to the process in subclause 3.2.4.2 is puPartIdxN and the output is the difference of luma location ( xP, yP )
· The luma location ( xN, yN ) is specified by


xN = x + xP + xD



yN = y + yP + yD
· The derivation process for neighbouring locations as specified in subclause 3.3.5 is invoked for luma locations with ( xN, yN ) as the input and the output is assigned to lcuAddrN and ( xW, yW ).
· The variable puIdxN and puPartIdxN are derived as follows.
· If lcuAddrN is not available, puIdxN and puPartIdxN are marked as not available.
· Otherwise (lcuAddrN is available), the prediction unit index and the partition index in the largest coding unit lcuAddN covering the luma location ( xW, yW ) shall be assigned to puIdxN and partIdxN.
3.3.5 Derivation process for neighbouring locations
Input to this process is a luma or chroma location ( xN, yN ) expressed relative to the upper left corner of the current largest coding unit.

Outputs of this process are

· lcuAddrN: either equal to CurrLcuAddr or to the address of neighbouring largest coding unit that containts ( xN, yN ) and its availability status,
· ( xW, yW ): the location ( xN, yN ) expressed relative to the upper-left corner of the largest coding unit lcuAddrN (rather than relative to the upper-left corner of the current largest coding unit).
Let maxW and maxH be variables specifying maximum values of the location components xN, xW and yN, yW, respectively. maxW and maxH are derived as follows.
· if this process is invoked for neighbouring luma locations,


maxW = maxH = LcuSize
· Otherwise (this process is invoked for neighbouring chroma locations),


maxW = maxH = LcuSizeC

The derivation process for neighbouring largest coding unit addresses and their availability in subclause 3.3.2 is invoked with lcuAddrA, lcuAddrB, lcuAddrC, lduAddrD and lcuAddrE as well as their availability status as the output.
Table 3‑2 specifies lcuAddrN depending on ( xN, yN ).

Table 3‑2 Specification of lcuAddrN

	xN
	yN
	lcuAddrN

	< 0
	< 0
	lcuAddrD

	< 0
	0..maxH − 1
	lcuAddrA

	0..maxW − 1
	< 0
	lcuAddrB

	0..maxW − 1
	0..maxH − 1
	CurrLcuAddr

	> maxW − 1
	< 0
	lcuAddrC

	> maxW − 1
	0..maxH − 1
	not available

	< 0
	> maxH – 1
	lcuAddrE

	0..maxW – 1
	> maxH − 1
	not available


The neighbouring location ( xW, yW ) relative to the upper-left corner of the largest coding unit lcuAddrN is derived as



xW = ( xN + maxW ) % maxW



yW = ( yN + maxH ) % maxH

4 Syntax and Semantics

4.1 Syntax

[Ed.: preliminary draft]
4.1.1 NAL unit syntax
	nal_unit( NumBytesInNALunit ) {
	C
	Descriptor

	
forbidden_zero_bit
	All
	f(1)

	
nal_ref_idc
	All
	u(2)

	
nal_unit_type
	All
	u(5)

	
NumBytesInRBSP = 0
	
	

	
nalUnitHeaderBytes = 1
	
	

	
if( nal_unit_type = = 1 | | nal_unit_type = = 5 ) {
	
	

	

temporal_id
	All
	u(3)

	

output_flag
	All
	u(1)

	

reserved_zero_4bits
	All
	u(4)

	

nalUnitHeaderBytes += 1
	
	

	
}
	
	

	
for( i = nalUnitHeaderBytes; i < NumBytesInNALunit; i++ ) {
	
	

	

if( i + 2 < NumBytesInNALunit && next_bits( 24 )  = =  0x000003 ) {
	
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	All
	b(8)

	


rbsp_byte[ NumBytesInRBSP++ ]
	All
	b(8)

	


i += 2
	
	

	


emulation_prevention_three_byte  /* equal to 0x03 */
	All
	f(8)

	

} else
	
	

	


rbsp_byte[ NumBytesInRBSP++ ]
	All
	b(8)

	
}
	
	

	}
	
	


z
4.1.2 Sequence parameter set RBSP syntax
[Ed.: Parameters to be removed and/or added as appropriate.]
	seq_parameter_set_rbsp( ) {
	C
	Descriptor

	
profile_idc
	0
	u(8)

	
reserved_zero_8bits  /* equal to 0 */
	0
	u(8)

	
level_idc
	0
	u(8)

	
seq_parameter_set_id
	0
	ue(v)

	
bit_depth_luma_minus8
	0
	ue(v)

	
bit_depth_chroma_minus8
	0
	ue(v)

	
increased_bit_depth_luma
	0
	ue(v)

	
ine_bit_depth_chroma
	0
	ue(v)

	
log2_max_frame_num_minus4
	0
	ue(v)

	
pic_order_cnt_type
	0
	ue(v)

	
if( pic_order_cnt_type  = =  0 )
	
	

	

log2_max_pic_order_cnt_lsb_minus4
	0
	ue(v)

	
else if( pic_order_cnt_type  = =  1 ) {
	
	

	

delta_pic_order_always_zero_flag
	0
	u(1)

	

offset_for_non_ref_pic
	0
	se(v)

	

num_ref_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for( i = 0; i < num_ref_frames_in_pic_order_cnt_cycle; i++ )
	
	

	


offset_for_ref_frame[ i ]
	0
	se(v)

	
}
	
	

	
max_num_ref_frames
	0
	ue(v)

	
gaps_in_frame_num_value_allowed_flag
	0
	u(1)

	
log2_min_coding_unit_size_minus3
	0
	ue(v)

	
max_coding_unit_hierarchy_depth
	0
	ue(v)

	
log2_min_transform_unit_size_minus2
	0
	ue(v)

	
max_transform_unit_hierarchy_depth
	0
	ue(v)

	
pic_width_in_luma_samples
	0
	u(16)

	
pic_height_in_luma_samples
	0
	u(16)

	  numExtraFilters
	0
	ue(v)

	  for(i=0; i< numExtraFilters; i++){
	
	

	    log2_filterCoeffPrecision
	0
	ue(v)

	    halfNumTap
	0
	ue(v)

	    for(j=0;j<(3*halfNumTap); j++){
	
	

	      filterCoef[i][j]
	0
	i(v)

	    }
	
	

	  }
	
	

	
rbsp_trailing_bits( )
	0
	

	}
	
	


4.1.3 Picture parameter set RBSP syntax
[Ed.: Parameters to be removed and/or added as appropriate.]
	pic_parameter_set_rbsp( ) {
	C
	Descriptor

	
pic_parameter_set_id
	1
	ue(v)

	
seq_parameter_set_id
	1
	ue(v)

	
entropy_coding_mode_flag
	1
	u(1)

	
num_ref_idx_l0_default_active_minus1
	1
	ue(v)

	
num_ref_idx_l1_default_active_minus1
	1
	ue(v)

	
pic_init_qp_minus26  /* relative to 26 */
	1
	se(v)

	
constrained_intra_pred_flag
	1
	u(1)

	  for(i=0;i<15; i++){
	
	

	    numAllowedFilters[i]
	1
	ue(v)

	    for(j=0;j<numAllowedFilters;j++){
	
	

	      filtIdx[i][j]
	1
	ue(v)

	    }
	
	

	  }
	
	

	
rbsp_trailing_bits( )
	1
	

	}
	
	


4.1.4 Supplemental enhancement information RBSP syntax

	sei_rbsp( ) {
	C
	Descriptor

	
do
	
	

	

sei_message( )
	5
	

	
while( more_rbsp_data( ) )
	
	

	
rbsp_trailing_bits( )
	5
	

	}
	
	


4.1.5 Supplemental enhancement information message syntax

	sei_message( ) {
	C
	Descriptor

	payloadType = 0
	
	

	
while( next_bits( 8 )  = =  0xFF ) {
	
	

	

ff_byte  /* equal to 0xFF */
	5
	f(8)

	

payloadType += 255
	
	

	
}
	
	

	
last_payload_type_byte
	5
	u(8)

	
payloadType += last_payload_type_byte
	
	

	
payloadSize = 0
	
	

	
while( next_bits( 8 )  = =  0xFF ) {
	
	

	

ff_byte  /* equal to 0xFF */
	5
	f(8)

	

payloadSize += 255
	
	

	
}
	
	

	
last_payload_size_byte
	5
	u(8)

	
payloadSize += last_payload_size_byte
	
	

	
sei_payload( payloadType, payloadSize )
	5
	

	}
	
	


4.1.6 Access unit delimiter RBSP syntax

	access_unit_delimiter_rbsp( ) {
	C
	Descriptor

	
primary_pic_type
	6
	u(3)

	
rbsp_trailing_bits( )
	6
	

	}
	
	


4.1.7 Filler data RBSP syntax

	filler_data_rbsp( ) {
	C
	Descriptor

	
while( next_bits( 8 )  = =  0xFF )
	
	

	

ff_byte  /* equal to 0xFF */
	9
	f(8)

	
rbsp_trailing_bits( )
	9
	

	}
	
	


4.1.8 Slice layer RBSP syntax

	slice_layer_rbsp( ) {
	C
	Descriptor

	
slice_header( )
	2
	

	
slice_data( )  /* all categories of slice_data( ) syntax */
	2 | 3 | 4
	

	
rbsp_slice_trailing_bits( )
	2
	

	}
	
	


4.1.9 RBSP slice trailing bits syntax
	rbsp_slice_trailing_bits( ) {
	C
	Descriptor

	
rbsp_trailing_bits( )
	All
	

	
if( entropy_coding_mode_flag )
	
	

	

while( more_rbsp_trailing_data( ) )
	
	

	


cabac_zero_word  /* equal to 0x0000 */
	All
	f(16)

	}
	
	


4.1.10 RBSP trailing bits syntax

	rbsp_trailing_bits( ) {
	C
	Descriptor

	
rbsp_stop_one_bit  /* equal to 1 */
	All
	f(1)

	
while( !byte_aligned( ) )
	
	

	

rbsp_alignment_zero_bit  /* equal to 0 */
	All
	f(1)

	}
	
	


4.1.11 Slice header syntax
[Ed.: Parameters to be removed and/or added as appropriate.]
	slice_header( ) {
	C
	Descriptor

	
first_lctb_in_slice
	2
	ue(v)

	
slice_type
	2
	ue(v)

	
pic_parameter_set_id
	2
	ue(v)

	
frame_num
	2
	u(v)

	
if( IdrPicFlag )
	
	

	

idr_pic_id
	2
	ue(v)

	
pic_order_cnt_lsb
	2
	u(v)

	
if( slice_type  = =  P  | |  slice_type  = =  B ) {
	
	

	

num_ref_idx_active_override_flag
	2
	u(1)

	

if( num_ref_idx_active_override_flag ) {
	
	

	


num_ref_idx_l0_active_minus1
	2
	ue(v)

	


if( slice_type  = =  B )
	
	

	



num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	
}
	
	

	
ref_pic_list_modification( )
	
	

	
if( nal_ref_idc != 0 )
	
	

	

dec_ref_pic_marking( )
	2
	

	
if( entropy_coding_mode_flag  &&  slice_type  !=  I )
	
	

	

cabac_init_idc
	2
	ue(v)

	
slice_qp_delta
	2
	se(v)

	
alf_param()
	
	

	if( slice_type  = =  P  | |  slice_type  = =  B ) {
	
	

	
mc_interpolation_idc
	2
	ue(v)

	
mv_competition_flag
	2
	u(1)

	
if ( mv_competition_flag ) {
	
	

	

mv_competition_temporal_flag
	2
	u(1)

	
}
	
	

	  }
	
	

	if ( slice_type  = =  B  &&  mv_competition_flag)
	
	

	    collocated_from_l0_flag
	2
	u(1)

	
	
	

	  sifo_param()
	
	

	  if (entropy_coding_mode_flag == 3)
	
	

	    parallel_v2v_header()
	2
	

	edge_based_prediction_flag
	2
	u(1)

	if( edge_prediction_ipd_flag = = 1 )
	
	

	  threshold_edge
	2
	u(8)

	}
	
	


4.1.11.1 Reference picture list modification syntax
	ref_pic_list_modification( ) {
	C
	Descriptor

	
if( slice_type % 5 != 2 ) {
	
	

	

ref_pic_list_modification_flag_l0
	2
	u(1)

	

if( ref_pic_list_modification_flag_l0 )
	
	

	


do {
	
	

	



modification_of_pic_nums_idc
	2
	u(1)

	



if(modification_of_pic_nums_idc = = 0 | |






modification_of_pic_nums_idc = = 1 )
	
	

	




abs_diff_pic_num_minus1
	2
	ue(v)

	



else ( modification_of_pic_nums_idc  = =  2 )
	
	

	




long_term_pic_num
	2
	ue(v)

	


} while( modification_of_pic_nums_idc  !=  3 )
	
	

	
}
	
	

	
if( slice_type % 5 = =  1 ) { 
	
	

	

ref_pic_list_modification_flag_l1
	2
	u(1)

	

if( ref_pic_list_modification_flag_l1 )
	
	

	


do {
	
	

	



modification_of_pic_nums_idc
	2
	u(1)

	



if(modification_of_pic_nums_idc = = 0 | |






modification_of_pic_nums_idc = = 1 )
	
	

	




abs_diff_pic_num_minus1
	2
	ue(v)

	



else if( modification_of_pic_nums_idc  = =  2 )
	
	

	




long_term_pic_num
	2
	ue(v)

	


} while( modification_of_pic_nums_idc  !=  3 )
	
	

	
}
	
	

	}
	
	


4.1.11.2 Decoded reference picture marking syntax

	dec_ref_pic_marking( ) {
	C
	Descriptor

	
if( IdrPicFlag ) { 
	
	

	

no_output_of_prior_pics_flag
	2 | 5
	u(1)

	

long_term_reference_flag
	2 | 5
	u(1)

	
} else {
	
	

	

adaptive_ref_pic_marking_mode_flag
	2 | 5
	u(1)

	

if( adaptive_ref_pic_marking_mode_flag )
	
	

	


do {
	
	

	



memory_management_control_operation
	2 | 5
	ue(v)

	



if( memory_management_control_operation  = =  1  | |





memory_management_control_operation  = =  3 )
	
	

	




difference_of_pic_nums_minus1
	2 | 5
	ue(v)

	



if(memory_management_control_operation  = =  2  )
	
	

	




long_term_pic_num
	2 | 5
	ue(v)

	


 
if( memory_management_control_operation  = =  3  | |





memory_management_control_operation  = =  6 )
	
	

	




long_term_frame_idx
	2 | 5
	ue(v)

	



if( memory_management_control_operation  = =  4 )
	
	

	




max_long_term_frame_idx_plus1
	2 | 5
	ue(v)

	


} while( memory_management_control_operation  !=  0 )
	
	

	
}
	
	

	}
	
	


4.1.11.3 Adaptive loop filter parameter syntax
	alf_param() {
	C
	Descriptor

	  adaptive_loop_filter_flag
	2
	u(1)

	  if ( adaptive_loop_filter_flag ) {
	
	

	    alf_length_luma_hor_minus_5_div2
	2
	ue(v)

	    alf_length_luma_ver_minus_5_div2
	2
	ue(v)

	    alf_length_luma_pred_hor_minus_1_div2
	2
	ue(v)

	    alf_length_luma_pred_ver_minus_1_div2
	2
	ue(v)

	    alf_length_luma_qpe_hor minus_1_div2
	2
	ue(v)

	    alf_length_luma_qpe_ver minus_1_div2
	2
	ue(v)

	    alf_quant_step_size_luma_hor
	2
	ue(v)

	    alf_quant_step_size_luma_ver
	2
	ue(v)

	    alf_minKStart_minus1
	2
	ue(v)

	    for (i=0; i < AlfmaxDepth; i++) {
	
	

	      alf_golombIndexBit
	2
	u(1)

	    }
	
	

	  

alf_noFilters_minus1
	2
	ue(v)

	if (alf_noFilters_minus1 == 1) {
	
	

	alf_startSecondFilter   
	2
	ue(v)

	}
	
	

	else if (alf_noFilters_minus1 > 1) {
	
	

	for (i=0; i< AlfMaxNumFilters; i++) {
	
	

	alf_filter_pattern[i]  
	2
	u(1)

	}
	
	

	}
	
	

	if (AlfNumFilters > 1) {  
	
	

	alf_predMethod
	2
	u(1)

	}
	
	

	for (i=0; i< AlfNumFilters; i++) {
	
	

	for (j=0; j< AlfLengthLuma_hor; j++) {
	
	

	scanPos = DepthTable[j]-1;
	
	

	alf_coeff_luma_hor[i][j] = golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	      for (j=0; j< AlfLengthLuma_pred_hor; j++) {
	
	

	         scanPos = DepthTable[j]-1;
	
	

	         alf_coeff_luma_pred_hor[i][j] =
           golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	      for (j=0; j< AlfLengthLuma_qpe_hor; j++) {
	
	

	        scanPos = DepthTable[j]-1;
	
	

	        alf_coeff_luma_qpe_hor[i][j] =
          golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	      for (j=0; j< AlfLengthLuma_ver; j++) {
	
	

	        scanPos = DepthTable[j]-1;
	
	

	        alf_coeff_luma_ver[i][j] = golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	      for (j=0; j< AlfLengthLuma_pred_ver; j++) {
	
	

	        scanPos = DepthTable[j]-1;
	
	

	        alf_coeff_luma_pred_ver[i][j] =
          golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	      for (j=0; j< AlfLengthLuma_qpe_ver; j++) {
	
	

	        scanPos = DepthTable[j]-1;
	
	

	        alf_coeff_luma_qpe_ver[i][j] =
          golombDecodek (kMinTap[scanPos])
	
	ge(v)

	      }
	
	

	}
	
	

	  

alf_chroma_idc
	2
	ue(v)

	  

if ( alf_chroma_idc ) {
	
	

	      alf_reuse_coefficients_for_chroma_flag
	2
	u(1)

	      if (alf_reuse_coefficients_for_chroma_flag)
	
	

	      {
	
	

	        alf_length_chroma_hor_minus_5_div2 = 
          alf_length_luma_hor_minus_5_div2
	
	

	        alf_length_chroma_ver minus_5_div2 =
          alf_length_luma_ver minus_5_div2
	
	

	        alf_length_chroma_pred_hor minus_1_div2 =
          alf_length_luma_pred_hor minus_1_div2
	
	

	        alf_length_chroma_pred_ver_minus_1_div2 =
          alf_length_luma_pred_ver_minus_1_div2
	
	

	        alf_length_chroma_qpe_hor_minus_1_div2 =
          alf_length_luma_qpe_hor_minus_1_div2
	
	

	        alf_length_chroma_qpe_ver minus_1_div2 =
          alf_length_luma_qpe_ver minus_1_div2
	
	

	        alf_quant_step_size_chroma_hor =
          alf_quant_step_size_luma_hor
	
	

	        alf_quant_step_size_chroma_ver =
          alf_quant_step_size_luma_ver
	
	

	        for( i = 0; i< AlfLengthChroma_hor; i++ ) {
	
	

	          alf_coeff_chroma_hor [i] = alf_coeff_luma_hor [i]
	
	

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_pred_hor; i++ ) {
	
	

	          alf_coeff_chroma_pred_hor [i] = alf_coeff_luma_pred_hor [i]
	
	

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_qpe_hor; i++ ) {
	
	

	          alf_coeff_chroma_qpe_hor [i] = alf_coeff_luma_qpe_hor [i]
	
	

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_ver; i++ ) {
	
	

	          alf_coeff_chroma_ver [i] = alf_coeff_luma_ver [i]
	
	

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_pred_ver; i++ ) {
	
	

	          alf_coeff_chroma_pred_ver [i]= alf_coeff_luma_pred_ver [i]
	
	

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_qpe_ver; i++ ) {
	
	

	          alf_coeff_chroma_qpe_ver [i] = alf_coeff_luma_qpe_ver [i]
	
	

	        }
	
	

	      } else {
	
	

	        alf_length_chroma_hor_minus_5_div2
	2
	ue(v)

	        alf_length_chroma_ver minus_5_div2
	2
	ue(v)

	        alf_length_chroma_pred_hor minus_1_div2
	2
	ue(v)

	        alf_length_chroma_pred_ver_minus_1_div2
	2
	ue(v)

	        alf_length_chroma_qpe_hor_minus_1_div2
	2
	ue(v)

	        alf_length_chroma_qpe_ver minus_1_div2
	2
	ue(v)

	        alf_quant_step_size_chroma_hor
	2
	ue(v)

	        alf_quant_step_size_chroma_ver
	2
	ue(v)

	        for( i = 0; i< AlfLengthChroma_hor; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_hor [i] = golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_pred_hor; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_pred_hor [i] =
            golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_qpe_hor; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_qpe_hor [i] = 
            golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_ver; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_ver [i] = golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_pred_ver; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_pred_ver [i] =
            golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	        for( i = 0; i< AlfLengthChroma_qpe_ver; i++ ) {
	
	

	          scanPos = DepthTable[j]-1;
	
	

	          alf_coeff_chroma_qpe_ver [i] =
            golombDecodek (kMinTap[scanPos])
	
	ge(v)

	        }
	
	

	    

}
	
	

	  

}
	
	

	  

alf_cu_control_flag
	2
	u(1)

	  

if ( alf_cu_control_flag ) {
	
	

	    

alf_cu_control_max_depth
	2
	ue(v)

	  

}
	
	

	
}
	
	

	}
	
	


4.1.11.4 Switched Filter with Offsets parameter syntax

	sifo_param() {
	C
	Descriptor

	if ( slice_type  = =  P ||  slice_type  = =  B)
	
	

	  predict_filter_flag
	2
	u(1)

	if ( slice_type  = =  P) {
	
	

	  if (!predict_filter_flag ) {
	
	

	    sifo_type
	2
	u(2)

	    if(sifo_type == 0 || sifo_type ==1 ) {
	
	

	      for(i=0; i<15; i++)
	
	

	        sifo_filter[i]
	2
	u(v)

	    }
	
	

	    if(sifo_type==2) {
	
	

	     sifo_filter[0]
	2
	u(v)

	     for(i=1; i<15; i++)
	
	

	       sifo_filter[i] = sifo_filter[0]
	
	

	    }
	2
	u(v)

	  } else {
	
	

	    sifo_type
	2
	u(1)

	    if(sifo_type == 0) {
	
	

	      for(i=0; i<15; i++) {
	
	

	        use_prev_filter_flag
	2
	u(1)

	        if(use_prev_filter_flag)
	
	

	          sifo_filter[i] = prev_filter[i]
	
	

	        else
	
	

	          sifo_filter[i]
	2
	u(v)

	      }
	
	

	    } else {
	
	

	      sifo_filter[0]
	2
	u(v)

	      for(i=1; i<15; i++)
	
	

	        sifo_filter[i] = sifo_filter[0]
	
	

	    }
	
	

	  }
	
	

	}
	
	

	
	
	

	if ( slice_type  = =  B) {
	
	

	  sifo_type
	2
	u(1)

	  if(sifo_type==1){
	
	

	     sifo_filter[0]
	2
	u(v)

	     for(i=1; i<15; i++)
	
	

	       sifo_filter[i] = sifo_filter[0]
	
	

	  }
	
	

	  if(sifo_type==0){
	
	

	    if (!predict_filter_flag ){
	
	

	      for(i=0; i<15; i++)
	
	

	        sifo_filter[i]
	2
	u(v)

	    } else {
	
	

	      use_prev_filter_flag
	2
	u(1)

	      if(use_prev_filter_flag)
	
	

	        sifo_filter[i] = prev_filter[i]
	
	

	      else
	
	

	        sifo_filter[i]
	2
	u(v)

	    }
	
	

	  }
	
	

	}
	
	

	
	
	

	if ( slice_type  = =  P  ||  slice_type  = =  B) {
	
	

	  zero_offset_flag
	2
	u(1)

	  if( ! zero_offset_flag ) {
	
	

	    for( i = 0; i <= num_ref_idx_l0_active_minus1; i++ ) {
	
	

	      if(i==0){
	
	

	        for(j=0; j<16; j++) {
	
	

	          5.3.5.2.2_l0[i]
	2
	se(v)

	          sifo_offset[i]_l0 *= (1 << increased_bit_depth_luma)
	
	

	        }
	
	

	      } else {
	
	

	        img_offset_l0[i]
	2
	se(v)

	        img_offset_l0[i] *= (1 << increased_bit_depth_luma)
	
	

	      }
	
	

	    }
	
	

	    if (slice_type  = =  B) {
	
	

	      for( i = 0; i <= num_ref_idx_l1_active_minus1; i++ ) {
	
	

	        if(i==0){
	
	

	          for(j=0; j<16; j++) {
	
	

	            sifo_offset_l1[i]
	2
	se(v)

	            sifo_offset_l1[i] *= (1 << increased_bit_depth_luma)
	
	

	          }
	
	

	        } else {
	
	

	          img_offset_l1[i]
	2
	se(v)

	          img_offset_l1[i] *= (1 << increased_bit_depth_luma)
	
	

	        }
	
	

	      }
	
	

	    }
	
	

	  }
	
	

	}
	
	

	
	
	

	}
	
	


4.1.12 Slice data syntax
[Ed. preliminary draft]
	slice_data( ) {
	C
	Descriptor

	
CurrMbAddr = first_lctb_in_slice
	
	

	
moreDataFlag = 1
	
	

	
do {
	
	

	

xCU = HorLumaLocation( CurrMbAddr )
	
	

	

yCU = VerLumaLocation( CurrMbAddr )
	
	

	

coding_unit( xCU, yCU, MaxCodingUnitSize )
	2 | 3 | 4
	

	

if( !entropy_coding_mode_flag )
	
	

	


moreDataFlag = more_rbsp_data( )
	
	

	

else {
	
	

	


end_of_slice_flag
	2
	ae(v)

	


moreDataFlag = !end_of_slice_flag
	
	

	

}
	
	

	

CurrMbAddr = NextMbAddress( CurrMbAddr )
	
	

	
} while( moreDataFlag )
	
	

	}
	
	


4.1.13 Coding unit syntax

[Ed. preliminary draft]
	coding_unit( x0, y0, currCodingUnitSize ) {
	C
	Descriptor

	
if( x0+currCodingUnitSize < PicWidthInSamplesL && 



y0+currCodingUnitSize < PicHeightInSamplesL &&
	
	

	

currCodingUnitSize > MinCodingUnitSize )
	
	

	

split_coding_unit_flag
	2
	u(1) | ae(v)

	
if( ( split_coding_unit_flag && 



currCodingUnitSize == AlfMinCtrlCodingUnitSize ) ||



( !split_coding_unit_flag && 



currCodingUnitSize > AlfCtrlMinCodingUnitSize )
	
	

	

alf_flag
	2
	u(1) | ae(v)

	
if( split_coding_unit_flag )  {
	
	

	

splitCodingUnitSize = currCodingUnitSize >> 1
	
	

	

x1 = x0 + splitCodingUnitSize
	
	

	

y1 = y0 + splitCodingUnitSize
	
	

	

coding_unit( x0, y0, splitCodingUnitSize  )
	2 | 3 | 4
	

	

if( x1 < PicWidthInSamplesL )
	
	

	


coding_unit( x1, y0, splitCodingUnitSize  )
	2 | 3 | 4
	

	

if( y1 < PicHeightInSamplesL )
	
	

	


coding_unit( x0, y1, splitCodingUnitSize )
	2 | 3 | 4
	

	

if( x1 < PicWidthInSamplesL  &&  y1 < PicHeightInSamplesL )
	
	

	


coding_unit( x1, y1, splitCodingUnitSize )
	2 | 3 | 4
	

	
} else {
	
	

	

prediction_unit( x0, y0, currCodingUnitSize )
	2
	

	

if( PredMode != MODE_SKIP  || !(PredMode == MODE_INTRA && planar_flag == 1) )
	
	

	


transform_unit( x0, y0, currCodingUnitSize )
	3 | 4
	

	
}
	
	

	}
	
	


4.1.14 Prediction unit syntax

[Ed. preliminary draft]
	prediction_unit( x0, y0, currPredUnitSize ) {
	C
	Descriptor

	
if( slice_type != I )
	
	

	

skip_flag
	
	

	
if( skip_flag ) {
	
	

	

if( mv_competition_flag ) {
	
	

	


if( inter_pred_idc != Pred_L1 && NumMVPCand( L0 ) > 1 )
	
	

	



mvp_idx_l0
	2
	ue(v) | ae(v)

	


if( inter_pred_idc != Pred_L0 && NumMVPCand( L1 ) > 1 )
	
	

	



mvp_idx_l1
	2
	ue(v) | ae(v)

	

}
	
	

	
}
	
	

	
else {
	
	

	

if(!entropy_coding_mode_flag)
	
	

	


mode_table_idx
	
	vlc(n,v)

	

else {
	
	

	

if( slice_type != I )
	
	

	


pred_mode
	2
	u(1) | ae(v)

	

 }
	
	

	

if( PredMode == MODE_INTRA ) {
	
	

	


planar_flag
	2
	u(1) | ae(v)

	


if(planar_flag) {
	
	

	



planar_delta_y = getPlanarDelta()
	
	

	



planar_delta_uv_present_flag
	2
	u(1) | ae(v)

	



if(planar_delta_uv_present_flag) {
	
	

	




planar_delta_u = getPlanarDelta()
	
	

	




planar_delta_v = getPlanarDelta()
	
	

	



}
	
	

	


} else {
	
	

	



if(entropy_coding_mode_flag)
	
	

	




intra_split_flag
	2
	ae(v)

	



combined_intra_pred_flag
	2
	u(1) | ae(v)

	



for( i = 0; i < ( intra_split_flag ? 4 : 1 ); i++ ) {
	
	

	




prev_intra_luma_pred_ flag
	2
	u(1) | ae(v)

	




if( !prev_intra_pred_luma_flag )
	
	

	





rem_intra_luma_pred_mode
	2
	ue(v) | ae(v)

	



}
	
	

	


}
	
	

	


if( chroma_format_idc != 0 )
	
	

	



intra_chroma_pred_mode
	2
	ue(v) | ae(v)

	


}
	
	

	

}
	
	

	

else if( PredMode == MODE_INTER ) {
	
	

	


if(entropy_coding_mode_flag)
	
	

	



inter_partitioning_idc
	2
	ue(v) | ae(v)

	


for( i= 0; i < NumPuParts( inter_partitioning_idc ); i++ ) {
	
	

	



if( NumMergeCandidates > 0 )  {
	
	

	




merge_flag[ i ]
	2
	ue(1) | ae(v)

	




if( merge_flag[ i ]  &&  NumMergeCandidates > 1 )
	
	

	





merge_left_flag[ i ]
	2
	ue(1) | ae(v)

	



}
	
	

	



if( !merge_flag[i] )  {
	
	

	




if( slice_type == B )
	
	

	





inter_pred_idc[ i ]
	2
	ue(v) | ae(v)

	




if( inter_pred_idc[ i ]  !=  Pred_L1 ) {
	
	

	             if( entropy_coding_mode_flag ) {
	
	

	





  if( num_ref_idx_l0_active_minus1 > 0 )
	
	

	






  ref_idx_l0[ i ]
	2
	ue(v) | ae(v)

	               mvres_l0 [ i ]
	2
	ue(1) | ae(v)

	             }
	
	

	             else {
	
	

	                 ref_idx_mvres_l0[ i ]
	2
	ue(v) | ae(v)

	             }
	
	

	





mvd_l0[ i ][ 0 ]
	2
	se(v) | ae(v)

	





mvd_l0[ i ][ 1 ]
	2
	se(v) | ae(v)

	





if( mv_competition_flag && 







NumMVPCand( L0, i ) > 1 )
	
	

	






mvp_idx_l0[ i ]
	2
	ue(v) | ae(v)

	




}
	
	

	




if( inter_pred_idc[ i ]  !=  Pred_L0 ) {
	
	

	             if( entropy_coding_mode_flag ) {
	
	

	





  if( num_ref_idx_l1_active_minus1 > 0 )
	
	

	






  ref_idx_l1[ i ]
	2
	ue(v) | ae(v)

	               mvres_l1 [ i ]
	2
	ue(1) | ae(v)

	             }
	
	

	             else {
	
	

	                 ref_idx_mvres_l1[ i ]
	2
	ue(v) | ae(v)

	             }
	
	

	





mvd_l1[ i ][ 0 ]
	2
	se(v) | ae(v)

	





mvd_l1[ i ][ 1 ]
	2
	se(v) | ae(v)

	





if( mv_competition_flag && 







NumMVPCand( L1, i ) > 1 )
	
	

	






mvp_idx_l1[ i ]
	2
	ue(v) | ae(v)

	




}
	
	

	



}
	
	

	


}
	
	

	

}
	
	

	

else if( PredMode == MODE_DIRECT ) {
	
	

	


if( slice_type == B )
	
	

	



inter_pred_idc
	2
	ue(v) | ae(v)

	


if( mv_competition_flag ) {
	
	

	



if( inter_pred_idc != Pred_L1 && 





NumMVPCand( L0 ) > 1 )
	
	

	




mvp_idx_l0
	2
	ue(v) | ae(v)

	



if( inter_pred_idc != Pred_L0 && 





NumMVPCand( L1 ) > 1 )
	
	

	




mvp_idx_l1
	2
	ue(v) | ae(v)

	


}
	
	

	

}
	
	

	
}
	
	


	getPlanarDelta() {
	C
	Descriptor

	
planar_qdelta_indicator
	
	vlc(5,v) | ae(v)

	
if (qdelta_indicator > 21)
	
	

	

Qdelta = ((qdelta_indicator - 14) << 3) + 4
	
	

	
else if(qdelta_indicator > 9)
	
	

	

Qdelta = ((qdelta_indicator - 6) << 2) + 2
	
	

	
else if (qdelta_indicator > 3)
	
	

	

Qdelta = (qdelta_indicator - 2) << 1
	
	

	
else
	
	

	

Qdelta = qdelta_indicator
	
	

	
if (qDelta > 0) {
	
	

	

planar_sign
	
	u(1) | ae(v)

	

PlanarDelta = sign ? – Qdelta: Qdelta
	
	

	
}
	
	

	
else
	
	

	

PlanarDelta = Qdelta
	
	

	}
	
	


4.1.15 Transform unit syntax

[Ed. preliminary draft]
	transform_unit( x0, y0, currTransformUnitSize ) {
	C
	Descriptor

	
if( currTransformUnitSize  >     MinTransformUnitSize  &&

     currTransformUnitSize  <=  MaxTransformUnitSize)
	
	

	

split_transform_unit_flag
	3 | 4
	u(1) | ae(v)

	
if( split_transform_unit_flag )  {
	
	

	

splitTransformUnitSize = currTransformUnitSize >> 1
	
	

	

x1 = x0 + splitTransformUnitSize
	
	

	

y1 = y0 + splitTransformUnitSize
	
	

	

if(!entropy_coding_mode_flag)
	
	

	


getVLCCBP( )
	
	

	

transform_unit( x0, y0, splitTransformUnitSize)
	3 | 4
	

	

if( x1 < PicWidthInSamplesL )
	
	

	


transform_unit( x1, y0, splitTransformUnitSize)
	3 | 4
	

	

if( y1 < PicHeightInSamplesL )
	
	

	


transform_unit( x0, y1, splitTransformUnitSize)
	3 | 4
	

	

if( x1 < PicWidthInSamplesL  &&  y1 < PicHeightInSamplesL )
	
	

	


transform_unit( x1, y1, splitTransformUnitSize)
	3 | 4
	

	
} else {
	
	

	

if(entropy_coding_mode_flag)
	
	

	


coded_block_flag
	3 | 4 
	u(1) | ae(v)

	

if( coded_block_flag ) {
	
	

	


rotational_transform_idx
	3 | 4 
	ue(v) | ae(v)

	


if(!entropy_coding_mode_flag)
	
	

	



residual_block_vlc( )
	
	

	


else
	
	

	



residual_block_v2v( )
	
	

	

}
	
	

	
}
	
	

	}
	
	


[Ed. preliminary draft]
	residual_block_vlc (puIdx, tuSize, ctxID) {
	C
	Descriptor

	
last_pos_table_idx
	3 | 4
	vlc(n,v)

	
if(levelMagnitudeGreaterThanOneFlag)
	
	

	

last_pos_level
	3 | 4
	vlc(0,v)

	
last_pos_sign
	3 | 4
	u(1)

	
runMode = 1
	
	

	
while(runMode  &&  i < numCodedCoeff) {
	
	

	

isLevelOne_run
	3 | 4
	vlc(vlcIdx,v)

	

i += run
	
	

	

if(!isLevelOne) {
	
	

	


level_magnitude_minus2
	3 | 4
	vlc(0,v)

	


level_sign
	
	

	

} else
	
	

	


level_sign
	3 | 4
	u(1)

	
}
	
	

	
while (i < numCodedCoeff) {
	
	

	

level_magnitude
	3 | 4
	vlc(n,v)

	

if(level_magnitude)
	
	

	


level_sign
	3 | 4
	u(1)

	

i++
	
	

	
}
	
	

	}
	
	


[Ed. preliminary draft]
	getVLCCBP( ) {
	C
	Descriptor

	
if(modeIdx  = =  2 ) {
	
	

	

cbp_id0
	3 | 4
	u(1)

	
}
	
	

	
else if (modeIdx  = =  7) {
	
	

	

cbp_id1
	3 | 4
	u(1)

	

if(cbp_id1 < 2)
	
	

	


cbp_id2
	3 | 4
	u(1)

	
}
	
	

	
else if (modeIdx  = =  4 | |  modeIdx  = =  8  | |  modeIdx  = =  10  | |  modeIdx  = =  12  | |  modeIdx  = =  14  | |  modeIdx  = =  15 ) {
	
	

	

if(PredMode  != MODE_INTRA && PuSize  != PU_8x8 && 



currTransformUnitSize  ! =  TU_16x16)  
	3 | 4 
	u(1)

	


cbp_table_idx
	
	

	
}
	
	

	}
	
	


4.1.16 Parallel V2V syntax

4.1.16.1 Byte-align prefix code

This coding scheme is used to store the unsigned integers in sequenceCodedLength in a self-terminating format, which always uses an integer number of bytes.  The process for retrieving a value is given below.  Note that input is a bit array. 

 SHAPE  \* MERGEFORMAT 



4.1.16.2 Parrallel slice header syntax

	parallel_v2v_header(StateCount, TreeCount, numBinDecoders) {
	Descriptor

	    for (i = 0; i < StateCount; i++) {
	

	        lastStateGroup[i]
	u(1)

	        if (lastStateGroup[i]) mergedStateCount++
	

	    }
	

	    for (i = 0; i < TreeCount; i++) {
	

	        selectedTree[i]
	u(1)

	    }
	

	    for (i = 0; i < mergedStateCount; i++) {
	

	        sequenceCodedLength[i]
	BPParse(v)

	    }
	

	    for (i = 0; i < numBinDecoders; i++) {
	

	        balancedAlignment[i]
	u(8)

	    }
	


Note that BPParse(v) denotes a byte-aligned prefix code for an unsigned integer v.  

The parsing process for this descriptor is specified in subclause 4.1.12.1.

4.2 Semantics

4.2.1 NAL unit semantics
NumBytesInNALunit specifies the size of the NAL unit in bytes. This value is required for decoding of the NAL unit. Some form of demarcation of NAL unit boundaries is necessary to enable inference of NumBytesInNALunit. One such demarcation method is specified in Annex B of ITU‑T Rec. H.264 | ISO/IEC 14496-10 for the byte stream format.

forbidden_zero_bit shall be equal to 0.

nal_ref_idc not equal to 0 specifies that the content of the NAL unit contains a sequence parameter set, a picture parameter set, or a slice of a reference picture. nal_ref_idc equal to 0 for a NAL unit containing a slice indicates that the slice is part of a non-reference picture.

nal_ref_idc shall not be equal to 0 for sequence parameter set or picture parameter set NAL units. When nal_ref_idc is equal to 0 for one slice data NAL unit of a particular picture, it shall be equal to 0 for all slice data NAL units of the picture. nal_ref_idc shall not be equal to 0 for NAL units with nal_unit_type equal to 5.

nal_unit_type specifies the type of RBSP data structure contained in the NAL unit as specified in Table 4‑1.

The column marked "C" in Table 4‑1 lists the categories of the syntax elements that may be present in the NAL unit. In addition, syntax elements with syntax category "All" may be present, as determined by the syntax and semantics of the RBSP data structure. The presence or absence of any syntax elements of a particular listed category is determined from the syntax and semantics of the associated RBSP data structure. VCL and non-VCL NAL units are specified in Table 4‑1 in the column labelled " NAL unit type class".

When the value of nal_unit_type is equal to 5 for a slice data NAL unit of a particular picture, all slice data NAL units of the picture shall have nal_unit_type equal to 5.

Table 4‑1 – NAL unit type codes, syntax element categories, and NAL unit type classes

	nal_unit_type
	Content of NAL unit and RBSP syntax structure
	C
	NAL unit
type class

	0
	Unspecified
	
	non-VCL

	1
	Coded slice of a non-IDR picture
slice_layer_rbsp( )
	2, 3, 4
	VCL

	2..4
	Reserved
	
	non-VCL

	5
	Coded slice of an IDR picture
slice_layer_rbsp( )
	2, 3
	VCL

	6
	Supplemental enhancement information (SEI)
sei_rbsp( )
	5
	non-VCL

	7
	Sequence parameter set
seq_parameter_set_rbsp( )
	0
	non-VCL

	8
	Picture parameter set
pic_parameter_set_rbsp( )
	1
	non-VCL

	9
	Access unit delimiter
access_unit_delimiter_rbsp( )
	6
	non-VCL

	10..11
	Reserved
	
	non-VCL

	12
	Filler data
filler_data_rbsp( )
	9
	non-VCL

	13..23
	Reserved
	
	non-VCL

	24..31
	Unspecified
	
	non-VCL


In the text, coded slice NAL unit collectively refers to a coded slice of a non-IDR picture NAL unit or to a coded slice of an IDR picture NAL unit. The variable IdrPicFlag is specified as

IdrPicFlag = ( ( nal_unit_type  = =  5 )  ?  1  :  0 )

(1)

When the value of nal_unit_type is equal to 5 for a NAL unit containing a slice of a particular picture, the picture shall not contain NAL units with nal_unit_type equal to 1. Such a picture is referred to as an IDR picture. 
temporal_id specifies a temporal identifier for the NAL unit. The assignment of values to temporal_id is constrained by the sub-bitstream extraction process as specified in subclause XX.

The value of temporal_id shall be the same for all NAL units of an access unit. When an access unit contains any NAL unit with nal_unit_type equal to 5, temporal_id shall be equal to 0.

output_flag affects the decoded picture output and removal processes as specified in Annex C.

reserved_zero_4bits shall be equal to 0. Decoders shall ignore the value of reserved_zero_4bits.

rbsp_byte[ i ] is the i-th byte of an RBSP. An RBSP is specified as an ordered sequence of bytes as follows.

The RBSP contains an SODB as follows.

–
If the SODB is empty (i.e., zero bits in length), the RBSP is also empty.

–
Otherwise, the RBSP contains the SODB as follows:

1)
The first byte of the RBSP contains the (most significant, left-most) eight bits of the SODB; the next byte of the RBSP shall contain the next eight bits of the SODB, etc., until fewer than eight bits of the SODB remain.

2)
rbsp_trailing_bits( ) are present after the SODB as follows:

i)
The first (most significant, left-most) bits of the final RBSP byte contains the remaining bits of the SODB (if any).

ii)
The next bit consists of a single rbsp_stop_one_bit equal to 1.

iii)
When the rbsp_stop_one_bit is not the last bit of a byte-aligned byte, one or more rbsp_alignment_zero_bit is present to result in byte alignment.

3)
One or more cabac_zero_word 16-bit syntax elements equal to 0x0000 may be present in some RBSPs after the rbsp_trailing_bits( ) at the end of the RBSP.

Syntax structures having these RBSP properties are denoted in the syntax tables using an "_rbsp" suffix. These structures shall be carried within NAL units as the content of the rbsp_byte[ i ] data bytes. The association of the RBSP syntax structures to the NAL units shall be as specified in Table 4‑1.

emulation_prevention_three_byte is a byte equal to 0x03. When an emulation_prevention_three_byte is present in the NAL unit, it shall be discarded by the decoding process.

The last byte of the NAL unit shall not be equal to 0x00.

Within the NAL unit, the following three-byte sequences shall not occur at any byte-aligned position:

–
0x000000

–
0x000001

–
0x000002

Within the NAL unit, any four-byte sequence that starts with 0x000003 other than the following sequences shall not occur at any byte-aligned position:

–
0x00000300

–
0x00000301

–
0x00000302

–
0x00000303

4.2.2 Sequence parameter set RBSP semantics
[Ed.: Parameters to be removed and/or added as appropriate.]
profile_idc and level_idc indicate the profile and level to which the coded video sequence conforms.

reserved_zero_8bits shall be equal to 0. Decoders shall ignore the value of reserved_zero_8bits.

seq_parameter_set_id identifies the sequence parameter set that is referred to by the picture parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
bit_depth_luma_minus8 specifies the bit depth of the samples of the luma array and the value of the luma quantisation parameter range offset QpBdOffsetY, as specified by

BitDepthY      = 8 + bit_depth_luma_minus8

(2)
QpBdOffsetY = 6 * bit_depth_luma_minus8

(3)

bit_depth_luma_minus8 shall be in the range of 0 to 6, inclusive.

bit_depth_chroma_minus8 specifies the bit depth of the samples of the chroma arrays and the value of the chroma quantisation parameter range offset QpBdOffsetC, as specified by

BitDepthC      = 8 + bit_depth_chroma_minus8

(4)
QpBdOffsetC = 6 * bit_depth_chroma_minus8

(5)

bit_depth_chroma_minus8 shall be in the range of 0 to 6, inclusive.
increased_bit_depth_luma specifies the increased bit depth of the samples of the luma array and the value of the luma quantisation parameter range offset QpIBdOffsetY, as specified by
QpIBdOffsetY = 6 * increased_bit_depth_luma

(6)

increased_bit_depth_chroma specifies the increased bit depth of the samples of the chroma array and the value of the chroma quantisation parameter range offset QpIBdOffsetC, as specified by
QpIBdOffsetC = 6 * increased_bit_depth_chroma

(7)

log2_max_frame_num_minus4 specifies the value of the variable MaxFrameNum that is used in frame_num related derivations as follows:

MaxFrameNum = 2( log2_max_frame_num_minus4 + 4 )

(8)

The value of log2_max_frame_num_minus4 shall be in the range of 0 to 12, inclusive.
pic_order_cnt_type specifies the method to decode picture order count (as specified in subclause XX). The value of pic_order_cnt_type shall be in the range of 0 to 2, inclusive. 

pic_order_cnt_type shall not be equal to 2 in a coded video sequence that contains an access unit containing a non-reference frame followed immediately by an access unit containing a non-reference picture,

log2_max_pic_order_cnt_lsb_minus4 specifies the value of the variable MaxPicOrderCntLsb that is used in the decoding process for picture order count as follows:

MaxPicOrderCntLsb = 2( log2_max_pic_order_cnt_lsb_minus4 + 4 )
(9)

The value of log2_max_pic_order_cnt_lsb_minus4 shall be in the range of 0 to 12, inclusive.
delta_pic_order_always_zero_flag equal to 1 specifies that delta_pic_order_cnt[ 0 ] and delta_pic_order_cnt[ 1 ] are not present in the slice headers of the sequence and shall be inferred to be equal to 0. delta_pic_order_always_zero_flag equal to 0 specifies that delta_pic_order_cnt[ 0 ] is present in the slice headers of the sequence and delta_pic_order_cnt[ 1 ] may be present in the slice headers of the sequence.
offset_for_non_ref_pic is used to calculate the picture order count of a non-reference picture as specified in subclause XX. The value of offset_for_non_ref_pic shall be in the range of −231+1 to 231−1, inclusive.
num_ref_frames_in_pic_order_cnt_cycle is used in the decoding process for picture order count as specified in subclause XX. The value of num_ref_frames_in_pic_order_cnt_cycle shall be in the range of 0 to 255, inclusive.
offset_for_ref_frame[ i ] is an element of a list of num_ref_frames_in_pic_order_cnt_cycle values used in the decoding process for picture order count as specified in subclause XX. The value of offset_for_ref_frame[ i ] shall be in the range of −231+1 to 231−1, inclusive.

When pic_order_cnt_type is equal to 1, the variable ExpectedDeltaPerPicOrderCntCycle is derived by

ExpectedDeltaPerPicOrderCntCycle = 0
for( i = 0;  i < num_ref_frames_in_pic_order_cnt_cycle;  i++ )

ExpectedDeltaPerPicOrderCntCycle += offset_for_ref_frame[ i ]
(10)

max_num_ref_frames specifies the maximum number of short-term and long-term reference frames, complementary reference field pairs, and non-paired reference fields that may be used by the decoding process for inter prediction of any picture in the sequence. max_num_ref_frames also determines the size of the sliding window operation. The value of max_num_ref_frames shall be in the range of 0 to MaxDpbFrames, inclusive.

gaps_in_frame_num_value_allowed_flag specifies the allowed values of frame_num and the decoding process in case of an inferred gap between values of frame_num.

log2_min_coding_unit_size_minus3 specifies the minimum size of a coding unit.

The variable MinCodingUnitSize is derived as

MinCodingUnitSize = 1 << ( log2_min_coding_unit_size_minus3 + 3 )
(10)

max_coding_unit_hierarchy_depth specifies the maximum hierarchy depth for coding units.

The variable MaxCodingUnitSize is derived as

MaxCodingUnitSize = 1 << ( log2_min_coding_unit_size_minus3 + 3 +
                                                max_coding_unit_hierarchy_depth )
(11)

The bitstream shall not contain data that result in a value of MaxCodingUnitSize that is greater than 128.

log2_min_transform_unit_size_minus2 specifies the minimum size of a transform unit.

The variable MinTransformUnitSize is derived as

MinTransformUnitSize = 1 << ( log2_min_transform_unit_size_minus2 + 2 )
(12)

max_transform_unit_hierarchy_depth specifies the maximum hierarchy depth for transform units.

The variable MaxTransformUnitSize is derived as

MaxTransformUnitSize = 1 << ( log2_min_transform_unit_size_minus2 + 2 +
                                                     max_transform_unit_hierarchy_depth )
(13)

The bitstream shall not contain data that result in a value of MaxTransformUnitSize that is greater than MaxCodingUnitSize.
pic_width_in_luma_samples specifies the width of each decoded picture in luma samples. 
[Ed.: macroblock may be replaced by smallest coding unit and mbs may be replaced by mcu, MinCodingUnitSize]

[Ed: Need to coordinate frame size signaling with cropping, etc.  ]
pic_height_in_luma_samples specifies the height of each decoded picture in luma samples.

numExtraFilters specifies the number of extra filters to be used along with the fixed set of filters described in Table 5-5, 5-6 and 5-8. 

log2_filterCoeffPrecision specifies the number of bits to represent filter coefficient.

halfNumTap specifies half the number of filter tap.

filterCoef[i][j] specifies signed value of jth coefficient of ith extra filter and shall be represented by log2_filterCoeffPrecision bits.

4.2.3 Picture parameter set RBSP semantics

[Ed.: Parameters to be removed and/or added as appropriate.]
pic_parameter_set_id identifies the picture parameter set that is referred to in the slice header. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.
seq_parameter_set_id refers to the active sequence parameter set. The value of seq_parameter_set_id shall be in the range of 0 to 31, inclusive.
entropy_coding_mode_flag selects the entropy decoding method to be applied for the syntax elements for which two descriptors appear in the syntax tables as follows.

–
If entropy_coding_mode_flag is equal to 0, the method specified by the left descriptor in the syntax table is applied.

–
Otherwise (entropy_coding_mode_flag is equal to 1), the method specified by the right descriptor in the syntax table is applied.

num_ref_idx_l0_default_active_minus1 specifies how num_ref_idx_l0_active_minus1 is inferred for P and B slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l0_default_active_minus1 shall be in the range of 0 to 31, inclusive. 

num_ref_idx_l1_default_active_minus1 specifies how num_ref_idx_l1_active_minus1 is inferred for B slices with num_ref_idx_active_override_flag equal to 0. The value of num_ref_idx_l1_default_active_minus1 shall be in the range of 0 to 31, inclusive.

pic_init_qp_minus26 specifies the initial value minus 26 of SliceQPY for each slice. The initial value is modified at the slice layer when a non-zero value of slice_qp_delta is decoded, and is modified further when a non-zero value of mb_qp_delta is decoded at the macroblock layer. The value of pic_init_qp_minus26 shall be in the range of −(26 + QpBdOffsetY ) to +25, inclusive.

constrained_intra_pred_flag equal to 0 specifies that intra prediction allows usage of residual data and decoded samples of neighbouring macroblocks coded using Inter macroblock prediction modes for the prediction of macroblocks coded using Intra macroblock prediction modes. constrained_intra_pred_flag equal to 1 specifies constrained intra prediction, in which case prediction of macroblocks coded using Intra macroblock prediction modes only uses residual data and decoded samples from I macroblock types.
numAllowedFilters[i] specifies the number of filters to be used during filtering process for (i+1)th subpel.

filtIdx[i][j] specifies the index of jth filter for (i+1)th subpel to be used during filtering process.
4.2.4 Supplemental enhancement information RBSP semantics

The Supplemental Enhancement Information (SEI) contains information that is not necessary to decode the samples of coded pictures from VCL NAL units.

4.2.5 Supplemental enhancement information message semantics

An SEI RBSP contains one or more SEI messages. Each SEI message consists of the variables specifying the type payloadType and size payloadSize of the SEI payload. SEI payloads are specified in Annex XX. The derived SEI payload size payloadSize is specified in bytes and shall be equal to the number of RBSP bytes in the SEI payload.

NOTE – The NAL unit byte sequence containing the SEI message might include one or more emulation prevention bytes (represented by emulation_prevention_three_byte syntax elements). Since the payload size of an SEI message is specified in RBSP bytes, the quantity of emulation prevention bytes is not included in the size payloadSize of an SEI payload.

ff_byte is a byte equal to 0xFF identifying a need for a longer representation of the syntax structure that it is used within.

last_payload_type_byte is the last byte of the payload type of an SEI message.

last_payload_size_byte is the last byte of the payload size of an SEI message.

4.2.6 Access unit delimiter RBSP semantics

The access unit delimiter may be used to indicate the type of slices present in a primary coded picture and to simplify the detection of the boundary between access units. There is no normative decoding process associated with the access unit delimiter.

primary_pic_type indicates that the slice_type values for all slices of the primary coded picture are members of the set listed in Table ‎4‑2 for the given value of primary_pic_type.

Table ‎4‑2 – Meaning of primary_pic_type 

	primary_pic_type
	slice_type values that may be present in the primary coded picture

	0
	2, 7

	1
	0, 2, 5, 7

	2
	0, 1, 2, 5, 6, 7

	3..7
	Reserved


4.2.7 Filler data RBSP semantics

The filler data RBSP contains bytes whose value shall be equal to 0xFF. No normative decoding process is specified for a filler data RBSP.

ff_byte is a byte equal to 0xFF.
4.2.8 Slice layer RBSP semantics

The slice layer RBSP consists of a slice header and slice data.

4.2.9 RBSP slice trailing bits semantics

cabac_zero_word is a byte-aligned sequence of two bytes equal to 0x0000.

4.2.10 RBSP trailing bits semantics

rbsp_stop_one_bit shall be equal to 1.

rbsp_alignment_zero_bit shall be equal to 0.

4.2.11 Slice header semantics
[Ed.: Parameters should be removed and/or added as appropriate.]
When present, the value of the slice header syntax elements pic_parameter_set_id, frame_num, field_pic_flag, bottom_field_flag, idr_pic_id, pic_order_cnt_lsb, delta_pic_order_cnt_bottom, delta_pic_order_cnt[ 0 ], delta_pic_order_cnt[ 1 ], and slice_group_change_cycle shall be the same in all slice headers of a coded picture. 

first_lctb_in_slice specifies the address of the first largest coding tree block in the slice.

The first largest coding tree block address of the slice is derived as follows.

–
TBD.

slice_type specifies the coding type of the slice according to Table 4‑2.

Table 4‑2 – Name association to slice_type
	slice_type
	Name of slice_type

	0
	P (P slice)

	1
	B (B slice)

	2
	I (I slice)

	5
	P (P slice)

	6
	B (B slice)

	7
	I (I slice)


When slice_type has a value in the range 5..7, it is a requirement of bitstream conformance that all other slices of the current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value of slice_type minus 5.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2 or 7.

When max_num_ref_frames is equal to 0, slice_type shall be equal to 2 or 7.

pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the bitstream. frame_num is constrained as follows:

The variable PrevRefFrameNum is derived as follows.

–
If the current picture is an IDR picture, PrevRefFrameNum is set equal to 0.

–
Otherwise (the current picture is not an IDR picture), PrevRefFrameNum is set as follows.

–
If the decoding process for gaps in frame_num was invoked by the decoding process for an access unit that contained a non-reference picture that followed the previous access unit in decoding order that contained a reference picture, PrevRefFrameNum is set equal to the value of frame_num for the last of the "non-existing" reference frames inferred by the decoding process for gaps in frame_num.
–
Otherwise, PrevRefFrameNum is set equal to the value of frame_num for the previous access unit in decoding order that contained a reference picture.

The value of frame_num is constrained as follows.

–
If the current picture is an IDR picture, frame_num shall be equal to 0.

–
Otherwise (the current picture is not an IDR picture), referring to the primary coded picture in the previous access unit in decoding order that contains a reference picture as the preceding reference picture, the value of frame_num for the current picture shall not be equal to PrevRefFrameNum unless both of the following conditions are true.

–
the current picture and the preceding reference picture belong to consecutive access units in decoding order

–
one or more of the following conditions is true

–
the preceding reference picture is an IDR picture

–
the preceding reference picture includes a memory_management_control_operation syntax element equal to 5

NOTE 1 – When the preceding reference picture includes a memory_management_control_operation syntax element equal to 5, PrevRefFrameNum is equal to 0.

–
there is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture does not have frame_num equal to PrevRefFrameNum

–
there is a primary coded picture that precedes the preceding reference picture and the primary coded picture that precedes the preceding reference picture is not a reference picture

When the value of frame_num is not equal to PrevRefFrameNum, the following applies.

–
There shall not be any previous frame in decoding order that is currently marked as "used for short-term reference" that has a value of frame_num equal to any value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = ( PrevRefFrameNum + 1 ) % MaxFrameNum
while( UnusedShortTermFrameNum  !=  frame_num ) 


UnusedShortTermFrameNum = ( UnusedShortTermFrameNum + 1 ) % MaxFrameNum

–
The value of frame_num is constrained as follows.

–
If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture shall be equal to ( PrevRefFrameNum + 1 ) % MaxFrameNum.

–
Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies.

–
If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which either of the following conditions is true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

–
Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which both of the following conditions are true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described above and, after the decoding of the current picture and the processing of the memory management control operations, the picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding process.
idr_pic_id identifies an IDR picture. The values of idr_pic_id in all the slices of an IDR picture shall remain unchanged. When two consecutive access units in decoding order are both IDR access units, the value of idr_pic_id in the slices of the first such IDR access unit shall differ from the idr_pic_id in the second such IDR access unit. The value of idr_pic_id shall be in the range of 0 to 65535, inclusive.

pic_order_cnt_lsb specifies the picture order count modulo MaxPicOrderCntLsb for the top field of a coded frame or for a coded field. The length of the pic_order_cnt_lsb syntax element is log2_max_pic_order_cnt_lsb_minus4 + 4 bits. The value of the pic_order_cnt_lsb shall be in the range of 0 to MaxPicOrderCntLsb − 1, inclusive.

num_ref_idx_active_override_flag equal to 1 specifies that the syntax element num_ref_idx_l0_active_minus1 is present for P and B slices and that the syntax element num_ref_idx_l1_active_minus1 is present for B slices. num_ref_idx_active_override_flag equal to 0 specifies that the syntax elements num_ref_idx_l0_active_minus1 and num_ref_idx_l1_active_minus1 are not present.

When the current slice is a P or B slice and field_pic_flag is equal to 0 and the value of num_ref_idx_l0_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

When the current slice is a B slice and field_pic_flag is equal to 0 and the value of num_ref_idx_l1_default_active_minus1 in the picture parameter set exceeds 15, num_ref_idx_active_override_flag shall be equal to 1.

num_ref_idx_l0_active_minus1 specifies the maximum reference index for reference picture list 0 that shall be used to decode the slice. 

When the current slice is a P or B slice and num_ref_idx_l0_active_minus1 is not present, num_ref_idx_l0_active_minus1 shall be inferred to be equal to num_ref_idx_l0_default_active_minus1.

The range of num_ref_idx_l0_active_minus1 is specified as follows.p
–
If field_pic_flag is equal to 0, num_ref_idx_l0_active_minus1 shall be in the range of 0 to 15, inclusive. When MbaffFrameFlag is equal to 1, num_ref_idx_l0_active_minus1 is the maximum index value for the decoding of frame macroblocks and 2 * num_ref_idx_l0_active_minus1 + 1 is the maximum index value for the decoding of field macroblocks.

–
Otherwise (field_pic_flag is equal to 1), num_ref_idx_l0_active_minus1 shall be in the range of 0 to 31, inclusive. 

num_ref_idx_l1_active_minus1 specifies the maximum reference index for reference picture list 1 that shall be used to decode the slice. 

When the current slice is a B slice and num_ref_idx_l1_active_minus1 is not present, num_ref_idx_l1_active_minus1 shall be inferred to be equal to num_ref_idx_l1_default_active_minus1.

The range of num_ref_idx_l1_active_minus1 is constrained as specified in the semantics for num_ref_idx_l0_active_minus1 with l0 and list 0 replaced by l1 and list 1, respectively.

cabac_init_idc specifies the index for determining the initialisation table used in the initialisation process for context variables. The value of cabac_init_idc shall be in the range of 0 to 2, inclusive.

slice_qp_delta specifies the initial value of QPY to be used for all the macroblocks in the slice until modified by the value of mb_qp_delta in the macroblock layer. The initial QPY quantisation parameter for the slice is computed as

SliceQPY = 26 + pic_init_qp_minus26 + slice_qp_delta
(14)

The value of slice_qp_delta shall be limited such that SliceQPY is in the range of −QpBdOffsetY to +51, inclusive.

mc_interpolation_idc specifies the method that is used for deriving Inter prediction samples.
mv_competition_flag specifies whether motion vector competition is used. When the motion vector competition is used, the function NumMVPCand( LX, puPartIdx) returns the total number of motion vector prediction candidates with the prediction unit partition puPartIdx and reference list LX as arguments.
mv_competition_temporal_flag specifies whether temporally collocated motion vector is used in the motion competition process.
collocated_from_l0_flag specifies that the reference picture list 0 is used in the derivation process for the temporal motion vector predictor. Otherwise, the reference picture list 1 is used. When collocated_from_l0_flag is not present, it shall be inferred to be equal to 1.
edge_based_prediction_flag: indicates whether the edge based prediction process shall be invoked during intra prediction. A value of 0 indicates that the edge based prediction process shall not be applied, a value of 1 indicates that the edge based prediction process shall be one of the candidate modes for intra prediction.

threshold_edge: specifies the threshold for the decision between the edge based prediction mode and the DC prediction mode during intra prediction. When edge_based_prediction_flag is equal to 0, threshold_edge shall not be present in the bitstream.

4.2.11.1 Reference picture list modification semantics
The syntax elements modification_of_pic_nums_idc, abs_diff_pic_num_minus1, and long_term_pic_num specify the change from the initial reference picture lists to the reference picture lists to be used for decoding the slice.

ref_pic_list_modification_flag_l0 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for specifying reference picture list 0. ref_pic_list_modification_flag_l0 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l0 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal to 3 following ref_pic_list_modification_flag_l0 shall not exceed num_ref_idx_l0_active_minus1 + 1.

When RefPicList0[ num_ref_idx_l0_active_minus1 ] in the initial reference picture list produced as specified in subclause XX is equal to "no reference picture", ref_pic_list_modification_flag_l0 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until RefPicList0[ num_ref_idx_l0_active_minus1 ] in the modified list produced as specified in subclause XX is not equal to "no reference picture".

ref_pic_list_modification_flag_l1 equal to 1 specifies that the syntax element modification_of_pic_nums_idc is present for specifying reference picture list 1. ref_pic_list_modification_flag_l1 equal to 0 specifies that this syntax element is not present.

When ref_pic_list_modification_flag_l1 is equal to 1, the number of times that modification_of_pic_nums_idc is not equal to 3 following ref_pic_list_modification_flag_l1 shall not exceed num_ref_idx_l1_active_minus1 + 1.

When decoding a slice with slice_type equal to 1 or 6 and RefPicList1[ num_ref_idx_l1_active_minus1 ] in the initial reference picture list produced as specified in subclause XX is equal to "no reference picture", ref_pic_list_modification_flag_l1 shall be equal to 1 and modification_of_pic_nums_idc shall not be equal to 3 until RefPicList1[ num_ref_idx_l1_active_minus1 ] in the modified list produced as specified in subclause XX is not equal to "no reference picture".

modification_of_pic_nums_idc together with abs_diff_pic_num_minus1 or long_term_pic_num specifies which of the reference pictures are re-mapped. The values of modification_of_pic_nums_idc are specified in Table 4‑4. The value of the first modification_of_pic_nums_idc that follows immediately after ref_pic_list_modification_flag_l0 or ref_pic_list_modification_flag_l1 shall not be equal to 3.

Table 4‑4 – modification_of_pic_nums_idc operations for modification of reference picture lists
	modification_of_pic_nums_idc
	modification specified

	0
	abs_diff_pic_num_minus1 is present and corresponds to a difference to subtract from a picture number prediction value

	1
	abs_diff_pic_num_minus1 is present and corresponds to a difference to add to a picture number prediction value

	2
	long_term_pic_num is present and specifies the long-term picture number for a reference picture

	3
	End loop for modification of the initial reference picture list


abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being moved to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the range of 0 to MaxPicNum − 1. The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in subclause XX.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list. When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference frames marked as "used for long-term reference".
4.2.11.2 Decoded reference picture marking semantics

The syntax elements no_output_of_prior_pics_flag, long_term_reference_flag, adaptive_ref_pic_marking_mode_flag, memory_management_control_operation, difference_of_pic_nums_minus1, long_term_frame_idx, long_term_pic_num, and max_long_term_frame_idx_plus1 specify marking of the reference pictures. 

The marking of a reference picture can be "unused for reference", "used for short-term reference", or "used for long-term reference", but only one among these three. When a reference picture is referred to as being marked as "used for reference", this collectively refers to the picture being marked as "used for short-term reference" or "used for long-term reference" (but not both). A reference picture that is marked as "used for short-term reference" is referred to as a short‑term reference picture. A reference picture that is marked as "used for long-term reference" is referred to as a long‑term reference picture.
The content of the decoded reference picture marking syntax structure shall be the same in all slice headers of the primary coded picture. When one or more redundant coded pictures are present, the content of the decoded reference picture marking syntax structure shall be the same in all slice headers of a redundant coded picture with a particular value of redundant_pic_cnt.

The syntax category of the decoded reference picture marking syntax structure shall be inferred as follows.

–
If the decoded reference picture marking syntax structure is in a slice header, the syntax category of the decoded reference picture marking syntax structure is inferred to be equal to 2.

–
Otherwise (the decoded reference picture marking syntax structure is in a decoded reference picture marking repetition SEI message), the syntax category of the decoded reference picture marking syntax structure is inferred to be equal to 5.

no_output_of_prior_pics_flag specifies how the previously-decoded pictures in the decoded picture buffer are treated after decoding of an IDR picture. When the IDR picture is the first IDR picture in the bitstream, the value of no_output_of_prior_pics_flag has no effect on the decoding process. When the IDR picture is not the first IDR picture in the bitstream and the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs, FrameHeightInMbs, or max_dec_frame_buffering derived from the sequence parameter set active for the preceding picture, no_output_of_prior_pics_flag equal to 1 may (but should not) be inferred by the decoder, regardless of the actual value of no_output_of_prior_pics_flag.

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to "no long-term frame indices" and that the IDR picture is marked as "used for short-term reference". long_term_reference_flag equal to 1 specifies that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked "used for long-term reference" and is assigned LongTermFrameIdx equal to 0. When max_num_ref_frames is equal to 0, long_term_reference_flag shall be equal to 0.

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as specified in Table 4‑3. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of frames, complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to Max( max_num_ref_frames, 1 ).

Table 4‑3 – Interpretation of adaptive_ref_pic_marking_mode_flag

	adaptive_ref_pic_marking_mode_flag
	Reference picture marking mode specified

	0
	Sliding window reference picture marking mode: A marking mode providing a first-in first-out mechanism for short-term reference pictures.

	1
	Adaptive reference picture marking mode: A reference picture marking mode providing syntax elements to specify marking of reference pictures as "unused for reference" and to assign long-term frame indices.


memory_management_control_operation specifies a control operation to be applied to affect the reference picture marking. The memory_management_control_operation syntax element is followed by data necessary for the operation specified by the value of memory_management_control_operation. The values and control operations associated with memory_management_control_operation are specified in Table 4‑4. The memory_management_control_operation syntax elements are processed by the decoding process in the order in which they appear in the slice header, and the semantics constraints expressed for each memory_management_control_operation apply at the specific position in that order at which that individual memory_management_control_operation is processed.

For interpretation of memory_management_control_operation, the term reference picture is interpreted as follows.

–
If the current picture is a frame, the term reference picture refers either to a reference frame or a complementary reference field pair.

–
Otherwise (the current picture is a field), the term reference picture refers either to a reference field or a field of a reference frame.

memory_management_control_operation shall not be equal to 1 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 2 in a slice header unless the specified long-term picture number refers to a reference picture that is marked as "used for long-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 in a slice header unless the specified reference picture is marked as "used for short-term reference" when the memory_management_control_operation is processed by the decoding process.

memory_management_control_operation shall not be equal to 3 or 6 if the value of the variable MaxLongTermFrameIdx is equal to "no long-term frame indices" when the memory_management_control_operation is processed by the decoding process.

Not more than one memory_management_control_operation equal to 4 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 5 shall be present in a slice header.

Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

memory_management_control_operation shall not be equal to 5 in a slice header unless no memory_management_control_operation in the range of 1 to 3 is present in the same decoded reference picture marking syntax structure.

A memory_management_control_operation equal to 5 shall not follow a memory_management_control_operation equal to 6 in the same slice header.

When a memory_management_control_operation equal to 6 is present, any memory_management_control_operation equal to 2, 3, or 4 that follows the memory_management_control_operation equal to 6 within the same slice header shall not specify the current picture to be marked as "unused for reference".

Table 4‑4 – Memory management control operation (memory_management_control_operation) values

	memory_management_control_operation
	Memory Management Control Operation

	0
	End memory_management_control_operation syntax element loop

	1
	Mark a short-term reference picture as
"unused for reference"

	2
	Mark a long-term reference picture as
"unused for reference"

	3
	Mark a short-term reference picture as
"used for long-term reference" and assign a long-term frame index to it

	4
	Specify the maximum long-term frame index and mark all long-term reference pictures having long-term frame indices greater than the maximum value as "unused for reference"

	5
	Mark all reference pictures as
"unused for reference" and set the MaxLongTermFrameIdx variable to
"no long-term frame indices"

	6
	Mark the current picture as
"used for long-term reference" and assign a long-term frame index to it


When decoding a field and a memory_management_control_operation command equal to 3 is present that assigns a long-term frame index to a field that is part of a short-term reference frame or part of a complementary reference field pair, another memory_management_control_operation command (equal to 3 or 6) to assign the same long-term frame index to the other field of the same frame or complementary reference field pair shall be present in the same decoded reference picture marking syntax structure.

When the first field (in decoding order) of a complementary reference field pair included a long_term_reference_flag equal to 1 or a memory_management_control_operation command equal to 6, the decoded reference picture marking syntax structure for the second field of the complementary reference field pair shall contain a memory_management_control_operation command equal to 6 that assigns the same long-term frame index to the second field.

When the second field (in decoding order) of a complementary reference field pair includes a memory_management_control_operation command equal to 6 that assigns a long-term frame index to this field and the first field of the complementary reference field pair is marked as "used for short-term reference" when the memory_management_control_operation command equal to 6 is processed by the decoding process, the decoded reference picture marking syntax structure of that second field shall contain either a memory_management_control_operation command equal to 1 that marks the first field of the complementary field pair as "unused for reference" or a memory_management_control_operation command equal to 3 that marks the first field of the complementary field pair as "used for long-term reference" and assigns the same long-term frame index to the first field.

difference_of_pic_nums_minus1 is used (with memory_management_control_operation equal to 3 or 1) to assign a long-term frame index to a short-term reference picture or to mark a short-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, the resulting picture number derived from difference_of_pic_nums_minus1 shall be a picture number assigned to one of the reference pictures marked as "used for reference" and not previously assigned to a long-term frame index.

The resulting picture number is constrained as follows.

–
If field_pic_flag is equal to 0, the resulting picture number shall be one of the set of picture numbers assigned to reference frames or complementary reference field pairs.

–
Otherwise (field_pic_flag is equal to 1), the resulting picture number shall be one of the set of picture numbers assigned to reference fields.

long_term_pic_num is used (with memory_management_control_operation equal to 2) to mark a long-term reference picture as "unused for reference". When the associated memory_management_control_operation is processed by the decoding process, long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures that is currently marked as "used for long-term reference".

The resulting long-term picture number is constrained as follows.

–
If field_pic_flag is equal to 0, the resulting long-term picture number shall be one of the set of long-term picture numbers assigned to reference frames or complementary reference field pairs.

–
Otherwise (field_pic_flag is equal to 1), the resulting long-term picture number shall be one of the set of long-term picture numbers assigned to reference fields.

long_term_frame_idx is used (with memory_management_control_operation equal to 3 or 6) to assign a long-term frame index to a picture. When the associated memory_management_control_operation is processed by the decoding process, the value of long_term_frame_idx shall be in the range of 0 to MaxLongTermFrameIdx, inclusive.

max_long_term_frame_idx_plus1 minus 1 specifies the maximum value of long-term frame index allowed for long‑term reference pictures (until receipt of another value of max_long_term_frame_idx_plus1). The value of max_long_term_frame_idx_plus1 shall be in the range of 0 to max_num_ref_frames, inclusive.
4.2.11.3 Adaptive loop filter parameter semantics 

adaptive_loop_filter_flag specifies whether adaptive loop filter applies or not for the current slice
alf_length_luma_hor_minus5_div2 specifies the filter length in horizontal direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the reconstructed signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_hor = (alf_length_luma_hor_minus5_div2<<1)+5

alf_length_luma_ver_minus5_div2 specifies the filter length in vertical direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the reconstructed signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_ver = (alf_length_luma_ver_minus5_div2<<1)+5

alf_length_luma_pred_hor_minus1_div2 specifies the filter length in horizontal direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the prediction signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_pred_hor = (alf_length_luma_pred_hor_minus1_div2<<1)+1

alf_length_luma_pred_ver_minus1_div2 specifies the filter length in vertical direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the prediction signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_pred_ver = (alf_length_luma_pred_ver_minus1_div2 <<1)+1

alf_length_luma_qpe_hor_minus1_div2 specifies the filter length in horizontal direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the quantized prediction error signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_qpe_hor = (alf_length_luma_qpe_hor_minus1_div2<<1)+1

alf_length_luma_qpe_ver_minus1_div2 specifies the filter length in vertical direction for the luma component used in the adaptive loop filter process. This filter shall be applied to the quantized prediction error signal. The filter length used to define the number of coded luma filter cofficients is specified as follows:

AlfLengthLuma_qpe_ver = (alf_length_luma_qpe_ver_minus1_div2<<1)+1

alf_quant_step_size_luma_hor specifies the quantization step size of the filter coefficients that are used for the horizontal filtering of the luma component. Table 4‑5 specifies the step size Alf_filter_precision_Luma_hor.

alf_quant_step_size_luma_ver specifies the quantization step size of the filter coefficients that are used for the vertical filtering of the luma component.Table 4‑6 specifies the step size Alf_filter_precision_ Luma_ver.
Table 4‑5 Specification of Alf_filter_precision_Luma_hor
	alf_quant_step_size_luma_hor
	Alf_filter_precision_Luma_hor

	0
	3

	4
	4

	2
	5

	3
	6

	4
	7

	5
	8

	6
	9

	7
	10

	8
	11

	9
	12

	10
	13

	11
	14


Table 4‑6 Specification of Alf_filter_precision_Luma_ver
	alf_quant_step_size_luma_ver
	Alf_filter_precision_Luma_ver

	0
	3

	4
	4

	2
	5

	3
	6

	4
	7

	5
	8

	6
	9

	7
	10

	8
	11

	9
	12

	10
	13

	11
	14


alf_noFilters_minus1 specifies the number of filter sets for the current slice

AlfNoFilters shall be computed as




AlfNoFilters = alf_noFilters_minus1+1

If AlfNoFilters is less than 3, the number of filter sets shall be defined as 

                AlfNumFilters = AlfNoFilters

Otherwise, AlfNumFilters shall be defined as 




AlfNumFilters = ∑(alf_filter_pattern[i]) with i=0... AlfMaxNumFilters-1

Note that AlfMaxNumFilters is the number of maximum filter sets used, i.e., 16.  

alf_startSecondFilter specifies the index where the second filter is applied, when AlfNoFilters is less than 3.

Index table is alfVarIndTab[i] is defined based on  alf_startSecondFilter. alfVarIndTab[i] is set equal to 0 for i=0... alf_startSecondFilter-1, and set equal to 1 for i=alf_startSecondFilter...AlfMaxNumFilters-1. The first filter is applied to pixels which have activity measure index is equal to from 0 to alf_startSecondFilter-1. Otherwise the second filter is applied.   
alf_filter_pattern[i] specifies the indices where each filter is applied, when AlfNoFilters is more than 2.
From this value, alfVarIndTab is shall be defined, when AlfNoFilters is more than 2.
alfVarIndTab[0]=0

for (i=1; i< AlfMaxNumFilters; i++) {

  if (alf_filter_pattern[i]!=0) alfVarIndTab[i] = alfVarIndTab[i-1] + 1

  otherwise alfVarIndTab[i] = alfVarIndTab[i-1]

}

alf_predMethod specifies whether filter prediction method is used for filter coefficients coding.
alf_coeff_luma_hor[j][i] specifies the i-th filter coefficient of j-th horizontal filter for the reconstructed signal of the luma component.

alf_coeff_luma_ver[j][i] specifies the i-th filter coefficient of j-th vertical filter for the reconstructed signal of the luma component.

alf_coeff_luma_pred_hor[j][i] specifies the i-th filter coefficient of j-th horizontal filter for the prediction signal of the luma component.

alf_coeff_luma_ pred_ver[j][i] specifies the i-th filter coefficient of j-th vertical filter for the prediction signal of the luma component.

alf_coeff_luma_qpe_hor[j][i] specifies the i-th filter coefficient of j-th horizontal filter for the quantized prediction error signal of the luma component.

alf_coeff_luma_ qpe_ver[j][i] specifies the i-th filter coefficient of j-th vertical filter for the quantized prediction error signal of the luma component.

alf_minKStart_minus1 specifies the minimum order k of k-th order exponential golomb code for the ALF luma coefficients coding.

alf_golombIndexBit specifies the difference in order k of k-th order exponential golomb code for the different groups of ALF luma coefficients. Note that there are several groups of ALF luma coefficients where each group may have different order k. Above group mapping is defined by DepthTable[i] with i=0...AlfNumCoeffLuma-1. Different AlfLengthLuma leads to different DepthTable[i]. From alf_minKStart_minus1 and alf_golombIndexBit, the order k of each group, kMinTab[i] with i=0...AlfmaxDepth-1, shall be decided as follows. kMin=alf_minKStart_minus1+1

for (i=0; i< AlfmaxDepth; i++) {

  if (alf_golombIndexBit) kMinTab[i]=kMin+1

  otherwise kMinTab[i]=kMin

  kMin = kMinTab[i]

}

where AlfmaxDepth is the maximum number of groups for ALF luma coefficients coding.

Table 4‑7 Specification of DepthTable
	Coefficient index
	AlfLengthLuma=5
	AlfLengthLuma=7
	AlfLengthLuma=9

	0
	3
	4
	5

	1
	3
	4
	5

	2
	4
	5
	6

	3
	3
	4
	5

	4
	3
	4
	5

	5
	4
	5
	6

	6
	5
	6
	7

	7
	5
	5
	6

	8
	
	4
	5

	9
	
	4
	5

	10
	
	5
	6

	11
	
	6
	7

	12
	
	7
	8

	13
	
	7
	7

	14
	
	
	6

	15
	
	
	5

	16
	
	
	5

	17
	
	
	6

	18
	
	
	7

	19
	
	
	8

	20
	
	
	9

	21
	
	
	9


alf_chroma_idc specifies which chroma components are to be filtered.

Table 4‑8 Specification of alf_chroma_idc

	alf_chroma_idc
	chroma component to be filtered

	0
	None

	1
	Cr

	2
	Cb

	3
	Cb and Cr


alf_reuse_coefficients_for_chroma_flag specifies if the filters for the luma component are also applied to the chroma components.


If alf_reuse_coefficients_for_chroma_flag is equal to 1, the same filters are used


If alf_reuse_coefficients_for_chroma_flag is equal to 0, individual filters are used

alf_length_chroma_hor_minus_5_div2 specifies the filter length in horizontal direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the reconstructed signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_hor = (alf_length_chroma_hor_minus_5_div2 <<1)+5

alf_length_chroma_ver_minus_5_div2 specifies the filter length in vertical direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the reconstructed signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_ver = (alf_length_chroma_ver_minus_5_div2 <<1)+5

alf_length_chroma_pred_hor_minus_1_div2 specifies the filter length in horizontal direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the prediction signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_pred_hor = (alf_length_chroma_pred_hor_minus_1_div2 <<1)+1

alf_length_chroma_pred_ver_minus_1_div2 specifies the filter length in vertical direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the prediction signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_pred_ver = (alf_length_chroma_pred_ver_minus_1_div2 <<1)+1

alf_length_chroma_qpe_hor_minus_1_div2 specifies the filter length in horizontal direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the quantized prediction error signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_qpe_hor = (alf_length_chroma_qpe_hor_minus_1_div2 <<1)+1

alf_length_chroma_qpe_ver_minus_1_div2 specifies the filter length in vertical direction for the chroma components used in the adaptive loop filter process. This filter shall be applied to the quantized prediction error signal. The filter length used to define the number of coded chroma filter cofficients is specified as follows:


AlfLengthChroma_qpe_ver = (alf_length_chroma_qpe_ver_minus_1_div2 <<1)+1

alf_quant_step_size_chroma_hor specifies the quantization step size of the filter coefficients that are used for the horizontal filtering of the chroma components. Table 4‑9 specifies the step size Alf_filter_precision_Chroma_hor.

alf_quant_step_size_chroma_ver specifies the quantization step size of the filter coefficients that are used for the vertical filtering of the chroma components. Table 4‑10 specifies the step size Alf_filter_precision_Chroma_ver.

Table 4‑9 Specification of Alf_filter_precision_Chroma_hor
	alf_quant_step_size_chroma_hor
	Alf_filter_precision_Chroma_hor

	0
	3

	4
	4

	2
	5

	3
	6

	4
	7

	5
	8

	6
	9

	7
	10

	8
	11

	9
	12

	10
	13

	11
	14


Table 4‑10 Specification of Alf_filter_precision_Chroma_ver
	alf_quant_step_size_chroma_ver
	Alf_filter_precision_Chroma_ver

	0
	3

	4
	4

	2
	5

	3
	6

	4
	7

	5
	8

	6
	9

	7
	10

	8
	11

	9
	12

	10
	13

	11
	14


alf_coeff_chroma_hor[i] specifies the ith filter coefficient of the horizontal filter for the reconstructed signal of the chroma components.

alf_coeff_chroma_ver[i] specifies the ith filter coefficient of the vertical filter for the reconstructed signal of the chroma components.

alf_coeff_chroma_pred_hor[i] specifies the ith filter coefficient of the horizontal filter for the prediction signal of the chroma components.

alf_coeff_chroma_ pred_ver[i] specifies the ith filter coefficient of the vertical filter for the prediction signal of the chroma components.

alf_coeff_chroma_qpe_hor[i] specifies the ith filter coefficient of the horizontal filter for the quantized prediction error signal of the chroma components.

alf_coeff_chroma_ qpe_ver[i] specifies the ith filter coefficient of the vertical filter for the quantized prediction error signal of the chroma components.

alf_cu_control_flag specifies whether the adaptive loop filter process for luma component shall be applied adaptively. If alf_cu_control_flag is equal to 1, the filtering process shall be applied only when alf_flag is equal to 1, otherwise, the filtering process shall be applied to all luma samples in the current slice.
alf_cu_control_max_depth specifies the maximum split depth from the largest coding unit for deciding the application of the adaptive loop filter process. The minimum coding unit size used for the decision shall be computed as
AlfCtrlMinCodingUnitSize = MaxCodingUnitSize >> alf_cu_control_max_depth
4.2.11.4 Switched Filter with Offsets parameter syntax 
predict_filter_flag specifies whether to use prediction of the filter or not.

If mc_interpolation_idc is equal to 3, the variable numFilters is set to 4, otherwise if mc_interpolation_idc is equal to 4, the variable numFilters is set to 2. 

Variable log2_numFilters is derived from numFilters as follows:

log2_numFilters =   log2(numFilters)

sifo_type is used as an identifier for deriving the value of sifo_filters[i].
sifo_filter[i] is used as an identifier for filter index to be used during filtering process for (i+1)th subpel and shall be represented by log2_numFilters bits, where i = xFracL+(yFracyL<<2)
bitsForFilter is derived as follows:
	slice_type
	predict_filter_flag
	sifo_type
	i
	BitsforFilter

	P
	0
	0
	1,2,3,4,8,12
	log2_numFilters

	
	
	
	5,6,7,9,10,11,13,14,15
	2*log2_numFilters

	
	
	1
	all subpels
	log2_numFilters

	
	
	2
	-
	log2_numFilters

	
	1
	0
	1,2,3,4,8,12
	log2_numFilters

	
	
	
	5,6,7,9,10,11,13,14,15
	2*log2_numFilters

	
	
	1
	-
	log2_numFilters

	B
	-
	-
	-
	log2_numFilters


The variable bitsForFilter is derived as follows.

· If slice_type is equal to P slice, and if sifo_type is equal to 0, and if both xFracL and yFracL are greather than 1, sifo_filter[i] is represented by 2* log2_numFilters bits.
· Otherwise sifo_filter[i] is represented by log2_numFilters bits.
The variable prev_filter[i] for each (i+1)th subpel is derived as follows.

· If the current picture is an IDR picture, prev_filter[i] is set equal to 0.
· Otherwise (the current picture is not an IDR picture), prev_filter[i] is set equal to the value of sifo_filter[i] for the previous access unit in decoding order that is of the same slice_type as the current slice_type being decoded.
zero_offset_flag eaual to 0 specifies that all the offsets values are zero. 

sifo_offset_l0[ i ], sifo_offset_l1[ i ] specify the offset value for ith subpel location for list 0 and list 1 , respectively.

img_offset_l0[ i ], img_offset_l1[ i ] specify the offset value for ith reference picture in list 0 and list 1 , respectively.

4.2.12 Slice data semantics

end_of_slice_flag equal to 0 specifies that another macroblock is following in the slice. end_of_slice_flag equal to 1 specifies the end of the slice and that no further macroblock follows.
4.2.13 Coding unit semantic

split_coding_unit_flag specifies whether a coding unit is split into coding units with half horizontal and vertical size. When split_coding_unit_flag is not present, it shall be inferred to be equal to 0 when the current coding unit size is equal to MinCodingUnitSize otherwise it shall be inferred to be equal to 1.
alf_flag specifies whether the coding unit is filtered when the adaptive loop filter is applied. When alf_flag is not present, it shall be inferred to be 0.
4.2.14 Prediction unit semantics
skip_flag specifies whether current coding unit shall be skipped or not. If skip_flag is equal to 1, no more syntax elements except mvp_idx are parsed after skip_flag. When skip_flag is not present, it shall be inferred to be equal to 0.
mvp_idx_l0[ i ] and mvp_idx_l1[ i ] specify ith the motion vector predictor indices of list 0 and list 1, respectively, where i is the prediction unit index. When mvp_idx_l0[ i ] or mvp_idx_l1[ i ] is not present, it shall be inferred to be equal to 0.
pred_mode specifies prediction mode of current prediction unit. The semantics of pred_mode depend on the slice type. Name association to pred_mode, PredMode, shall be done as defined in Table 4‑1. When pred_mode is not present, PredMode shall be inferred to be MODE_INTRA when slice_type is equal to I slice and MODE_SKIP when slice_type is equal to P slice or B slice.
Table 4‑11 Specification of prediction mode
	slice_type
	pred_mode
	Name association to pred_mode (PredMode)

	I
	inferred
	MODE_INTRA

	P and B
	0
	MODE_DIRECT

	
	1
	MODE_INTER

	
	2
	MODE_INTRA

	
	inferred
	MODE_SKIP


inter_partitioning_idc specifies partitioning type for current coding unit for the purpose of inter prediction. Total number of prediction units within the current prediction unit shall be obtained by NumPuParts syntax function with inter_partitioning_idc as an argument.
Table 4‑12 Specification of partitioning type

	inter_
partioning_
idc
	Name association to inter_partioning_idc

(PartMode)
	Number of 
Partitions
(NumPuParts)
	PuPartWidth( )
0) first partition
1) second partition
	PuPartHeight( )
0) first partition
1) second partition

	0
	PART_2Nx2N
	1
	PuSize
	PuSize

	1
	PART_2NxN
	2
	PuSize
	PuSize / 2

	2
	PART_Nx2N
	2
	PuSize / 2
	PuSize

	3
	PART_NxN
	4
	PuSize / 2
	PuSize / 2

	4
	PART_2NxnU
	2
	PuSize
	0) PuSize / 4

1) PuSize * 3 / 4

	5
	PART_2NxnD
	2
	PuSize
	0) PuSize * 3 / 4

1) PuSize / 4

	6
	PART_nLx2N
	2
	0) PuSize / 4

1) PuSize * 3 / 4
	PuSize

	7
	PART_nRx2N
	2
	0) PuSize * 3 / 4

1) PuSize / 4
	PuSize


Table 4‑13 Specification of offset for each partitioning type
	inter_
partioning_
idc
	Name association to inter_partioning_idc

(PartMode)
	puPartIdx
	PuPartOffset( )
(PuSizeInSu = PuSize / SuSize)

	0
	PART_2Nx2N
	0
	0

	1
	PART_2NxN
	0

1
	0
PuSizeInSu / 2 * PuSizeInSu

	2
	PART_Nx2N
	0

1
	0
PuSizeInSu / 2

	3
	PART_NxN
	0

1

2

3
	0

PuSizeInSu / 2
PuSizeInSu / 2 * PuSizeInSu
PuSizeInSu / 2 + PuSizeInSu / 2 * PuSizeInSu

	4
	PART_2NxnU
	0

1
	0
PuSizeInSu / 4 * PuSizeInSu

	5
	PART_2NxnD
	0

1
	0
PuSizeInSu * 3 / 4 * PuSizeInSu

	6
	PART_nLx2N
	0

1
	0
PuSizeInSu / 4

	7
	PART_nRx2N
	0

1
	0
PuSizeInSu * 3 /4


merge_flag[ i ] specifies whether the inter prediction parameters for the current partition with partition index i are inferred from a neighbouring inter-predicted partition.

merge_left_flag[ i ] specifies whether the inter prediction parameters for the current partition with partition index i are inferred from the left or the top neighbouring inter-predicted partition.

inter_pred_idc[ i ] specifies whether list 0, list 1, or bi-prediction is used for the current partition with partition index i. When inter_pred_idc[i] is not present, it shall be inferred to be equal to Pred_L0 when slice_type is equal to P slice and BiPred when slice_type is equal to B slice.
ref_idx_l0[ i ], ref_idx_l1[ i ] specify the list 0 and list 1 reference picture indices, respectively, for the current partition with partition index i.
mvres_l0[ i ], mvres_l1[ i ] specify the list 0 and list 1 motion resolution, respectively, for the current partition with partition index i.

ref_idx_mvres_l0[ i ], ref_idx_mvres_l1[ i ] specify the list 0 and list 1 reference picture indices and motion resolution, respectively, for the current partition with partition index i when entropy_coding_mode_flag is not equal to 0. The reference index and motion resolution can be calculated as

       if(ref_idx_mvres_lX[ i ]==0) 

       {

           ref_idx_lX[ i ] = 0 

           mvres_lX[ i ] = 1

       }

       else if (ref_idx_mvres_lX[ i ]==1)

       {

           ref_idx_lX[ i ] = 0 

           mvres_lX[ i ] = 0

       }

       else

       {


   ref_idx_lX[ i ] =  ref_idx_mvres_lX[ i ] -1

           mvres_lX[ i ] = 1

       }

mvd_l0[ i ][ 0 ], mvd_l0[ i ][ 1 ] specify the horizontal and vertical component, respectively, of the list 1 motion vector difference for the current partition with partition index i. If mvres_l0[ i ] is equal to 1, mvd_l0[ i ][ 0 ] and mvd_l0[ i ][ 1 ] are in one-fourth scale. Otherwise, mvd_l0[ i ][ 0 ], mvd_l0[ i ][ 1 ] are in one-eighth scale. 
mvd_l1[ i ][ 0 ], mvd_l1[ i ][ 1 ] specify the horizontal and vertical component, respectively, of the list 1 motion vector difference for the current partition with partition index i. If mvres_l1[ i ] is equal to 1, mvd_l1[ i ][ 0 ] and mvd_l0[ i ][ 1 ] are in one-fourth scale. Otherwise, mvd_l1[ i ][ 0 ], mvd_l1[ i ][ 1 ] are in one-eighth scale.

intra_split_flag specifies whether a prediction unit is split into four prediction units with half horizontal and vertical size. When intra_split_flag is not present, it shall be inferred to be equal to 0.
mode_table_idx indicates the rank of the modeIdx variable in the modeCtxList context list array. modeIdx variable is used to compute the values of the following elements: pred_mode, intra_split_flag, inter_partitioning_idc, ref_idx_l0,  inter_pred_idc, split_transform_unit_flag,  PU_dQP_idx.
planar_flag specifies if planar prediction mode is enabled for the prediction unit.
planar_delta_uv_present_flag specifies if the planar coding utilizes non-zero delta values for chrominance components 

planar_sign specifies the sign of the planar delta variable.
planar_qdelta_indicator specifies the magnitude of the planar delta variable. From this and planar_sign value, the planar delta variable is calculated as 

if (planar_qdelta_indicator > 21)





Qdelta = ((planar_qdelta_indicator - 14) << 3) + 4




else if(planar_qdelta_indicator > 9)





Qdelta = ((planar_qdelta_indicator - 6) << 2) + 2




else if (planar_qdelta_indicator > 3)





Qdelta = (planar_qdelta_indicator - 2) << 1




else





Qdelta = planar_qdelta_indicator



if(planar_sign == 1)



Qdelta = -1*Qdelta

combined_intra_pred_flag specifies whether the combined intra prediction process is invoked for the intra-predicted samples.

prev_intra_luma_pred_flag[ i ] and rem_intra_luma_pred_mode[ i ] specifies the intra prediction mode of the ith prediction unit for luma samples with index i = 0 when intra_split_flag is equal to 0 or i =0..3 when intra_split_flag is equal to 1. When prev_intra_luma_pred_flag[ i ] is equal to 1, the intra prediction mode is inferred from a neighbouring intra-predicted prediction unit. The number of bins/bits indicating the rem_intra_luma_pred_mode[ i ] depends on the size of the prediction unit and limits the number of available prediction modes as follows:
	PuSize
	Bins/bins
	Number of

modes

	PU_2x2
	1
	3

	PU_4x4
	4
	17

	PU_8x8
	5
	34

	PU_16x16
	5
	34

	PU_32x32
	5
	34

	PU_64x64
	2
	5

	PU_128x128
	2
	5


In the case of PU_8x8, PU_16x16 and PU_32x32 when all the 5 bins/bins are set to 1, an additional bin/bit is read to distinguish between modes 32 (the additional bin/bit set to 0) and 33 (the additional bin/bit set to 1).
intra_chroma_pred_mode specifies the intra prediction direction for chroma samples of the current prediction unit. The value shall be in the range of 0 to 4. 0: DC prediction, 1: vertical prediction, 2: horizontal prediction, 3: diagonal prediction and 4: same mode with IntraLumaPredMode. The diagonal prediction is specified as IntraPredType = = Intra_Vertical and IntraPredAngleID = = -8.
Table 4‑1. Specification of intra prediction mode for chroma samples

	intra_pred_mode_chroma
	Meaning of intra_pred_mode_chroma

	0
	DC prediction

	1
	vertical prediction

	2
	horizontal prediction

	3
	diagonal prediction

	4
	same mode with luma samples


4.2.15 Transform unit semantics
split_transform_unit_flag specifies whether a coding unit is split into coding units with half horizontal and vertical size. When split_transform_unit_flag is not present, it shall be inferred to be equal to ( currTransformUnitSize > MinTransformUnitSize ? 1 : 0 ).

coded_block_flag specifies whether the transform unit contains one or more non-zero transform coefficient levels.
rotational_transform_idx specifies the rotational transform index used in the rotational transform process for the transform coefficients.
last_pos_table_idx specifies the rank of the lastPosIdx variable in the lastPosCtxList context list array. lastPosIdx variable is used to decode the position of the last non-zero coefficient in zigzag scan order given by lastPos variable, and if the magnitude of the last non-zero coefficient in zigzag scan order is greater than one given by levelMagnitudeGreaterThanOneFlag variable.
last_pos_level specifies the magnitude of the last non-zero coefficient in zigzag scan order.

last_pos_sign specifies the sign of the last non-zero coefficient in zigzag scan order.

is_level_one_run specifies jointly the values for isLevelOne and run variables. isLevelOne variable specifies if the magnitude of the next non-zero coefficient is greater than one (1) or not (0). run specifies the number of zero-coefficients before the next non-zero coefficient in reverse zigzag scan order,

level_magnitude_sign specifies the magnitude and sign of the next non-zero coefficient in reverse zigzag scan order.

level_sign specifies the sign of the next non-zero coefficient in reverse zigzag scan order.

cbp_table_idx indicates the rank of cbpIdx variable in the cbpCtxList context list array. cbpIdx variable is used to compute the coded block pattern for luminance and chrominance for certain values of mode_idx syntax element. 

cbp_id0, cbp_id1, cbp_id2 are the syntax elements used to code the coded block pattern for luminance and chrominance blocks for certain values of mode_idx syntax element.

 [Ed. transform coefficients...]
4.2.16 Parallel V2V header semantic

The slice parser uses the following constants:

StateCount – maximum number of states (current value: 16). Note that in this document, a state corresponds to a probability. 

TreeCount – number of different V2V trees (current value: 24, cf.Annex A: 
V2V codes) 

The slice parser uses the following variables, available from the sequence header:

numBinDecoders– number of independent bin decoding processes

The slice parser produces the following variables from the slice header:

	Variable Name
	Type
	Description

	mergedStateCount
	unsigned int.  
	mergedStateCount denotes the actual number of selected states after merging, and satisfies the following inequality 1 <= mergedStateCount <= StateCount

	lastStateGroup
	boolean[StateCount].
	lastStateGroup indicates if the indexed state terminates its group.



	selectedTree
	boolean[TreeCount]
	selectedTree indicates if the indexed tree is used for decoding.

	mergedStatesMapping
	unsigned int[64].
	mergedStatesMapping denotes the mapping between the original 64 states as defined in [subclause 9.3.3.2.1.1 in ITU‑T Rec. H.264 | ISO/IEC 14496-10] and the selected states.

	sequenceCodedLength
	unsigned int[mergedStateCount].
	An entry in sequenceCodedLength denotes the length in bytes of the encoded subsequence corresponding to a selected state.

	balancedAlignment
	unsigned int[numBinDecoders].
	An entry in balancedAlignment provides an offset in bits. 


The constant TreeCount determines an initial set of candidate V2V codes (or equivalently, V2V decoding trees), each corresponding to a unique state (or equivalently, probability). The set of probabilities and corresponding V2V codes are described in Annex A: 
V2V codes.

The variable selectedTree determines a subset of candidate V2V codes, each corresponding to a unique state, which are needed to decode the present slice. The cardinality of the subset is specified by the variable mergedStateCount. 

The variables lastStateGroup and merged StatesMapping together determine a mapping from the 64 states (or equivalently, probabilities) defined in subclause 9.3.3.2.1.1 in ITU‑T Rec. H.264 | ISO/IEC 14496-10 to the selected subset determined by the variable selectedTree. 

The array balancedAlignment provides the auxiliary information, which together with sequenceCodedLength and numBinDecoders, provides the offsets in the slice data, at which a number (up to numBinDecoders) of bin decoders can start decoding different portions of the slice data in parallel. 

5 Decoding Process
Outputs of this process are decoded samples of the current picture (sometimes referred to by the variable CurrPic).

This clause describes the decoding process, given syntax elements and upper-case variables from clause 4.
An overview of the decoding process is given as follows:
· The processes in subclauses 5.1, 5.2, 5.3 and 5.4 specify decoding processes using syntax elements in the coding unit layer and above.
· The intra prediction process for MODE_INTRA prediction unit as specified in subclause 5.1 has intra prediction samples as its output. The outputs are the constructed samples prior to the deblocking filter process.
· The inter prediction process for MODE_SKIP, MODE_DIRECT and MODE_INTER prediction units is specified in subclause 5.2 with inter prediction samples being the output.
· The transform coefficient decoding process and picture construction process prior to deblocking filter process are specified in subclause 5.3. The outputs are constructed samples prior to the deblocking filter process.
· The constructed samples prior to the deblocking filter process that are next to the edges of transform units, prediction units and coding units are processed by a deblocking filter as specified in subclause 5.4.1. The outputs are the constructed samples prior to the adaptive loop filter process.
· The constructed samples in the current slice prior to the adaptive in-loop filter process are processed by an adaptive loop filter as specified in subclause 5.4.2 with the output being the decoded samples.
5.1 Slice decoding process

5.1.1 Decoding process for picture order count

[Ed: Text to be taken from MPEG-4 AVC/H.264 (section 8.2.1 but without support of field coding)]
5.1.2 Decoding process for reference picture lists construction

[Ed: Text to be taken from MPEG-4 AVC/H.264 (section 8.2.4 but without support of field coding)]
5.1.3 Decoded reference picture marking process

[Ed: Text to be taken from MPEG-4 AVC/H.264 (section 8.2.5 but without support of field coding)]
5.2 Intra prediction process

This process is invoked for MODE_INTRA prediction units.

Inputs to this process are constructed samples prior to the deblocking filter process and the values of IntraPredMode from neighbouring prediction units.

The outputs are constructed luma samples of the prediction unit predL and (when ChromaArrayType is not equal to 0) chroma prediction samples of the prediction unit predC, whether C is equal to Cb and Cr.

The decoding process for intra prediction modes are described for the luma component in subclause 5.2.1.

The decoding process for intra prediction modes are described for the chroma component in subclause 5.2.2.

Samples used in the intra prediction process shall be sample values prior to alteration by any in-loop filter operation.

5.2.1 Intra prediction process for luma samples 
This process is invoked for prediction units when PredMode is equal to MODE_INTRA and planar_flag == 0.

Inputs of this process are the values of IntraPredMode (if available) from neighbouring prediction units.

Depending on the value of intra_split_flag, the luma component of prediction unit consists of one or four partitions of luma samples. The variable PartMode is inferred to PART_2Nx2N when intra_split_flag is equal to 0 and PART_NxN when intra_split_flag is equal to 1. These partitions are inverse scanned using the inverse partition scanning process specified in subclause 3.2.4.

For all prediction unit partitions, the derivation process for the IntraPredMode as specified in subclause 5.2.1.1 is invoked with puPartIdx and constructed samples prior (in decoding order) to the deblocking filter process from adjacent luma prediction units as the input and the variable IntraPredMode as the output.

For each prediction unit, the following applies.
· The intra sample prediction process in subclause 5.2.1.2 is invoked with puPartIdx and constructed samples prior (in decoding order) to the deblocking filter process from adjacent luma prediction units as the input and the output are the intra luma prediction samples predPartL[ x, y ] with x = 0..PuPartWidth( puPartIdx ) and y = 0..PuPartHeight( puPartIdx ).
· The position of the upper-left sample of a prediction unit partition with index puPartIdx inside the current prediction unit is derived by invoking the inverse prediction unit partition scanning process in subclause 3.2.4.2 with puPartIdx as the input and the output being assigned to ( xO, yO ) and x = 0..PuPartWidth( puPartIdx ) and y = 0..PuPartHeight( puPartIdx ).


predL[ xO + x, yO + y ] = predPartL[ x, y ]
· The transform coefficient decoding process and picture construction process prior to deblocking filter process in subclause 5.3 is invoked with predL and puPartIdx as the input and the constructed samples for the current prediction unit partition S’L as the output.
5.2.1.1 Derivation process for the IntraPredMode 
Inputs to this process are the index puPartIdx and variable arrays IntraPredMode (if available) that are previously (in decoding order) derived for adjacent prediction units.

Output of this process is the variable IntraPredMode[ puPartIdx ].

Table 5‑1 specifies the values for IntraPredMode[ puPartIdx ] and the associated names.

Table 5‑1 Specification of IntraPredMode[ puPartIdx ] and associated names
	IntraPredMode
[ puPartIdx ]
	IntraPredType [ puPartIdx ]
	IntraPredAngleID
[ puPartIdx ]

	0
	Intra_Vertical
	0

	1
	Intra_Horizontal
	0

	2
	Intra_DC
	-

	3
	Intra_Vertical
	-8

	4
	Intra_Vertical
	-4

	5
	Intra_Vertical
	+4

	6
	Intra_Vertical
	+8

	7
	Intra_Horizontal
	-4

	8
	Intra_Horizontal
	+4

	9
	Intra_Horizontal
	+8

	10
	Intra_Vertical
	-6

	11
	Intra_Vertical
	-2

	12
	Intra_Vertical
	+2

	13
	Intra_Vertical
	+6

	14
	Intra_Horizontal
	-6

	15
	Intra_Horizontal
	-2

	16
	Intra_Horizontal
	+2

	17
	Intra_Horizontal
	+6

	18
	Intra_Vertical
	-7

	19
	Intra_Vertical
	-5

	20
	Intra_Vertical
	-3

	21
	Intra_Vertical
	-1

	22
	Intra_Vertical
	+1

	23
	Intra_Vertical
	+3

	24
	Intra_Vertical
	+5

	25
	Intra_Vertical
	+7

	26
	Intra_Horizontal
	-7

	27
	Intra_Horizontal
	-5

	28
	Intra_Horizontal
	-3

	29
	Intra_Horizontal
	-1

	30
	Intra_Horizontal
	+1

	31
	Intra_Horizontal
	+3

	32
	Intra_Horizontal
	+5

	33
	Intra_Horizontal
	+7


	
	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	


Table 5‑2 specifies the values for MappedMostProbable according to IntraPredMode and IntraPredModeNum.
Table 5‑2 Specification of MappedMostProbable according to IntraPredMode and IntraPredModeNum
	IntraPredModeNum
[puPartIdx]
IntraPredMode
[ puPartIdx ]
	5
	17
	34

	0
	0
	0
	0

	1
	1
	1
	1

	2
	2
	2
	2

	3
	3
	3
	3

	4
	4
	4
	4

	5
	0
	5
	5

	6
	2
	6
	6

	7
	1
	7
	7

	8
	1
	8
	8

	9
	2
	9
	9

	10
	2
	10
	10

	11
	0
	11
	11

	12
	0
	12
	12

	13
	2
	13
	13

	14
	2
	14
	14

	15
	1
	15
	15

	16
	1
	16
	16

	17
	2
	2
	17

	18
	2
	3
	18

	19
	4
	10
	19

	20
	4
	11
	20

	21
	0
	0
	21

	22
	0
	0
	22

	23
	0
	12
	23

	24
	2
	5
	24

	25
	2
	13
	25

	26
	2
	14
	26

	27
	2
	7
	27

	28
	1
	15
	28

	29
	1
	1
	29

	30
	1
	1
	30

	31
	1
	16
	31

	32
	2
	8
	32

	33
	2
	2
	33


	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


IntraPredMode[ puPartIdx ] is derived as follows.
· The derivation process for neighbouring partitions specified in subclause 3.3.4.4 is invoked with puPartIdx given as the input and the output is assigned to lcuAddrA, puIdxA, partIdxA, lcuAddrB, puIdxB and partIdxB.
· IntraPredMode[ puPartIdx ] is derived by applying the following applies.
· for N being either replaced by A or B, the variables intraPredModeN are derived as follows.
· if the largest coding unit with address lcuAddN is not available, intraPredModeN is set equal to -1
· else if the prediction unit with index puIdxN is not coded in intra prediction mode, intraPredModeN is set equal to Intra_DC
· Otherwise, intraPredModeN is set equal to IntraPredMode[ puPartIdxN ], where IntraPredMode is the variable array assigned to the prediction unit puIdxN.
· The following procedure applies.

MostProbable = Min( intraPredModeA, intraPredModeB )

if ( MostProbable >= IntraPredModeNum[ puPartIdx ] )

MostProbable = MappedMostProbable ( IntraPredModeNum[ puPartIdx ], MostProbable )

if ( MostProbable == -1 )


MostProbable = 2

if ( prev_intra_luma_pred_flag[ puPartIdx ] )



IntraPredMode[ puPartIdx ] = MostProbable

else



if ( rem_intra_luma_pred_mode[ puPartIdx ] < MostProbable )




IntraPredMode[ puPartIdx ] = rem_intra_luma_pred_mode[ puPartIdx ]



else



IntraPredMode[ puPartIdx ] = rem_intra_luma_pred_mode[ puPartIdx ] + 1
5.2.1.2 


	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


5.2.1.3 Intra sample prediction 
This process is invoked for each prediction unit partition followed by the transform decoding process and picture construction process prior to deblocking filter.

Input to this process is the index of the prediction unit partition puPartIdx and the intra prediction mode IntraPredMode[ puPartIdx ] derived as described in 5.2.1.1.

Outputs of this process are the prediction samples predPartL[ x, y ], with x = 0..PuPartWidth[ puPartIdx ] and y = 0..PuPartHeight[ puPartIdx ] for the prediction unit partition with index puPartIdx.

The position of the upper-left sample of the prediction unit partition with index puPartIdx inside the current prediction unit is derived by invoking the inverse prediction unit partition scanning process in subclause 3.2.4.2 with puPartIdx as the input and the output being assigned to ( xO, yO ).

Let PuPartSize = max( PuPartWidth, PuPartHeight ).

The PuPartSize*4 + 1 neighbouring samples p[ x, y ] and pf[ x, y ] are constructed luma samples prior to the deblocking filter process, with x = -1, y = -1..PuPartSize*2 - 1 and x = 0..PuPartSize*2 - 1, y = -1, are derived as follows.

· The luma location ( xN, yN ) is specified by

xN = xO + x


yN = yO + y

· The derivation process for neighbouring locations in 3.3.5 is invoked for luma locations with ( xN, yN ) as input and lcuAddrN and ( xW, yW ) as output.
· If lcuAddN is available, the prediction unit partition index in the largest coding unit lcuAddN covering the luma location ( xW, yW ) is assigned to partIdxN, otherwise, partIdxN is marked as not available.
· Each sample p[ x, y ] with x = -1, y = -1..PuPartSize*2 – 1 and x = 0..PuPartSize*2 – 1, y = -1 is derived as follows.
· If any of the following conditions is true, the sample p[ x, y ] is marked as “not available for intra prediction”
· lcuAddrN is not available,
· partIdxN is not available
· Otherwise, the sample p[ x, y ] is marked as “available for intra prediction” and the luma sample at luma location ( xW, yW ) inside the largest coding unit lcuAddrN is assigned to p[ x, y ].
When samples p[ x, -1 ], with x = PuPartSize..PuPartSize*2 – 1 are marked as “not available for intra prediction,” and the sample p[ PuPartSize – 1, -1 ] is marked as “available for intra prediction,” the sample value of p[ PuPartSize – 1, -1 ] is substituted for samples values p[ x, -1 ], with x = PuPartSize..PuPartSize*2 – 1 and samples p[ x, -1 ], with x = PuPartSize..PuPartSize*2 – 1 are marked as “available for intra prediction.”
When samples p[ -1, y ], with y = PuPartSize..PuPartSize*2 – 1 are marked as “not available for intra prediction,” and the sample p[ -1, PuPartSize – 1 ] is marked as “available for intra prediction,” the sample value of p[ -1, PuPartSize – 1 ] is substituted for samples values p[ -1, y ], with y = PuPartSize..PuPartSize*2 – 1 and samples p[ -1, y ], with y = PuPartSize..PuPartSize*2 – 1 are marked as “available for intra prediction.”
For all remaining samples p[ x, y ] marked as “not available for intra prediction,” the following applies.

p[ x, y ] = 1 << ( ( BitDepthY + increased_bit_depth_luma ) – 1 )

If IntraPredMode[ puPartIdx ] is not equal to one of the values from 0 (Intra_Vertical) to 2 (Intra_DC), the filtered neighbouring samples pf[ x, y ] with x = -1, y = -1..PuPartSize*2 - 1 and x = 0..PuPartSize*2 - 1, y = -1 are constructed as follows.

[Ed.: Adaptive smoothing to be added]
pf[ -1, y ] 
= p[ -1, y ]
for y = 0 or y=PuPartSize*2 – 1


pf[ -1, y ] 
= ( p[ -1, y + 1 ] + 2*p[ -1, y ] + p[ -1, y – 1 ] + 2 ) >> 2 
otherwise


pf[ x, -1 ] 
= p[ x, -1 ]
for x = 0 or x=PuPartSize*2 – 1


pf[ x, -1 ] 
= ( p[ x – 1, -1 ] + 2*p[ x, -1 ] + p[ x + 1, -1 ] + 2 ) >> 2 
otherwise

pf[ -1, -1 ] 
= ( p[ -1, 0 ] + 2*p[ -1, -1 ] + p[ 0, -1 ] + 2 ) >> 2
for x = 0 and y = 0


5.2.1.3.1 Specification of intra planar prediction 

This intra prediction mode is invoked when planar_flag == 1. The values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize – 1, are derived by

predPartL[ x, y ]  =  ((PuPartSize – (y+1))*TR(x) + (y+1)*BR(x) + (PuPartSize – (x+1))*LC(y) + (x+1)*RC(y) + PuPartSize)/(PuPartSize*2) 

where the values of TR pixel array are specified as 
· If the samples p[ x, -1 ] with x = 0..PuPartSize – 1 are marked as "available for intra prediction.”
TR(i) = p[i,-1 ] with i = 0..PuPartSize - 1

· Otherwise if the samples p[ -1, y ] with x = 0..PuPartSize – 1 are marked as "available for intra prediction.”
TR(i) = ((PuPartSize – (i+1))*M(-1,0) + (i+1)*BRS + (PuPartSize>>1))/PuPartSize with i = 0..PuPartSize - 1

· Otherwise
TR(i) = 128 with i = 0..PuPartSize - 1
where the values of LC pixel array are specified as 
· If the samples p[ -1, y ] with y = 0..PuPartSize – 1 are marked as "available for intra prediction.”
LC(i) = p[ -1, i ] with i = 0..PuPartSize - 1

· Otherwise if the samples p[ x, -1 ] with x = 0..PuPartSize – 1 are marked as "available for intra prediction.”
LC(j) = ((PuPartSize – (j+1))*M(0,-1) + (j+1)*BRS + (PuPartSize>>1))/PuPartSize

· Otherwise
LC(i) = 128 with i = 0..PuPartSize - 1

where the values of BR pixel array are specified as

BR(i) = ((PuPartSize – (i+1)*LC[ PuPartSize-1 ] + (i+1)*BRS + (PuPartSize>>1))/PuPartSize with i = 0..PuPartSize - 1

where the values of RC pixel array are specified as
RC(i) = ((PuPartSize – (i+1))*TR[ PuPartSize-1 ] + (i+1)*BRS + (PuPartSize>>1))/PuPartSize with i = 0..PuPartSize
where the BRS value is specified as

BRS = DC + planar_delta_y

where DC is calculated identically to the DC value in DC prediction as specified in subclause 5.1.1.3.3.3.

5.2.1.3.2 Specification of directional intra prediction 
For prediction units with planar_flag == 0 either intra angular prediction mode or DC prediction mode is used depending on the value of IntraPredMode[ puPartIdx ] variable. 
5.2.1.3.2.1 Specification of intra angular prediction mode

This intra prediction mode is invoked when IntraPredType[ puPartIdx ] is not equal to Intra_DC. 
Let intraPredType be equal to IntraPredType[ puPartIdx ]. intraPredAngle variable is obtained from the table below as a function of IntraPredAngleID[ puPartIdx ].
	IntraPredAngleID[ puPartIdx ]
	-8
	-7
	-6
	-5
	-4
	-3
	-2
	-1
	0
	1
	2
	3
	4
	5
	6
	7
	8

	intraPredAngle
	-32
	-26
	-21
	-17
	-13
	-9
	-5
	-2
	0
	2
	5
	9
	13
	17
	21
	26
	32


The values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize – 1, are derived by the following procedure
· For k=0..(PuPartSize – 1)

deltaInt = ((k+1)* intraPredAngle)/32

deltaFract = ((k+1)*abs(intraPredAngle))%32

if(intraPredAngle < 0)


deltaFract = (32 – deltaFract)%32

for l = 0..(PuPartSize – 1)


refMainInd = l+deltaInt+1


if(intraPredAngle >= 0)



if(deltaFract != 0)




p(k,l) = ((32-deltaFract)*refMain[refMainInd]+deltaFract*refMain[refMainInd+1]+16) >> 5



else




p(k,l) = refMain[refMainInd]


else



if(refMainInd >= 0)




p(k,l) = ((32-deltaFract)*refMain[refMainInd]+deltaFract*refMain[refMainInd+1]+16) >> 5



else




deltaIntSide = (32*32*(l+1)/abs(IntraPredAngle))>>5




deltaFractSide = (32*32*(l+1)/abs(IntraPredAngle))%32




refSideIndex = k+l-deltaIntSide




if(deltaFractSide)





p(k,l) = ((32-deltaFractSide)*refSide[refSideIndex]+
 





deltaFractSide*refSide[refSideIndex-1]+16) >> 5





else





p(k,l) = refSide[refSideIndex]


if(IntraPredType == Intra_Vertical)



predPartL[ x, y ] = p(k,l)


else



predPartL[ y, x ] = p(k,l)

end for
end for



where the pixel arrays refMain and refSide are specified as
· If intraPredType == Intra_Vertical

refMain[ x ] = p[ x, -1], with x = 0..PuPartSize – 1
refSide[ x ] = p[ -1, x], with x = 0..PuPartSize – 1

· Otherwise

refMain[ x ] = p[ -1, x ], with x = 0..PuPartSize – 1
refSide[ x ] = p[ x, -1 ], with x = 0..PuPartSize – 1

5.2.1.3.2.2 

5.2.1.3.3 

5.2.1.3.3.1 




5.2.1.3.3.2 




5.2.1.3.3.3 Specification of Intra_DC prediction mode

This intra prediction mode is invoked when IntraPredMode[ puPartIdx ] is equal to Intra_DC.
Depending on the variable edge_based_prediction_flag, the following applies.
· If the value of edge_based_prediction_flag is equal to 0, the DC prediction mode process is invoked as specified in subclause 5.1.1.3.3.3.2.

· If the value of edge_based_prediction_flag is equal to 1, the edge detection process is invoked as specified in subclause 5.1.1.3.3.3.1.

· If the output value edge_detected of the edge detection process is equal to 0, the DC prediction mode process is invoked as specified in subclause 5.1.1.3.3.3.2.

· If the output value edge_detected of the edge detection process is equal to 1, the edge based prediction process is invoked as specified in subclause 5.1.1.3.3.3.3.
5.2.1.3.3.3.1 Specification of edge detection process

The edge detection process using the Sobel operators shall be performed on the already decoded luma samples. This process is invoked when IntraPredMode[ puPartIdx ] is equal to Intra_DC and when the value of edge_based_prediction_flag is equal to 1.

Inputs to this process are:

· The index of the prediction unit partition puPartIdx.

· The value of threshold_edge.

Outputs of this process are:

· The value edge_detected equal to 0 or 1 depending on the result of the Sobel operators on the already reconstructed pixels as specified in the following.

· If the value edge_detected is equal to 1, the coordinates dir[i] with i=0,1 in the horizontal and vertical direction of the detected edge as specified in the following.

The position of the upper-left sample of the prediction unit partition with index puPartIdx inside the current prediction unit is derived by invoking the inverse prediction unit partition scanning process in subclause 3.2.4.2 with puPartIdx as the input and the output being assigned to ( xOE, yOE ).

Let PuPartSize be equal to max( PuPartWidth, PuPartHeight ).

The 16*PuPartSize + 16 neighbouring decoded luma samples pE[ x, y ] prior the deblocking filter process with x = -4..-1, y = -4..PuPartSize*2 - 1 and x = 0..PuPartSize*2 - 1, y = -4..-1, are derived as follows.

· The luma location ( xNE, yNE ) is specified by

xNE = xOE + x


yNE = yOE + y

· The derivation process for neighbouring locations in 3.3.5 is invoked for luma locations with ( xNE, yNE ) as input and lcuAddrNE and ( xWE, yWE ) as output.
· If lcuAddNE is available, the prediction unit partition index in the largest coding unit lcuAddNE covering the luma location ( xWE, yWE ) is assigned to partIdxNE, otherwise, partIdxNE is marked as not available.
· Each sample pE[ x, y ] with x = -4..-1, y = -4..PuPartSize*2 – 1 and x = 0..PuPartSize*2 – 1, y = -4..-1 is derived as follows.
· If any of the following conditions is true, the sample pE[ x, y ] is marked as “not available for intra prediction”
· lcuAddrNE is not available,
· partIdxNE is not available
· Otherwise, the sample pE[ x, y ] is marked as “available for intra prediction” and the luma sample at luma location ( xWE, yWE ) inside the largest coding unit lcuAddrNE is assigned to pE[ x, y ].
· For each sample pE[ x, y ] with x = -4..-1, y = -4..PuPartSize*2 – 1 and x = 0..PuPartSize*2 – 1, y = -4..-1 marked as “available for intra prediction”, the following applies:

pE[ x, y ] = ( pE[ x, y ] + ( 1 << (increased_bit_depth_luma – 1 ) ) ) >> increased_bit_depth_luma
Let norm_max be an integer initialized to 0.

For x = -3, -2 and y = -3..2*PuPartSize-2, and for x = -1..2*PuPartSize-2 and y = -3,-2:

· If the samples pE[x,y], pE[x-1,y-1], pE[x-1,y], pE[x-1,y+1], pE[x,y-1], pE[x,y+1], pE[x+1,y-1], pE[x+1,y] and pE[x+1,y+1] are marked as “available for intra prediction”, the values gradX and gradY are calculated as:

gradX = – pE[x-1,y-1] – 2 * pE[x-1,y] – pE[x-1,y+1] + pE[x+1,y-1] + 2 * pE[x+1,y] + pE[x+1,y+1] 

gradY = – pE[x-1,y-1] – 2 * pE[x,y-1] – pE[x+1,y-1] + pE[x-1,y+1] + 2 * pE[x,y+1] + pE[x+1,y+1] 

· If |gradX|²+|gradY|² > norm_max, the process for extrapolating the edge described below is invoked with the values gradX, gradY, x, y, PuPartWidth and PuPartHeight as inputs.

· If the process for extrapolating the edge is invoked and the output value cross_block is equal to 1, the value –gradY is assigned to dir[0], the value gradX is assigned to dir[1] and the value |gradX|²+|gradY|² is assigned to norm_max.

If the final value of norm_max is superior or equal to the value of (threshold_edge << 8), the value of edge_detected is set equal to 1. Otherwise, the value of edge_detected is set equal to 0 and the values of dir[0] and dir[1] are both set to 0.
Process for extrapolating the edge:

Inputs to the process for extrapolating the edge are 

· the gradient values gradX and gradY
· the values x and y. 

· the width and height of the partition unit PuPartWidth, PuPartHeight
Output of the process for extrapolating the edge is the value cross_block.
The value of cross_block is initialized to 0. 

If the value of gradX is negative, the following applies:
gradX = – gradX
gradY = – gradY

If the value of gradX is not equal to 0, the two values
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, the value of cross_block is set equal to 1.
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, the value of cross_block is set equal to 1;

If the value of gradY is positive, the following applies:
gradX = – gradX
gradY = – gradY

If the value of gradY is not equal to 0, the two values
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5.2.1.3.3.3.2 Specification of DC prediction mode

This process is invoked 

· when IntraPredMode[ puPartIdx ] is equal to Intra_DC and 

· when the value of edge_based_prediction_flag is equal to 0 or when the value of edge_based_prediction_flag is equal to 1 and the ouput value edge_detected of the edge detection process specified in subclause 5.1.1.3.3.3.1 is equal to 0.
The values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize – 1, are derived as follows.
· If all samples p[ x, -1 ], with x = 0..PuPartSize-1 and p[ -1, y ], with y = 0..PuPartSize-1 are marked as “available for intra prediction”, the values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize-1, are derived by

predPartL[ x, y ] = 
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>> (k+1), with x, y = 0..PuPartSize – 1
where 2k = PuPartSize

· Otherwise, if any samples p[ x, -1 ], with x = 0..PuPartSize-1 are marked as “not available for intra prediction” and all samples p[ -1, y ], with y = 0..PuPartSize-1 are marked as “available for intra prediction”, the values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize-1, are derived by

predPartL[ x, y ] = 
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where 2k = PuPartSize

· Otherwise, if all samples p[ x, -1 ], with x = 0..PuPartSize-1 are marked as “available for intra prediction” and any samples p[ -1, y ], with y = 0..PuPartSize-1 are marked as “not available for intra prediction”, the values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize-1, are derived by

predPartL[ x, y ] = 
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· Otherwise, the values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize-1, are derived by

predPartL[ x, y ] = 1 << ( ( BitDepthY + increased_bit_depth_luma ) – 1 )

5.2.1.3.3.3.3 Specification of edge based prediction mode

This process is invoked when IntraPredMode[ puPartIdx ] is equal to Intra_DC, the value of edge_based_prediction_flag is equal to 1 and the ouput value edge_detected of the edge detection process specified in subclause 5.1.1.3.3.3.1 is equal to 1.

Inputs to this process are:

· the index of the prediction unit partition puPartIdx.

· the values dir[0] and dir[1] as calculated in the edge detection process specified in subclause 5.1.1.3.3.3.1.
Outputs of this process are the prediction samples predPartL[ x, y ], with x = 0..PuPartWidth[ puPartIdx ] and y = 0..PuPartHeight[ puPartIdx ] for the prediction unit partition with index puPartIdx.

The position of the upper-left sample of the prediction unit partition with index puPartIdx inside the current prediction unit is derived by invoking the inverse prediction unit partition scanning process specified in subclause 3.2.4.2 with puPartIdx as the input and the output being assigned to ( xOEP, yOEP ).

Let PuPartSize be equal to max( PuPartWidth, PuPartHeight ).

The PuPartSize*4 + 1 neighbouring samples pEP[ x, y ], that are constructed luma samples prior to the deblocking filter process, with x = -1, y = -1..PuPartSize*2 - 1 and x = 0..PuPartSize*2 - 1, y = -1, are derived as follows.

· The luma location ( xNEP, yNEP ) is specified by

xNEP = xOEP + x


yNEP = yOEP + y

· The derivation process for neighbouring locations in 3.3.5 is invoked for luma locations with ( xNEP, yNEP ) as input and lcuAddrNEP and ( xWEP, yWEP ) as output.
· If lcuAddNEP is available, the prediction unit partition index in the largest coding unit lcuAddNEP covering the luma location ( xWEP, yWEP ) is assigned to partIdxNEP, otherwise, partIdxNEP is marked as not available.
· Each sample pEP[ x, y ] with x = -1, y = -1..PuPartSize*2 – 1 and x = 0..PuPartSize*2 – 1, y = -1 is derived as follows.
· If any of the following conditions is true, the sample pEP[ x, y ] is marked as “not available for intra prediction”
lcuAddrNEP is not available,
partIdxNEP is not available
· Otherwise, the sample pEP[ x, y ] is marked as “available for intra prediction” and the luma sample at luma location ( xWEP, yWEP ) inside the largest coding unit lcuAddrNEP is assigned to pEP[ x, y ].
The values of the prediction samples predPartL[ x, y ], with x, y = 0..PuPartSize – 1, are derived by linear interpolation of the surrounding samples using the values dir[0] and dir[1] to define the prediction direction. The calculation is performed as follows:

· If the value of dir[0] is not equal to 0 and if at least one sample pEP[z,-1] with z=-1..2*PuPartSize-1 is marked as “available for intra prediction”, the value 
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The following four values are calculated:
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Otherwise, the value predup[x,y] is marked as “not calculated”.

[image: image38.wmf]
Figure 1: edge based prediction for intra coding.

· If the value of dir[1] is not equal to 0 and if at least one sample pEP[-1,z] with z=-1..2*PuPartSize-1 is marked as “available for intra prediction”, the value 
[image: image39.wmf]y

d

 is derived by:


[image: image40.wmf][

]

[

]

[

]

0

/

))

1

0

(

)

6

1

(

)

1

((

dir

dir

dir

x

y

>>

+

<<

´

+

=

d


The following four values are calculated:
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Otherwise, the value predleft[x,y] is marked as “not calculated”.

· If both values predup[x,y] and predleft[x,y] are marked as “calculated”, the prediction sample predPartL[ x, y ] is derived by:
predPartL[ x, y ] = ( predup[x,y] + predleft[x,y] ) >> 1
· If predup[x,y] is marked as “calculated” and predleft[x,y] is marked as “not calculated”, the prediction sample predPartL[ x, y ] is derived by:
predPartL[ x, y ] = predup[x,y]
· If predleft[x,y] is marked as “calculated” and predup[x,y] is marked as “not calculated”, the prediction sample predPartL[ x, y ] is derived by:
predPartL[ x, y ] = predleft[x,y]
· If both predup[x,y] and predleft[x,y] are marked as “not calculated”, the prediction sample predPartL[ x, y ] is derived by:
predPartL[ x, y ] = pEP[-1,-1] if x = 0, y = 0 and pEP[-1,-1] is marked as “available for intra prediction”
predPartL[ x, y ] = pEP[0,-1] if x = 0, y = 0, pEP[-1,-1] is marked “not available for intra prediction” and pEP[0,-1] is marked as “available for intra prediction”
predPartL[ x, y ] = pEP[-1,0] if x = 0, y = 0, pEP[-1,-1] is marked “not available for intra prediction” and pEP[-1,0] is marked as “available for intra prediction”
predPartL[ x, y ] = predPartL[ x, y-1 ] if x = 0
predPartL[ x, y ] = predPartL[ x-1, y ] if y = 0
predPartL[ x, y ] = ( 2*predPartL[ x-1, y-1 ] + predPartL[ x, y-1 ] + predPartL[ x-1, y ] ) >> 2 for all other cases
5.2.1.3.3.4 
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5.2.1.3.3.6 



1. 

2. 



3. 



4. 
· 
5.2.2 Intra prediction process for chroma samples

This process is invoked for prediction units when PredMode is equal to MODE_INTRA.

Outputs of this process are intra prediction chroma samples for the current prediction unit partition predCb[ x, y ] and predCr[ x, y].

Both chroma partitions (Cb and Cr) of the prediction unit shall use the same prediction mode. In the remainder of this subclause, chroma partition refers to one of the two chroma partitions and the subscript C is used as a replacement of the subscript Cb or Cr.

Table 5‑3 specifies the associated meanings of the intra_chroma_pred_mode.
Table 5‑3 Associated names of intra_chroma_pred_mode
	intra_chroma_pred_mode
	Name of intra_chroma_pred_mode

	0
	Intra_Vertical

	1
	Intra_Horizontal

	2
	Intra_DC

	3
	Intra_Plane

	4
	Intra_LumaMode



If planar_flag == 1 for the prediction unit, the intra prediction process specified in subclause 5.1.1.3.1 shall be invoked with reconstructed chroma samples as input and the intra chroma prediction samples predPartC[ x, y ] as output.

Otherwise, if intra_chroma_pred_mode is equal to one of the values from 0 (Intra_Vertical) to 3 (Intra_Plane), the intra prediction processes specified in subclause 5.1.1.3.3.1 to 5.1.1.3.3.4 shall be invoked with intra_chroma_pred_mode and reconstructed chroma samples as input and the intra chroma prediction samples predPartC[ x, y ] as output. [Ed.: intra sample prediction to be modified to allow the use chroma samples as an input]
Otherwise, if the PuPartSize equals to PU_8x8, the intra prediction processes specified in subclause 5.1.1.3.2 shall be invoked with IntraPredMode and reconstructed chroma samples as input and the intra chroma prediction samples predPartC[ x, y ] as output.

Otherwise, if the PuPartSize > PU_8x8, the intra prediction processes specified in subclause 5.1.1.3.3 shall be invoked with IntraPredMode and reconstructed chroma samples as input and the intra chroma prediction samples predPartC[ x, y ] as output.

Intra chroma prediction samples for the prediction unit are derived as follows.

· The position of the upper-left sample of a prediction unit partition with index puPartIdx inside the current prediction unit is derived by invoking the inverse prediction unit partition scanning process in subclause 3.2.4.2 with puPartIdx as the input and the output being assigned to ( xO, yO ).


xC = xO / SubWidthC and yC = yO / SubHeightC


predC[ xC + x, yC + y ] = predPartC[ x, y ], x = 0..PuPartWidthC – 1 and y = 0..PuPartHeightC – 1
· The transform coefficient decoding process and picture construction process prior to deblocking filter process in subclause 5.3 is invoked with predC and puPartIdx as the input and the constructed samples for the current prediction unit partition S’C as the output.
5.3 Inter prediction process

This process is invoked when decoding prediction units whose PredMode is not equal to MODE_INTRA.

Outputs of this process are inter prediction samples for the current prediction unit that are a (PuSize)x(PuSize) array predL of luma samples and when ChromaArrayType is not equal to 0 two (PuSizeC)x(PuSizeC) arrays predCb and predCr of chroma samples, one for each of the chroma components Cb and Cr.

The partitioning of a prediction unit is specified by PartMode. Each prediction unit partition is referred to by puPartIdx.
The following steps are specified for each prediction unit partition.
The functions PuPartWidth( ), PuPartHeight( ) describing the width and height of prediction unit partition are specified in Table 4‑12.

The prediction unit partition index puPartIdx proceeds over values 0..NumPuParts – 1.

· If PredMode is not equal to MODE_SKIP or MODE_DIRECT, puPartWidth and puPartHeight are derived as

puPartWidth = PuPartWidth( puPartIdx )


puPartHeight = PuPartHeight( puPartIdx )
· Otherwise (PredMode is equal to MODE_SKIP or MODE_DIRECT), puPartIdx is set equal to 0, PartMode is set equal to PART_2Nx2N and puPartWidth and puPartHeight are derived as



puPartWidth = PuPartWidth( 0 )


puPartHeight = PuPartHeight( 0 )

When ChromaArrayType is not equal to 0, the variables puPartWidthC and puPartHeightC are derived as follows.

puPartWidthC = puPartWidth / SubWidthC

puPartHeightC = puPartHeight / SubHeightC

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 5.2.1 for the prediction unit.
[Ed.: are mvCnt and subMvCnt still needed?]
The inter prediction process for a prediction unit partition puPartIdx consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 5.2.1.
Input to this process is a prediction unit partition puPartIdx,
Outputs of this process are 

· luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1
· reference indices refIdxL0 and refIdxL1
· prediction list utilization flags predFlagL0 and predFlagL1
· the prediction unit partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.

3. Decoding process for inter prediction samples as specified in subclause 5.2.2.

Inputs to this process are
· a prediction unit partition puPartIdx, 

· variables specifying partition width and height for luma and chroma (if available), partWidth, partHeight, partWidthC (if available), and partHeightC (if available)

· luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· 
prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are
· inter prediction samples (pred); which are a (puPartWidth)x(puPartHeight) array predPartL of prediction luma samples and when ChromaArrayType is not equal to 0 two (puPartWidthC)x(puPartHeightC) arrays predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

For use in derivation processes of variables invoked later in the decoding process, the following assignments are made:

MvL0[ puPartIdx] = mvL0

MvL1[ puPartIdx] = mvL1

RefIdxL0[ puPartIdx] = refIdxL0

RefIdxL1[ puPartIdx] = refIdxL1

PredFlagL0[ puPartIdx] = predFlagL0

PredFlagL1[ puPartIdx] = predFlagL1

The location of the upper-left sample of the prediction unit partition to the upper-left sample of the prediction unit is derived by invoking the inverse prediction unit partition scanning process as described in subclause 3.2.4.2 with puPartIdx as the input and ( xP, yP ) as the output.

The prediction unit prediction is formed by placing the prediction unit partition samples in their correct relative positions in the prediction unit, as follows.
The variable predL[ xP + x, yP + y ] with x = 0..puPartWidth − 1, y = 0..puPartHeight − 1 is derived by

predL[ xP + x, yP + y ] = predPartL[ x, y ]
When ChromaArrayType is not equal to 0, the variable predC with x = 0.. puPartWidthC − 1, y = 0.. puPartHeightC − 1, and C in predC and predPartC being replaced by Cb or Cr is derived by
predC[ xP / SubWidthC + x, yP / SubHeightC + y ] = predPartC[ x, y ]
5.3.1 Derivation process for motion vector components and reference indices

Input to this process is a prediction partition index puPartIdx.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0, the chroma motion vectors mvCL0 and mvCL1,

· reference indices refIdxL0 and refIdxL1,

· prediction list utilization flags predFlagL0 and predFlagL1,

· a motion vector count variable subMvCnt.

For the derivation of the variables mvL0 and mvL1 as well as refIdxL0 and refIdxL1, the following applies.

· If PredMode is equal to MODE_SKIP or MODE_DIRECT and slice_type is equal to P, the derivation process for luma motion vectors for skipped and direct prediction units in P slices in subclause 5.2.1.1 is invoked with the output being the luma motion vectors mvL0 and reference indices refIdxL0, and predFlagL0 is set equal to 1. mvL1 and refIdxL1 are marked as not available and predFlagL1 is set equal to 0. The motion vector count variable subMvCnt is set equal to 1.

· Otherwise, if PredMode is equal to MODE_SKIP or MODE_DIRECT and slice_type is equal to B, the derivation process for luma motion vectors for skipped and direct PUs in B slices in subclause 5.2.1.2 is invoked with the output being the luma motion vectors mvL0, mvL1, the reference indices refIdxL0, refIdxL1, the motion vector count variable subMvCnt, and the prediction list utilization flags predFlagL0 and predFlagL1.

· Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX and in Pred_LX and in the syntax elements ref_idx_lX and mvd_lX, the following applies.

1. The variables refIdxLX and predFlagLX are derived as follows.

· If inter_pred_idc[ puPartIdx ] is equal to Pred_LX or to Pred_BI, 





refIdxLX = ref_idx_lX[ puPartIdx ]





predFlagLX = 1

· Otherwise, the variables refIdxLX and predFlagLX are specified by





refIdxLX = −1





predFlagLX = 0

2. The motion vector count variable subMvCnt is set equal to predFlagL0 + predFlagL1.

3. The variable mvresLX is derived as follows.




mvresLX[ 0 ] = mvres_lX[ puPartIdx ][ 0 ]




mvresLX[ 1 ] = mvres_lX[ puPartIdx ][ 1 ]
4. The variable mvdLX is derived as follows.




mvdLX[ 0 ] = mvd_lX[ puPartIdx ][ 0 ]




mvdLX[ 1 ] = mvd_lX[ puPartIdx ][ 1 ]

5. When predFlagLX is equal to 1, the variable mvpLX is derived as follows. 

· The derivation process for luma motion vector prediction in subclause 5.2.1.3 is invoked with puPartIdx, refIdxLX and mvdLX as the inputs and the output being mvpLX.

6. When predFlagLX is equal to 1, the horizontal component of luma motion vector is derived as follows.

· If mvresLX[ 0 ] is equal to 1, mvLX[ 0 ] = Round(mvpLX[ 0 ]) + mvdLX[ 0 ]*2

· Otherwise, mvLX[ 0 ] = mvpLX[ 0 ] + mvdLX[ 0 ]

7. When predFlagLX is equal to 1, the vertical component of luma motion vector is derived as follows.

· If mvresLX[ 1 ] is equal to 1, mvLX[ 1 ] = Round(mvpLX[ 1 ]) + mvdLX[ 1 ]*2

· Otherwise, mvLX[ 1 ] = mvpLX[ 1 ] + mvdLX[ 1 ]

        where Round( x ) = Sign( x ) * Floor( Abs( x ) + 0.5 ). 

When ChromaArrayType is not equal to 0 and predFlagLX (with X being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause - is invoked with mvLX and refIdxLX as input and the output being mvCLX.

5.3.1.1 Derivation process for luma motion vectors for skipped and direct prediction units in P slices

This process is invoked when PredMode is equal to MODE_SKIP or MODE_DIRECT and slice_type is equal to P.

Outputs of this process are the motion vector mvL0 and the reference index refIdxL0.

The reference index refIdxL0 for a skipped or direct prediction unit is derived as


refIdxL0 = 0.

For the derivation of the motion vector mvL0 of a MODE_SKIP or MODE_DIRECT in P, the process specified in subclause 5.2.1.3 is invoked with puPartIdx set equal to 0, listSuffixFlag set equal to 0, the both components of mvdLX set equal to 0 as inputs and the output is assigned to mvpLX. The output is directly assigned to mvL0, since the predictor is equal to the actual motion vector.

5.3.1.2 Derivation process for luma motion vectors for skipped and direct prediction units in B slices

This process is invoked when PredMode is equal to MODE_SKIP or MODE_DIRECT and slice_type is equal to B.

Outputs of this process are the reference indices refIdxL0, refIdxL1, the motion vectors mvL0 and mvL1, the motion vector count variable subMvCnt, and the prediction list utilization flags, predFlagL0 and predFlagL1.

For X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX, and in Pred_LX and in the syntax elements ref_idx_lX and mvd_lX, the following applies.

The variables refIdxLX and predFlagLX are derived as follows.

· If inter_pred_idc[ puPartIdx ] is equal to Pred_LX or to Pred_BI, 


refIdxLX = 0


predFlagLX = 1

· Otherwise, the variables refIdxLX and predFlagLX are specified by


refIdxLX = −1


predFlagLX = 0

The motion vector count variable subMvCnt is set equal to predFlagL0 + predFlagL1.

When predFlagLX is equal to 1, the derivation process for luma motion vector prediction for rectangular partitions in subclause 5.2.1.3 is invoked with puPartIdx, refIdxLX, and the both components of mvdLX set equal to 0 as the inputs and the output being mvpLX. The output is directly assigned to mvLX, since the predictor is equal to the actual motion vector.

5.3.1.3 Derivation process for luma motion vector prediction

Inputs to this process are
· the prediction unit partition index puPartIdx,

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1),
· the motion vector difference mvdLX

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

For the derivation of the variables mvpLX, the following applies

· If mv_competition_flag is equal to 1, the derivation process for luma motion vector prediction in explicit mode in subclause 5.2.1.3.1 is invoked with puPartIdx, refIdxLX and mvdLX as the inputs and the output being mvpLX.

· Otherwise, the derivation process for luma motion vector prediction in implicit mode in subclause 5.2.1.3.6 is invoked with puPartIdx and refIdxLX as the inputs and the output being mvpLX.

5.3.1.3.1 Derivation process for luma motion vector prediction with explicit mode

Inputs to this process are 

· the PU partition index puPartIdx,

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1),
· the motion vector difference mvdLX

Output of this process is the prediction mvpLX of the motion vector mvLX (with X being 0 or 1).

The motion vector predictor mvpLX is derived in the following ordered steps.

1. The derivation process for motion vector predictor candidates from neighboring prediction unit partitions in subclause 5.2.1.3.2 is invoked with puPartIdx, refIdxLX (with X being 0 or 1) as the inputs and the availability flags availableFlagLXN and the motion vectors mvLXN with N being replaced by A, B, or C as the output.
2. The derivation process for median luma motion vector prediction in subclause 5.2.1.3.3 is invoked with the motion vectors mvLXN and the availability flags availableFlagLXN with N being replaced by A, B, or C as the inputs and the output is assigned to the median motion vector predictor mvLXMed.
3. The motion vector predictor list, mvpListLX, is constructed of which elements are given as specified order:

· mvLXMed, median motion vector of available motion vectors

· mvLXA

· mvLXB

· mvLXC

4. If mv_competition_temporal_flag is equal to 1, the derivation process for temporal luma motion vector prediction in subclause 5.2.1.3.4 is invoked with puPartIdx, refIdxLX (with X being 0 or 1 for refIdxLX being refIdxL0 or refIdxL1, respectively) as the inputs and with the output being the availability flag availableFlagLXCol and the temporal motion vector predictor mvLXCol. If availableFlagLXCol is equal to 1, then mvLXCol is inserted at the end of mvpListLX.

5. If one of following conditions is true, mvLXMed is switched with mvLXN in the order of mvpListLX and mvLXN is derived as follows.

· If PartMode is one of the values among PART_2NxN, PART_2NxnU and PART_2NxnD, the following applies.



mvLXN = mvLXB
for puPartIdx is equal to 0


mvLXN = mvLXA 
otherwise

· Otherwise, If PartMode is one of the values among PART_Nx2N, PART_nLx2N and PART_nRx2N, the following applies.


mvLXN = mvLXA
for puPartIdx is equal to 0


mvLXN = mvLXC
otherwise

6. If several motion vectors have same value, the motion vectors are removed from the list except the motion vector which has the smallest order in the mvpListLX

7. If the number of elements NumMVPCand( LX, puPartIdx ) within the mvpListLX is greater than 1, the removal process of motion vector prediction in subclause 5.2.1.3.5 is invoked with mvpListLX and mvdLX as inputs and the output is modified mvpListLX.

8. If the number of elements NumMVPCand( LX, puPartIdx ) within the mvpListLX is equal to 1, mvp_idx_lX is set by 0
9. The motion vector of mvListLX[ mvp_idx_lX ] is assigned to mvpLX

5.3.1.3.2 Derivation process for motion vector predictor candidates
Inputs to this process are

· the prediction unit partition index puPartIdx,

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1),

Outputs of this process are (with N being replaced by A, B, or C)

· the motion vectors mvLXN of the neighbouring partitions,

· the availability flags availableFlagLXN of the neighbouring partitions.
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Fig. 5‑1 Spatial motion vector neighbours

The motion vector mvLXA and the availability flag availableFlagLXA are derived in the following ordered steps:

1. Let a set of nA sample location (xAk, yAk), with k = 0..nA-1, express relative to the upper left corner of prediction unit the partition. The set of sample locations (xAk, yAk) represent the sample locations immediately to the left of the left partition boundary with the offset SuSize vertically. nA is set equal to puPartHeight / SuSize.
2. Let the availability flag availableFlagLXA be initially set equal to 0 and the both components of mvLXA are set equal to 0.

3. For (xAk, yAk) from (xA0, yA0) to (xAnN-1, yAnN-1) where xAk+1 = xAk and yAk+1 = yAk + SuSize, the following applies until availableFlagLXA is equal to 1:

· The derivation process for the neighbouring locations specified in subclause 3.3.5 is invoked with (xAk, yAk) as input and the output is assigned to lcuAddrA and (xW, yW)

· If the lcuAddrA is available, 

· The prediction unit index and the partition index in the largest coding unit lcuAddrA covering the luma location (xW, yW) shall be assigned to puIdxA and puPartIdxA.
· If the prediction unit partition puPartIdxA is available, PredMode of puIdxA is not MODE_INTRA, predFlagLX of puIdxA is equal to 1, and the reference index refIdxLX of puIdxA is equal to the reference index refIdX of the current partition puPartIdx,
· availableFlagLXA is set equal to 1 and the motion vector mvLXA is set equal to the motion vector mvLX which has been assigned to the prediction unit partition puPartIdxA
The motion vector mvLXB and the availability flag availableFlagLXB are derived in the following ordered steps:

1. Let a set of nB sample location (xBk, yBk), with k = 0..nB-1, express relative to the upper left corner of prediction unit the partition. The set of sample locations (xBk, yBk) represent the sample locations immediately to the above of the above partition boundary with the offset SuSize horizontally. nB is set equal to puPartWidth / SuSize.

2. Let the availability flag availableFlagLXB be initially set equal to 0 and the both components of mvLXB are set equal to 0.

3. For (xBk, yBk) from (xB0, yB0) to (xBnN-1, yBnN-1) where xBk+1 = xBk + SuSize and yBk+1 = yBk, the following applies until availableFlagLXB is equal to 1:

· The derivation process for the neighbouring locations specified in subclause 3.3.5 is invoked with (xBk, yBk) as input and the output is assigned to lcuAddrB and (xW, yW)

· If the lcuAddrB is available, 

· The prediction unit index and the partition index in the largest coding unit lcuAddrB covering the luma location (xW, yW) shall be assigned to puIdxB and puPartIdxB.

· If the prediction unit partition puPartIdxA is available, PredMode of puIdxB is not MODE_INTRA, predFlagLX of puIdxB is equal to 1, and the reference index refIdxLX of puIdxB is equal to the reference index refIdX of the current partition puPartIdx,

· availableFlagLXB is set equal to 1 and the motion vector mvLXB is set equal to the motion vector mvLX which has been assigned to the prediction unit partition puPartIdxB

The motion vector mvLXC are derived in the following ordered steps:

1. The derivation process for neighbouring partitions in subclause 3.3.4.4 is invoked with lcuAddr, puIdx and puPartIdx as input and the output is is assigned to lcuAddrN, puIdxN and puPartIdxN with N being replaced by C, D or E.

2. Let the both components of mvLXC are set equal to 0.

3. For the derivation of the motion vectors mvLXC, the following applies:

· If the prediction unit partition puPartIdxC is available, PredMode of puIdxC is not MODE_INTRA, predFlagLX of puPartIdxC is equal to 1, and the reference index refIdxLX of puPartIdxC is equal to the reference index refIdX of the current partition puPartIdx, 
· availableFlagLXC is set equal to 1 and mvLXC is set equal to the motion vector which has been assigned to the partition puPartIdxC

· Otherwise, if the prediction unit partition puPartIdxD is available, PredMode of puIdxD is not MODE_INTRA, predFlagLX of puPartIdxD is equal to 1, and the reference index refIdxLX of puPartIdxD is equal to the reference index refIdX of the current partition puPartIdx, 
· availableFlagLXC is set equal to 1 and mvLXC is set equal to the motion vector which has been assigned to the partition puPartIdxD

· Otherwise, if the prediction unit partition puPartIdxE is available, PredMode of puIdxE is not MODE_INTRA, predFlagLX of puPartIdxE is equal to 1, and the reference index refIdxLX of puPartIdxE is equal to the reference index refIdX of the current partition puPartIdx, 
· availableFlagLXC is set equal to 1 and mvLXC is set equal to the motion vector which has been assigned to the partition puPartIdxE

5.3.1.3.3 Derivation process for median luma motion vector prediction

Inputs to this process are

· the motion vectors mvLXN (with N being replaced by A, B, or C) of the neighbouring partitions,

· the availability flags availableFlagLXN with N being replaced by A, B, or C

Output of this process is the motion vector prediction mvpLXMed

For the derivation of the variables mvpLX, the following applies

· If all of the availability flags availableFlagLXN (with N being replaced by A, B, or C) are equal to 0, the both components of mvLXMed are set equal to 0.

· Otherwise, if one and only one of availableFlagLXA, availableFlagLXB and availableFlagLXC is equal to 1, availableFlagLXN is set equal to 1 and the motion vector mvLXN is assigned to the median motion vector prediction mvpLXMed


mvLXMed = mvLXN

· Otherwise, each component of the median motion vector prediction mvLXM is given by the median of the corresponding vector components of the motion vector mvLXA, mvLXB, and mvLXC


mvLXMed [ 0 ] = Median( mvLXA[ 0 ], mvLXB[ 0 ], mvLXC[ 0 ] )


mvLXMed [ 1 ] = Median( mvLXA[ 1 ], mvLXB[ 1 ], mvLXC[ 1 ] )

5.3.1.3.4 Derivation process for temporal luma motion vector prediction

Inputs to this process are

· the prediction unit partition index puPartIdx,

· the reference index of the current prediction unit partition refIdxLX (with X being 0 or 1),

Outputs of this process are

· the motion vector prediction mvLXCol,

· the availability flag availableFlagLXCol 

The function RefPicOrderCnt( pic, refidx, LX ) is specified by the value of PicOrderCnt of the picture that is the reference picture RefPicListX[ refidx ] of pic with X being 0 or 1. PicOrderCnt of reference pictures of pic shall be maintained until pic is not marked as “non-exisiting.”

Depending on the values of slice_type and collocated_from_l0_flag, the following applies
· If slice_type is equal to B and collocated_from_l0_flag is equal to 1, mvLXCol is specified as follows.

· The variable colPic specifies the picture that contains the co-located partition as specified by RefPicList0[ 0 ]

· The co-located largest coding unit address lcuAddrCol, prediction unit index puIdxCol and prediction unit partition index puPartIdxCol are specified by

lcuAddrCol
= lcuAddr


puIdxCol

= puIdx


puPartIdxCol
= puPartIdx

· If the prediction unit puIdxCol is coded in an intra prediction mode, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (the prediction unit puIdxCol is not coded in an intra prediction mode), the prediction utilization flag predFlagL1Col, the motion vector mvCol and the reference index refIdxCol are set equal to PredFlagL1[ puPartIdxCol ], MvL1[puPartIdxCol ] and RefIdxL1[ puPartidxCol ], respectively, which are the prediction utilization flag, the motion vector mvL1 and the reference index refIdxL1 that have been assigned to the prediction unit partition puPartIdxCol.

· If predFlagL1Col is equal to 0, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (predFlagL1Col is equal to 1), availableFlagLXCol is set equal to 1 and mvLXCol is derived as follows.

· If PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L1 ) ) is equal to PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) ),




mvLXCol = mvCol

· Otherwise, mvLXCol is derived as scaled version of the motion vector mvCol as specified below




tx = ( 16384 + Abs( td / 2 ) ) / td




DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 )




mvLXCol = ( DistScaleFactor * mvCol + 128 ) >> 8



where td and tb are derived as




td = Clip3( -128, 127, PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L1 ) )




tb = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) )

· Otherwise, if slice_type is equal to B and collocated_from_l0_flag is equal to 0, mvLXCol is specified as follows.

· The variable colPic specifies the picture that contains the co-located partition as specified by RefPicList1[ 0 ]

· The co-located largest coding unit address lcuAddrCol, prediction unit index puIdxCol and prediction unit partition index puPartIdxCol are specified by

lcuAddrCol
= lcuAddr


puIdxCol

= puIdx


puPartIdxCol
= puPartIdx

· If the prediction unit puIdxCol is coded in an intra prediction mode, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (the prediction unit puIdxCol is not coded in an intra prediction mode), the prediction utilization flag predFlagL0Col, the motion vector mvCol and the reference index refIdxCol are set equal to PredFlagL0[ puPartIdxCol ], MvL0[puPartIdxCol ] and RefIdxL0[ puPartidxCol ], respectively, which are the prediction utilization flag, the motion vector mvL0 and the reference index refIdxL0 that have been assigned to the prediction unit partition puPartIdxCol.

· If predFlagL0Col is equal to 0, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (predFlagL0Col is equal to 1), availableFlagLXCol is set equal to 1 and mvLXCol is derived as follows.

· If PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) ) is equal to PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) ),




mvLXCol = mvCol
· Otherwise, mvLXCol is derived as scaled version of the motion vector mvCol as specified below




tx = ( 16384 + Abs( td / 2 ) ) / td




DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 )




mvLXCol = ( DistScaleFactor * mvCol + 128 ) >> 8



where td and tb are derived as




td = Clip3( -128, 127, PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) )




tb = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) )

· Otherwise (slice_type is equal to P), mvLXCol is specified as follows.

· The variable colPic specifies the picture that contains the co-located partition as specified by RefPicList0[ 0 ]

· The co-located largest coding unit address lcuAddrCol, prediction unit index puIdxCol and prediction unit partition index puPartIdxCol are specified by

lcuAddrCol
= lcuAddr


puIdxCol

= puIdx


puPartIdxCol
= puPartIdx

· If the prediction unit puIdxCol is coded in an intra prediction mode, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (the prediction unit puIdxCol is not coded in an intra prediction mode), the prediction utilization flag predFlagL0Col, the motion vector mvCol and the reference index refIdxCol are set equal to PredFlagL0[ puPartIdxCol ], MvL0[puPartIdxCol ] and RefIdxL0[ puPartidxCol ], respectively, which are the prediction utilization flag, the motion vector mvL0 and the reference index refIdxL0 that have been assigned to the prediction unit partition puPartIdxCol.

· If predFlagL0Col is equal to 0, both components of mvLXCol are set qual to 0 and availableFlagLXCol is set equal to 0.

· Otherwise (predFlagL0Col is equal to 1), availableFlagLXCol is set equal to 1 and mvLXCol is derived as follows.

· If PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) ) is equal to PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) ),




mvLXCol = mvCol
· Otherwise, mvLXCol is derived as scaled version of the motion vector mvCol as specified below




tx = ( 16 384 + Abs( td / 2 ) ) / td




DistScaleFactor = Clip3( -1024, 1023, ( tb * tx + 32 ) >> 6 )




mvLXCol = ( DistScaleFactor * mvCol + 128 ) >> 8



where td and tb are derived as




td = Clip3( -128, 127, PicOrderCnt( colPic ) – RefPicOrderCnt( colPic, refIdxCol, L0 ) )




tb = Clip3( -128, 127, PicOrderCnt( currPic ) – RefPicOrderCnt( currPic, refIdxCol, LX ) )

5.3.1.3.5 Removal process for motion vector prediction
Inputs to this process are

· the motion vector predictor list mvpListLX,

· the motion resolution mvresLX,

· the motion vector difference mvdLX

Output of this process is the modified motion vector predictor list mvpListLX.

The function EstMvdBits( mvd ) of a motion vector difference mvd is specified as follows:


EstMvdBits( mvd ) = EstMvdCompBits( mvd [ 0 ] ) + EstMvdCompBits( mvd [ 1 ] )

The function EstMvdCompBits( mvd[ c ] ) of a component of a motion vector difference mvd (with c being 0 or 1), used in the above formula is defined as the value of variable estMvdCompBits derived as specified by the following pseudo-code: [Ed.: to be tabularized]
estMvdCompBits = 1

uiTemp = ( mvd[ c ] <= 0 ) ? ( -mvd[ c ] << 1 ) + 1 : ( mvd[ c ] << 1 )

while ( 1 != uiTemp ) {



uiTemp >>= 1



estMvdCompBits += 2

}

The variable currentEstMvdBits is set equal to EstMvdBits( mvdLX ).
For each mvpCandidate in mvpListLX, the following applies 

· If mvresLX is equal to 0, the variable currentEstMvdBits is set equal to EstMvdBits( mvdLX) and for each mvpCandidate in mvpListLX, the following applies 

· The variable motion vector mvCandidate is derived as


mvCandidate[ 0 ] = Round(mvpCandidate[ 0 ])/2 + mvdLX[ 0 ]


mvCandidate[ 1 ] = Round(mvpCandidate[ 1 ])/2+ mvdLX[ 1 ]

· For each motion vector canndidate mvpOtherCandidate in mvpListLX except mvpCandidate, the variable motion vector difference mvdOtherCandidate is derived as 


mvdOtherCandidate [ 0 ] =( mvCandidate [ 0 ] - Round(mvpOtherCandidate [ 0 ])/2)


mvdOtherCandidate [ 1 ] = (mvCandidate [ 1 ] - Round(mvpOtherCandidate [ 1 ])/2)

· If any of EstMvdBits( mvdOtherCandidate) in mvpListX is smaller than currentEstMvdBits, mvpCandidate is removed from mvpListLX

· Otherwise, the variable currentEstMvdBits is set equal to EstMvdBits( mvdLX ) and for each mvpCandidate in mvpListLX, the following applies 

· The variable motion vector mvCandidate is derived as


mvCandidate[ 0 ] = mvpCandidate[ 0 ] + mvdLX[ 0 ]


mvCandidate[ 1 ] = mvpCandidate[ 1 ] + mvdLX[ 1 ]

· For each motion vector canndidate mvpOtherCandidate in mvpListLX except mvpCandidate, the variable motion vector difference mvdOtherCandidate is derived as 


mvdOtherCandidate [ 0 ] = mvCandidate [ 0 ] - mvpOtherCandidate [ 0 ]


mvdOtherCandidate [ 1 ] = mvCandidate [ 1 ] - mvpOtherCandidate [ 1 ]

· If any of EstMvdBits(mvdOtherCandidate) in mvpListX is smaller than currentEstMvdBits, mvpCandidate is removed from mvpListLX

5.3.1.3.6 Derivation process for luma motion vector prediction with implicit mode

[Ed.: motion vector prediction when mv_competition_flag = 0]
5.3.1.4 Derivation process chroma motion vectors

This process is only invoked when ChromaArrayType is not equal to 0.

Inputs to this process are a luma motion vector mvLX and a reference index refIdxLX.

Output of this process is a chroma motion vector mvCLX.

A chroma motion vector is derived from the corresponding luma motion vector.

The precision of the chroma motion vector components is 1 ÷ ( 4 * SubWidthC ) horizontally and 1 ÷ ( 4 * SubHeightC ) vertically.

NOTE – For example, when using the 4:2:0 chroma format, since the units of luma motion vectors are one-quarter luma sample units and chroma has half horizontal and vertical resolution compared to luma, the units of chroma motion vectors are one-eighth chroma sample units, i.e., a value of 1 for the chroma motion vector refers to a one-eighth chroma sample displacement. For example, when the luma vector applies to 8x16 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 4x8 chroma samples and when the luma vector applies to 4x4 luma samples, the corresponding chroma vector in 4:2:0 chroma format applies to 2x2 chroma samples.

For the derivation of the motion vector mvCLX, the following applies.


mvCLX[ 0 ] = mvLX[ 0 ]/2

mvCLX[ 1 ] = mvLX[ 1 ]/2
5.3.2 Decoding process for inter prediction sample

Inputs to this process are

· the prediction unit partition index puPartIdx,

· variables specifyng prediction unit partition width and height for luma and chroma, puPartWidth, puPartHeight, puPartWidthC and puPartHeightC

· luma motion vectors mvL0 and mvL1 and when ChromaArrayType is not equal to 0 chroma motion vectors mvCL0 and mvCL1
· reference indices refIdxL0 and refIdxL1,
· prediction list utilization flags, predFlagL0 and predFlagL1
Outputs to this process are

· inter prediction samples predPart, which are a (puPartWidth)x(puPartHeight) array predPartL of prediction luma samples, and when ChromaArrayType is not equal to 0 two (puPartWidthC)x(puPartHeightC) arrays predPartCb, predPartCr of prediction chroma samples, one for each of the chroma components Cb and Cr.

Let predPartL0L and predPartL1L be (puPartWidth)x(puPartHeight) arrays of predicted luma sample values and when ChromaArrayType is not equal to 0 predPartL0Cb, predPartL1Cb, predPartL0Cr, and predPartL1Cr be (puPartWidthC)x(puPartHeightC) arrays of predicted chroma sample values.
When predFlagLX is equal to 1, the following applies.
· The reference picture consisting of an ordered two-dimensional array refPicLXL of luma samples and when ChromaArrayType is not equal to 0 two ordered two-dimensional arrays refPicLXCb and refPicLXCr of chroma samples is derived by invoking the process specified in subclause 5.2.2.1 with refIdxLX and RefPicListX given as input.
· The array predPartLXL and when ChromaArrayType is not equal to 0 the arrays predPartLXCb and predPartLXCr are derived by invoking the process specified in subclause 5.2.2.2 with the current partition specified by puPartIdx, the motion vectors mvLX, mvCLX (if available), and the reference arrays with refPicLXL, refPicLXCb (if available), and refPicLXCr (if available) given as input.
For C being replaced by L, Cb (if available), or Cr (if available), the array predPartC of the prediction samples of component C is derived by invoking the process specified in subclause 5.2 with the current partition specified by puPartIdx, prediction utilization flags predFlagL0 and predFlagL1, the arrays predPartL0C and predPartL1C given as input.
5.3.2.1 Reference picture selection process

[Ed.: same as H.264/AVC]
5.3.2.2 Fractional sample interpolation process

Inputs to this process are

· the prediction unit partition index puPartIdx

· the width and height puPartWidth, puPartHeight of this prediction unit partition in luma-sample units

· a luma motion vector mvLX given in one-eighth sample units.

· when ChromaArrayType is not equal to 0, a chroma motion vector mvCLX with a precision of one-(‑(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically, and
· the selected reference picture sample arrays refPicLXL, and when ChromaArrayType is not equal to 0, refPicLXCb, and refPicLXCr. 

Outputs of this process are

· a puPartWidth*puPartHeight array predPartLXL of prediction luma sample values
· when ChromaArrayType is not equal to 0, two (puPartWidthC)x(puPartHeightC) arrays predPartLXCb, and predPartLXCr of prediction chroma sample values

Let (xAL, yAL) be the location given in full-sample units of the upper-left luma sample of the current partition given by puPartIdx relative to the upper-left luma sample location of the given two-dimensional array of luma samples.

Let (xIntL, yIntL) be a luma location given in full-sample units and (xFracL, yFracL) be an offset given in one-eighth sample units. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicLXL, refPicLXCb, and refPicLXCr .

For each luma sample location (0<=xL < puPartWidth, 0<=yL < puPartHeight) inside the prediction luma sample array predPartLXL, the corresponding predicted luma sample value predPartLXL[xL, yL] is derived as specified by the following ordered steps.

· The variables xIntL, yIntL, xFracL, and yFracL are derived by 


xIntL = xAL +( mvLX[0] >> 3 ) + xL
       yIntL = yAL +( mvLX[1] >> 3 ) + yL
       xFracL =mvLX[0] & 7
       yFracL =mvLX[1] & 7
· The luma sample value predPartLXL[ xL, yL ] is derived by invoking the process specified in subclause 5.2.2.2.1 with ( xIntL, yIntL ), ( xFracL, yFracL ) and refPicLXL given as input.
When ChromaArrayType is not equal to 0, the following applies.

Let ( xIntCC, yIntCC ) be a chroma location given in full-sample units and ( xFracCC, yFracCC ) be an offset given in one-(‑(4*SubWidthC)-th chroma-sample units horizontally and one-(4*SubHeightC)-th chroma-sample units vertically. These variables are used only inside this subclause for specifying general fractional-sample locations inside the reference sample arrays refPicLXCb and refPicLXCr.

For each chroma sample location (0 <= xC < puPartWidthC, 0 <= yC < puPartHeightC) inside the prediction chroma sample arrays predPartLXCb and predPartLXCr, the corresponding prediction chroma sample values predPartLXCb[ xC, yC ] and predPartLXCr[ xC, yC ] are derived as specified by the following ordered steps.

1. Depending on ChromaArrayType, the variables xIntC, yIntC, xFracC, and yFracC are derived as follows 

· If ChromaArrayType is equal to 1,

xIntC = ( xAL / SubWidthC ) + ( mvCLX[ 0 ] >> 3 ) + xC

yIntC = ( yAL / SubHeightC ) + ( mvCLX[ 1 ] >> 3 ) + yC

xFracC = mvCLX[ 0 ] & 7


yFracC = mvCLX[ 1 ] & 7

· Otherwise, if ChromaArrayType is equal to 2, 


xIntC = (xAL / SubWidthC ) + ( mvCLX[ 0 ] >> 3 ) + xC 

yIntC = (yAL / SubHeightC ) + ( mvCLX[ 1 ] >> 2 ) + yC 

xFracC = mvCLX[ 0 ] & 7

yFracC = (mvCLX[ 1 ] & 3)<<1

· Otherwise, if ChromaArrayType is equal to 3, 


xIntC = (xAL / SubWidthC ) + ( mvCLX[ 0 ] >> 2 ) + xC 

yIntC = (yAL / SubHeightC ) + ( mvCLX[ 1 ] >> 2 ) + yC

xFracC = (mvCLX[ 0 ] & 3)<<1


yFracC =( mvCLX[ 1 ] & 3)<<1

2. Depending on ChromaArrayType, the following applies. 

· If ChromaArrayType is not equal to 3, the following applies
· The prediction sample value predPartLXCb[ xC, yC ] is derived by invoking the process specified in subclause 5.2.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCb given as input. 

· The prediction sample value predPartLXCr[ xC, yC ] is derived by invoking the process specified in subclause 5.2.2.2.2 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCr given as input
· Otherwise (ChromaArrayType is equal to 3), the following applies..

· The prediction sample value predPartLXCb[ xC, yC ] is derived by invoking the process specified in subclause 5.2.2.2.1 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCb given as input.

· The prediction sample value predPartLXCr[ xC, yC ] is derived by invoking the process specified in subclause 5.2.2.2.1 with ( xIntC, yIntC ), ( xFracC, yFracC ) and refPicLXCr given as input.

5.3.2.2.1 Luma sample interpolation process

Inputs to this process are 

· a luma location in full-sample units (xIntL, yIntL), 

· a luma location offset in fractional-sample units (xFracL, yFracyL), and
· the luma sample array of the selected reference picture refPicLXL
Outputs of this process is a predicted luma sample value predPartLXL[ xL, yL ].

5.3.2.2.1.1 Luma sample interpolation process for mc_interpolation_idc equal to 0 and 1

Table 5‑4 and Table 5‑5 specify the 12-tap filter coefficients and 6-tap filter coefficients for each quarter sample position, respectively.
Table 5‑4 12-tap filter coefficients for each quarter sample position

	Position (xFracL or yFracL)
	filterCoeff[ Position ][ -5...6 ]

	1
	-1, 4, -7, 13, -27, 249, 36, -16, 9, -6, 3, -1

	2
	-1, 5, -12, 20,-40, 229, 76, -32, 16, -8, 4,-1

	3
	-3, 9, -15, 27,-51, 200,119,-44, 24, -14, 7, -3

	4
	-1, 8, -16, 24,-48, 161, 161, -48, 24, -16, 8,-1 

	5
	-1,6,-12, 20, -40,119, 195, -44,22,-14, 6, -1

	6 
	-1, 4, -8, 16, -32, 76, 229, -40, 20, -12, 5,-1 

	7
	-1, 3, -6, 9, -16, 36,249, -27, 13,-7, 4, -1


Table 5‑5 6-tap filter coefficients for each quarter sample position

	Position (xFracL or yFracL)
	filterCoeff[ Position ][ -2...3 ]

	1
	5, -22, 247, 35, -13, 4

	2
	8, -32, 224, 72, -24, 8

	3
	11, -42, 196, 118, -36, 10

	4
	8, -40, 160, 160, -40, 8

	5
	10, -36, 196, 118, -42, 11

	6 
	8, -24, 72, 224, -32, 8

	7
	4, -13, 35,247, -22, 5



If mc_interpolation_idc is equal to 0, the 12-tap filter specified in Table 5‑4 shall be used and the variable M is set equal to 6, otherwise if mc_interpolation_idc is equal to 1, the 6-tap filter specified in Table 5‑5 shall be used and the variable M is set equal to 3. [Ed.: other values of mc_interpolation_idc to be added]
In the type-1 filtering process in horizontal direction, the predicted value x with quarter sample position (xFracL, 0) is derived as follows where xl are full samples aligned with x in horizontal direction. 
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In the type-1 filtering process in vertical direction, the predicted value x with quarter sample position (0, yFracyL) is derived as follows where xl are full samples aligned with x in vertical direction.
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In the type-2 filtering process in horizontal direction, the predicted value x with quarter sample position (xFracL, 0) is derived as follows where xl are full samples aligned with x in horizontal direction.
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In the type-2 filtering process in vertical direction, the predicted value x with quarter sample position (xFracL, yFracL) is derived as follows where xl are input quarter samples with (xFracL, 0) which are aligned with x in vertical direction.
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Depending on (xFracL, yFracyL), the following applies.

· If both xFracL and yFracyL are 0, no filtering process is performed.

· Otherwise, if xFracL is not 0 and yFracyL is 0, type-1 filtering process in horizontal direction is performed with full samples aligned with in horizontal direction as inputs.

· Otherwise, if xFracL is 0 and yFracyL is not 0, type-1 filtering process in vertical filtering is performed with full samples aligned with in vertical directions as inputs.

· Otherwise, type-2 filtering process in vertical direction is performed using quarter samples with (xFracyL, 0) which were derived by type-2 filtering process in horizontal direction.

· Filtered output x shall be assigned to the prediction unit partition as


predPartLXL[ xL, yL ] = Clip1Y( x )
5.3.2.2.1.2 Luma sample interpolation process for mc_interpolation_idc equal to 2

[image: image56.png]A6

B6

c6

88

D6

E6

F6

f

D5

E5

E5

Ad

ce

E4

F4

bb

B3

Cc3

D3

E3

F3

B2

c2

D2

E2

F2

Al

Bl

Cc1

D1

El

F1




 

Notation of image samples[Ed.: notations need to be unified between different interpolation filters]
If mc_interpolation_idc is equal to 2, the predicted value x with quarter sample position (yFracL, xFracL) is derived as follows: 

	(yFracL ,xFracL)
	predicted value, x

	(0,2)
	(3*C1 – 15*C2 + 111*C3 + 37*C4 – 10*C5 + 2*C6 + 64)>>7

	(0,4)
	(3*C1 – 17*C2 + 78*C3 + 78*C4 – 17*C5 + 3*C6 + 64)>>7

	(0,6) 
	(2*C1 – 10*C2 + 37*C3 + 111*C4 – 15*C5 + 3*C6 + 64)>>7

	(2,0) 
	(3*A3 – 15*B3 + 111*C3 + 37*D3 – 10*E3 + 2*F3 + 64)>>7

	(2,2) 
	(3*A1 – 15*B2 + 111*C3 + 37*D4 – 10*E5 + 2*F6 + 64)>>7

	(2,4) 
	(3*(A1+A6) – 15*(B2+B5) + 111*(C3+C4) + 37*(D4+D3) – 10*(E5+E2) + 2*(F6+F1) + 128)>>8

	(2,6) 
	(3*A6 – 15*B5 + 111*C4 + 37*D3 – 10*E2 + 2*F1 + 64)>>7

	(4,0) 
	(3*A3 – 17*B3 + 78*C3 + 78*D3 – 17*E3 + 3* F3 + 64)>>7

	(4,2) 
	(3*(A1+F1) – 15*(B2+E2) + 111*(C3+D3) + 37*(D4+C4) – 10*(E5+B5) + 2*(F6+A6) + 128)>>8

	(4,4) 
	(5*(B3+B4+C2+C5+D2+D5+E3+E4) + 22*(C3+C4+D3+D4) + 64)>>7

	(4,6) 
	(2*(A1+F1) – 10*(B2+E2) + 37*(C3+D3) + 111*(D4+C4) – 15*(E5+B5) + 3*(F6+A6) + 128)>>8

	(6,0) 
	(2*A3 – 10*B3 + 37*C3 + 111*D3 – 15*E3 + 3* F3 + 64)>>7

	(6,2) 
	(2*A6 – 10*B5 + 37*C4 + 111*D3 – 15*E2 + 3*F1 + 64)>>7

	(6,4) 
	(2*(A1+A6) – 10*(B2+B5) + 37*(C3+C4) + 111*(D4+D3) – 15*(E5+E2) + 3*(F6+F1) + 128)>>8

	(6,6) 
	(2*A1 – 10*B2 + 37*C3 + 111*D4 – 15*E5 + 3*F6 + 64)>>7


· Filtered output x shall be assigned to the prediction unit partition as


predPartLXL[ xL, yL ] = Clip1Y( x )

For each one-eighth sample position, refer to 5.2.2.2.1.1.

5.3.2.2.1.3 Luma sample interpolation process for mc_interpolation_idc equal to 3 and 4
Table 5-5, Table 5-6 and Table 5-7 specify 6-tap filter coefficients, 8-tap filter coefficients and 12-tap filter coefficients for each quarter sample position, respectively. For each one-eighth sample position, refer to 5.2.2.2.1.1.

Table 5‑5 6-tap filter coefficients for each quarter sample position

	filtIdx
	Position (xFracL or yFracL)
	filterCoeff[ Position ][ -2...3 ]

	0
	2
	 8,  -32,  224,   72,  -24,    8

	
	4
	 8,  -40,  160,  160,  -40,    8

	
	6
	 8,  -24,   72,  224,  -32,    8

	1
	2
	 6,  -30,  222,   74,  -20,    4

	
	4
	 6,  -34,  156,  156,  -34,    6

	
	6
	 4,  -20,   74,  222,  -30,    6

	2
	2
	-6,    8,  182,   86,  -12,   -2

	
	4
	-8,   -8,  144,  144,   -8,   -8

	
	6
	-2,  -12,   86,  182,    8,   -6

	3
	2
	12,  -36,  226,   70,  -24,    8

	
	4
	14,  -46,  160,  160,  -46,   14

	
	6
	 8,  -24,   70,  226,  -36,   12



Table 5‑6 8-tap filter coefficients for each quarter sample position

	filtIdx
	Position (xFracL or yFracL)
	filterCoeff[ Position ][ -3...4 ]

	4
	2
	 -3, 12, -37, 229, 71, -21, 6, -1 

	
	4
	 -3, 12, -39, 158, 158, -39, 12, -3

	
	6
	 -1, 6, -21, 71, 229, -37, 12, -3

	5
	2
	 -4, 16, -32, 228, 68, -28, 12, -4

	
	4
	 -1, 9, -40, 160, 160, -40, 9, -1

	
	6
	 -4, 12, -28, 68, 228, -32, 16, -4


Table 5‑7 12-tap filter coefficients for each quarter sample position

	filtIdx
	Position (xFracL or yFracL)
	filterCoeff[ Position ][ -5...6 ]

	6
	2
	 -1, 5, -12, 20, -40, 229, 76, -32, 16, -8, 4, -1

	
	4
	 -1, 8, -16, 24, -48, 161, 161, -48, 24, -16, 8, -1

	
	6
	 -1, 4, -8, 16, -32, 76, 229, -40, 20, -12, 5, -1



If mc_interpolation_idc is equal to 3, 12-tap filter specified in Table 5-7 and 8-tap filter specified in Table 5-6 shall be used, otherwise if mc_interpolation_idc is equal to 4, the 6-tap filter specified in Table 5-5 shall be used. 

filterCoeff points to the filtIdx according to sifo_filters[i], where i = (xFracL+(yFracyL<<2))>>1. 
If mc_interpolation_idc is equal to 4, then filtIdx is derived as follows:

	sifo_filter[i]
	i=1,2,3,4,8,12
	i=5,6,7,9,10,11,13,14,15

	
	filtIdx
	(filtIdxV, filtIdxH)

	0
	0
	0,0

	1
	1
	1,1

	2
	2
	2,2

	3
	3
	3,3

	4
	-
	0,1

	5
	-
	0,2

	6
	-
	0,3

	7
	-
	1,0

	8
	-
	1,2

	9
	-
	1,3

	10
	-
	2,0

	11
	-
	2,1

	12
	-
	2,3

	13
	-
	3,0

	14
	-
	3,1

	15
	-
	3,2


If mc_interpolation_idc is equal to 3, then filtIdx is derived as follows:

	sifo_filter[i]
	i=1,2,3,4,8,12
	i=5,6,7,9,10,11,13,14,15

	
	filtIdx
	(filtIdxV, filtIdxH)

	0
	6
	5,5

	1
	4
	4,4

	2
	-
	5,4

	3
	-
	4,5


If mc_interpolation_idc is equal to 4, the variable M is set to 3. If mc_interpolation_idc is equal to 3 and if filtIdx is equal to 0, the variable M is set to 6, otherwise if filtIdx is greater than 0, the variable M is set to 4.

In the type-1 filtering process in horizontal direction, the predicted value x with quarter sample position (xFracL, 0) is derived as follows where xl are full samples aligned with x in horizontal direction. 
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In the type-1 filtering process in vertical direction, the predicted value x with quarter sample position (0, yFracyL) is derived as follows where xl are full samples aligned with x in vertical direction.
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In the type-2 filtering process in horizontal direction, the predicted value x with quarter sample position (xFracL, 0) is derived as follows where xl are full samples aligned with x in horizontal direction.
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In the type-2 filtering process in vertical direction, the predicted value x with quarter sample position (xFracL, yFracL) is derived as follows where xl are input quarter samples with (xFracL, 0) which are aligned with x in vertical direction.
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Depending on (xFracL, yFracyL), the following applies.

· If both xFracL and yFracyL are 0, no filtering process is performed.

· Otherwise, if xFracL is not 0 and yFracyL is 0, type-1 filtering process in horizontal direction is performed with full samples aligned with in horizontal direction as inputs.

· Otherwise, if xFracL is 0 and yFracyL is not 0, type-1 filtering process in vertical filtering is performed with full samples aligned with in vertical directions as inputs.

· Otherwise, type-2 filtering process in vertical direction is performed using quarter samples with (xFracyL, 0) which were derived by type-2 filtering process in horizontal direction.
· Filtered output x shall be assigned to the variable x0 as


x0 = Clip1Y( x )

Depending on zero_offset_flag, the following applies.

· If zero_offset_flag is 0, the variable sifo_offset is set to 0.

· Otherwise, (if zero_offset_flag is not 0), and if predFlagLX is equal to 1, and
-  if refIdxLX is equal to 0, the variable sifo_offset is set to sifo_offset_lX[i], where i = (xFracL+(yFracyL<<2))>>1.
-  if refIdxLX is greater than 0, the variable sifo_offset is set to img_offset_lX[refIdxLX]
· Final output x0 shall be assigned to the prediction unit partition as


predPartLXL[ xL, yL ] = Clip1Y( x0 + sifo_offset).
5.3.2.2.2 Chroma sample interpolation process

[Ed.: same as H.264/AVC]
5.4 Transform coefficient decoding process and picture construction process

Inputs to this process are LumaLevel (if available), ChromaLevel (if available), and available inter or intra prediction sample arrays for the current transform unit for the applicable components predL, predCb, or predCr.

Outputs of this process are the constructed sample arrays prior to the deblocking filter process for the applicable components S'L, S'Cb, or S'Cr.

This subclause specifies transform coefficient decoding and picture construction prior to the deblocking filter process.

When the prediction unit which current transform unit belongs to is coded as MODE_SKIP, all values of LumaLevel and ChromaLevel are set equal to 0 for the current transform unit.

When the prediction unit which current transform unit belongs to is coded as MODE_INTRA and the value of planar_flag equals to 1 for the corresponding prediction unit, all values of LumaLevel and ChromaLevel are set equal to 0 for the current transform unit.

5.4.1 Specification of transform decoding process for luma transform unit

The variable LumaLevel contains the levels for the luma transform coefficients for the luma block with index tuIdx.
For a luma block indexed by tuIdx, the following ordered steps are specified: 
1. The inverse scanning process for the luma transform coefficients as described specified in subclause 5.3.3 is invoked with LumaLevel as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for the residual block as specified in subclause 5.3.5 is invoked with c as the input and r as the output.

3. The position of the upper-left luma sample of the current largest coding unit is derived by invoking the inverse largest coding unit scanning process in subclause 3.2.1 with address lcuAddr as input and the output being assigned to ( xL, yL ).
4. The position of the upper-left luma sample of the current prediction unit puIdx inside the largest coding unit is derived by invoking the inverse prediction unit scanning process in subclause 3.2.4.1 with puIdx as input and the output being assigned to ( xP, yP ).
5. The position of the upper-left sample of the transform unit with index tuIdx inside the prediction unit is derived by invoking the inverse transform unit scanning process in subclause 3.2.4.3 with tuIdx as the input and the output being assigned to ( xO, yO ).
6. The NxN array u with elements uij for i, j = 0..N-1 is derived in raster order as 

· Let xS be xL + xP + xT and yS be yL + yP + yT.

· If PredMode is equal to MODE_INTRA and combined_intra_pred_flag is equal to 1,



openPred0,0=( 3*S’L[ xS–1, yS ] + 3*S’L[ xS , yS–1 ] + 2*S’L[ xS–1, yS–1 ] + 4) >> 3



if i>0, openPredi,0 = ( 3*S’L[ xS–1, yS+i ] + 3*ui-1,0 + 2*S’L[ xS–1, yS+i–1 ] + 4 ) >> 3



if j>0, openPred0,j = ( 3*u0,j-1 + 3*S’L[ xS+j , yS–1 ] + 2*S’L[ xS+j–1, yS–1 ] + 4 ) >> 3



if i>0 and j>0, openPredi,j = ( 3*ui,j-1 + 3*ui-1,j + 2*ui-1,j-1 + 4 ) >> 3
 

[Ed.: availability check of S’L is needed.]


uij = Clip1Y( ( ( predL[ xO + j, yO + i ] + openPredi,j + 1 ) >> 1 ) + rij )

· Otherwise



uij = Clip1Y( predL[ xO + j, yO + i ] + rij )
7. The picture construction process prior to deblocking filter process in subclause 5.3.6 is invoked with u and tuIdx as the inputs.

5.4.2 Specification of transform decoding process for chroma transform unit

This process is invoked for each chroma component Cb and Cr separately when ChromaArrayType is not equal to 0.

For each chroma component, the variable ChromaLevel[ iCbCr ], with iCbCr set equal to 0 for Cb and iCbCr set equal to 1 for Cr, contain the levels for both components of the chroma transform coefficients.
For each chroma component, the transform decoding proceeds separately in the following ordered steps:

1. The inverse scanning process for chroma transform coefficients as described specified in subclause 5.3.3 is invoked with ChromaLevel[ iCbCr ] as the input and the two-dimensional array c as the output.

2. The scaling and transformation process for residual block as specified in subclause 5.3.5 is invoked with c as the input and r as the output.

3. The position of the upper-left sample of the transform unit with index tuIdx inside the prediction unit is derived by invoking the inverse transform unit scanning process in subclause 3.2.4.3 with tuIdx as the input and the output being assigned to ( xO, yO ).


xOC = xO / SubWidthC


yOC = yO / SubHeightC

4. The NxN array u with elements uij for i, j = 0..N-1 is derived as 


uij = Clip1C( predC[ xOC + j, yOC + i ] + rij )

5. The picture construction process prior to deblocking filter process in subclause 5.3.6 is invoked with u and tuIdx as the inputs.

5.4.3 Inverse scanning process for transform coefficients

Input to this process is a list of NxN values listTrCoeffs.

Output of this process is a variable c containing a two-dimensional array of NxN values. In the case of transform coefficients, these NxN values represent levels assigned to locations in the transform unit.
The variable cij which is located in the ( j, i ) position in the array c is derived as follows.


cij = ZigzagToBlockPosition( listTrCoeffs, N, idx ).

If adaptive coefficient scanning is used, adaptive coefficient scanning order is determined by the mddtIdx parameter. The scan order associated by mddtIdx is used for inverse mapping from scan order to block position. 

The variable cij which is located in the ( j, i ) position in the array c is derived as follows.


cij = AdaptScanOrderToBlockPosition( listTrCoeffs, N, mddtIdx, idx ).
5.4.4 Adaptive Coefficient Scanning

[Ed: needs more work]
1. At the beginning of each video slice, initialize the coefficient scanning order for each mddtIdx;

2. When a block is entropy-coded, for each non-zero coefficient coded, increment the count at the corresponding position by one;

3. After each macroblock is coded, update the coefficient scanning order according to the statistics collected;

4. Normalize the collected statistics if needed;

5. Use the updated order for coding of future blocks. Go back to 2 until slice is finished.

5.4.5 Scaling and transformation process for transform unit

Input to this process is an NxN array c with elements cij which is either an array relating to the residual block of the luma component or, when ChromaArrayType is equal to 3, an array relating to the residual block of a chroma component.

NOTE 1 – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma component for purposes of the decoding process of each coded picture (prior to the final assignment of the decoded picture to a particular luma or chroma picture array according to the value of colour_plane_id).

Outputs of this process are residual sample values as NxN array r with elements rij.
The variables bitDepth and qP are derived as follows.

· If the input array c relates to a luma residual block, bitDepth is set equal to BitDepthY and qP is set equal to QP'Y.

· Otherwise (the input array c relates to a chroma residual block), bitDepth is set equal to BitDepthC and qP is set equal to QP'C.

NOTE 2 – When separate_colour_plane_flag is equal to 1, all residual blocks are considered to be associated with the luma component for purposes of the decoding process of each colour component of a picture.

If PredMode is MODE_INTRA and N is equal to 4 or 8, mode depedent directiona transform process as specified in subclause 5.3.5.1 is invoked for luma residual block array c.  

Depending on the values of rotational_transform_idx, the following applies.

· If rotational_transform_idx is equal to 1, the following ordered steps are specified:
1. The rotational transformation process as specified in subclause 5.3.5.2 is invoked with bitDepth, qP, and c as the inputs and the output is assigned to the NxN array d of scaled transform coefficients with elements dij.
2. The scaling process for residual blocks as specified in subclause 5.3.5.3 is invoked with bitDepth, qP, and d as the inputs and the output is assigned to the NxN array e of scaled transform coefficients with elements eij.
3. The transformation process for residual blocks as specified in subclause 5.3.5.4 is invoked with bitDepth and e as the inputs and the output is assigned to the NxN array r of residual sample values with elements rij.
· Otherwise (rotational_transform_idx is equal to 0), the following ordered steps are specified:

1. The scaling process for residual NxN blocks as specified in subclause 5.3.5.3 is invoked with bitDepth, qP, and c as the inputs and the output is assigned to the NxN array d of scaled transform coefficients with elements dij.
2. The transformation process for residual blocks as specified in subclause 5.3.5.4 is invoked with bitDepth and d as the inputs and the output is assigned to the NxN array r of residual sample values with elements rij.
5.4.5.1 Mode dependent directional transformation process for intra prediction residuals

Inputs of this process are

· the variable bitDepth,

· an NxN array of scaled transform coefficients e with elements eij.
· IntraPredMode
· Prediction unit size PU Size
Outputs of this process are residual sample values as NxN array r with elements rij.

The transformation process shall convert the block of scaled transform coefficients to a block of output samples in a manner mathematically equivalent to the following.
The final constructed residual samples values are derived as specified in the following ordered steps:

1. Mode dependent directional transform index is derived from IntraPredMode and PU Size according to Table 5‑6.

2. If N is equal to 4 block transformation process described in subclause 5.3.5.1.1 is invoked on 4x4 array of scaled transform coefficients e with elements eij, else block transformation process described in subclause 5.3.5.1.2 is invoked on 8x8 array of scaled transform coefficients e with elements eij, resulting in residual matrix gij (i, j = 0…N-1).
3. The residual sample value rij is derived by
rij = ( gij + 219 ) >> 20
with i, j = 0..N-1

Table 5‑6 Specification of IntraPredMode[puPartIdx] and associated mddtIdx

	IntraPredMode

[ puPartIdx]
	mddtIdx



	
	PU Size != PU_8x8
	PU Size == PU_8x8

	0
	0
	0

	1
	1
	1

	2
	2
	2

	3
	2
	4

	4
	3
	5

	5
	4
	7

	6
	5
	3

	7
	6
	6

	8
	7
	8

	9
	8
	3

	10
	0
	4

	11
	3
	0

	12
	3
	0

	13
	6
	3

	14
	4
	4

	15
	0
	1

	16
	3
	1

	17
	8
	3

	18
	0
	4

	19
	7
	5

	20
	7
	5

	21
	3
	0

	22
	3
	0

	23
	8
	7

	24
	1
	7

	25
	1
	3

	26
	6
	4

	27
	6
	6

	28
	4
	6

	29
	5
	1

	30
	3
	1

	31
	3
	8

	32
	2
	8

	33
	-
	3


5.4.5.1.1 Mode dependent directional transform for 4x4 block input

Inputs of this process are 4x4 array e of scaled transform coefficients eij and mode dependent directional transform index, mddtIdx.

Outputs of this process are residual sample values a 4x4 block array g with elements gij.

The 4x4 block inverse transform for a given input X is defined as

Y = C’ X R

where C = kltCol4x4[mddtIdx] and R=kltRow4x4[mddtIdx].

The transform matrices kltRow4x4[i], kltCol4x4[i] (i = 0,1,3,4,5,6,7,8) are defined as:

	kltRow4x4[0]={{40,  64,  78,  68},{ -82, -60,  31,  70},{  76, -52, -56,  69}, {47, -77,  79, -46}}

	kltRow4x4[1]={{30,  55,  74,  84},{ -67, -76,  -4,  78},{ -83,  16,  81, -52},{ -64,  85, -66,  25}}

	kltRow4x4[3]={{50,  69,  72,  62},{ -89, -43,  42,  70},{  69, -68, -43,  71},{  36, -71,  87, -50}}

	kltRow4x4[4]={{26,  59,  81,  76},{ -63, -80,   6,  77},{  86, -15, -72,  60},{  66, -79,  68, -33}}

	kltRow4x4[5]={{22,  52,  82,  81},{ -61, -86,   0,  73},{  88, -13, -72,  58},{  67, -78,  67, -36}}

	kltRow4x4[6]={{26,  57,  78,  79},{ -65, -77,  -1,  79},{ -87,  15,  75, -56},{ -63,  83, -68,  29}}

	kltRow4x4[7]={{50,  70,  72,  62},{ -87, -45,  45,  69},{  69, -67, -44,  72},{  39, -71,  85, -51}}

	kltRow4x4[8]={{29,  59,  77,  78},{ -71, -73,   3,  77},{ -85,  25,  72, -58},{ -57,  84, -72,  30}}

	

	kltCol4x4[0]={{32,  56,  74,  82},{ -69, -74,  -3,  79},{ -81,  17,  82, -53},{ -63,  87, -65,  24}}

	kltCol4x4[1]={{29,  55,  80,  78},{ -78, -73,  11,  69},{  81, -35, -67,  64},{  55, -82,  73, -37}}

	kltCol4x4[3]={{21,  54,  80,  81},{ -64, -82,  -2,  74},{  88, -15, -71,  57},{  64, -80,  70, -32}}

	kltCol4x4[4]={{24,  56,  81,  78},{ -62, -81,   0,  77},{  87, -12, -73,  58},{  66, -81,  67, -32}}

	kltCol4x4[5]={{25,  56,  79,  80},{ -64, -79,  -3,  78},{ -86,  11,  76, -56},{ -65,  84, -66,  28}}

	kltCol4x4[6]={{10,  32,  73, 100},{ -50, -92, -38,  63},{  89,  15, -80,  44},{  77, -82,  57, -24}}

	kltCol4x4[7]={{26,  57,  78,  80},{ -64, -78,  -2,  79},{ -85,  13,  77, -55},{ -65,  83, -67,  28}}

	kltCol4x4[8]={{40,  38,  60,  99},{ -97, -62,  15,  54},{  65, -80, -63,  43},{  34, -69,  93, -44}}


If mmdtIdx = 2, then the transformation process defined in subclause 5.3.5.4 is invoked.

5.4.5.1.2 Mode dependent directional transform for 8x8 block input

Inputs of this process are 4x4 array e of scaled transform coefficients eij and mode dependent directional transform index, mddtIdx.

Outputs of this process are residual sample values a 8x8 block array g with elements gij.

The 4x4 block inverse transform for a given input X is defined as

Y = C’ X R

where C = kltCol8x8[mddtIdx] and R=kltRow8x8[mddtIdx].

The transform matrices kltRow8x8[i], kltCol8x8[i] (i = 0,1,3,4,5,6,7,8) are defined as:

kltRow8x8[0]={
{ 31,  40,  45,  49,  51,  51,  49,  43},{ -52, -59, -47, -23,   6,  35,  54,  57},

{ -58, -42,  10,  57,  60,  21, -30, -56},{  55,   5, -57, -42,  34,  64,   5, -56},

{ -55,  33,  53, -37, -45,  45,  41, -49},{  47, -59,   4,  52, -50, -11,  61, -40},

{ -31,  60, -57,  21,  25, -57,  59, -28},{ -15,  36, -53,  63, -63,  52, -35,  14}}

kltRow8x8[1]={
{  18,  28,  37,  45,  51,  55,  57,  56},{  42,  58,  57,  41,  14, -19, -46, -61},
{ -56, -53, -11,  41,  61,  38, -16, -56},{  58,  20, -49, -55,  19,  64,  16, -50},

{ -58,  22,  59, -29, -54,  38,  45, -42},{  53, -56,  -3,  54, -44, -18,  63, -36},

{ -37,  62, -53,  15,  28, -57,  59, -26},{  16, -38,  55, -64,  62, -50,  33, -12}

kltRow8x8[3]={
{  37,  45,  49,  51,  50,  47,  43,  38},{  61,  59,  38,   8, -21, -43, -52, -52},
{ -63, -27,  31,  63,  47,   3, -38, -56},{  55, -15, -62, -18,  52,  54,  -8, -57},

{ -48,  49,  34, -56, -26,  58,  28, -51},{  36, -61,  26,  38, -61,   9,  59, -45},

{ -23,  53, -60,  35,   9, -52,  66, -33},{  11, -31,  48, -60,  64, -57,  42, -17}}

kltRow8x8[4]={
{  10,  21,  33,  45,  54,  60,  59,  53},{  25,  49,  61,  54,  24, -17, -49, -59},
{ -40, -60, -36,  22,  61,  45, -16, -59},{  53,  47, -23, -62,  -2,  62,  20, -53},

{ -61,  -9,  63,  -2, -60,  26,  49, -44},{  64, -38, -29,  60, -31, -27,  60, -34},

{ -51,  63, -41,   1,  37, -57,  54, -24},{  27, -46,  58, -61,  57, -46,  31, -12}}

kltRow8x8[5]={
{  11,  22,  34,  45,  53,  59,  59,  54},{  25,  49,  61,  53,  24, -16, -49, -60},
{ -38, -60, -37,  21,  62,  46, -15, -57},{  54,  48, -25, -62,  -1,  61,  20, -51},

{ -65,  -7,  62,  -7, -57,  29,  47, -44},{  64, -43, -22,  58, -35, -23,  59, -35},

{ -49,  64, -48,   9,  31, -55,  54, -25},{  22, -41,  54, -61,  61, -50,  35, -14}}

kltRow8x8[6]={
{  10,  21,  33,  44,  53,  59,  60,  55},{  27,  50,  59,  53,  26, -13, -46, -63},
{ -45, -60, -33,  20,  58,  47, -10, -60},{  59,  42, -28, -60,  -3,  59,  26, -50},

{ -62,   2,  61,  -7, -61,  22,  53, -42},{  62, -48, -21,  61, -32, -29,  58, -30},

{ -43,  64, -49,   7,  36, -59,  53, -22},{  21, -43,  57, -62,  59, -48,  31, -12}}

kltRow8x8[7]={
{  36,  43,  48,  50,  50,  48,  45,  40},{ -58, -60, -42, -13,  16,  41,  53,  52},
{ -60, -33,  23,  63,  53,   8, -37, -54},{  56,  -7, -61, -27,  47,  57,  -6, -57},

{ -52,  44,  41, -49, -31,  55,  31, -51},{  39, -61,  18,  44, -58,   3,  59, -45},

{ -26,  56, -59,  30,  15, -54,  64, -32},{ -13,  33, -50,  61, -63,  55, -40,  17}}

kltRow8x8[8]={
{  10,  21,  34,  44,  53,  58,  59,  55},{  33,  54,  63,  50,  19, -17, -47, -56},
{ -54, -59, -21,  34,  61,  34, -20, -56},{  63,  28, -41, -51,  17,  62,  15, -54},


{ -66,  20,  57, -29, -50,  37,  42, -44},{  52, -58,   3,  54, -47, -14,  60, -37},

{ -33,  59, -53,  19,  27, -59,  60, -28},{  17, -38,  55, -64,  62, -51,  32, -11}}

kltCol8x8[0]={
{  17,  28,  37,  45,  51,  55,  57,  56},{  36,  54,  58,  45,  17, -18, -48, -62},
{ -49, -54, -22,  32,  64,  44, -14, -58},{  63,  29, -40, -57,   7,  60,  24, -50},

{ -62,  15,  58, -17, -55,  29,  52, -45},{  53, -54, -12,  61, -38, -27,  61, -32},

{ -36,  62, -50,   8,  38, -62,  54, -21},{  20, -44,  59, -63,  59, -47,  29, -10}}

kltCol8x8[1]={
{  27,  36,  41,  46,  49,  51,  53,  52},{ -50, -57, -47, -30,  -8,  20,  50,  66},
{ -56, -48,  -3,  47,  64,  36, -17, -55},{  50,  11, -51, -54,  14,  67,  27, -53},

{ -59,  24,  61, -21, -55,  27,  51, -43},{  48, -53, -10,  60, -38, -30,  64, -33},

{ -36,  64, -50,   7,  40, -62,  51, -20},{ -20,  43, -58,  64, -60,  46, -28,  10}}

kltCol8x8[3]={
{   9,  21,  34,  45,  54,  59,  58,  53},{  24,  49,  63,  54,  22, -18, -48, -58},
{ -42, -62, -34,  27,  63,  38, -19, -56},{  58,  44, -30, -56,   9,  61,  17, -55},

{ -66,  -1,  59, -14, -54,  32,  47, -47},{  60, -44, -18,  59, -37, -24,  62, -35},

{ -46,  62, -46,   7,  35, -60,  55, -23},{  24, -44,  57, -62,  59, -48,  31, -11}}

kltCol8x8[4]={
{   9,  20,  33,  45,  55,  60,  59,  51},{  23,  48,  62,  54,  24, -17, -50, -60},
{ -41, -62, -37,  21,  60,  42, -17, -58},{  56,  46, -27, -59,   2,  59,  20, -54},

{ -64,  -5,  61,  -9, -57,  28,  48, -45},{  61, -40, -24,  61, -34, -27,  61, -35},

{ -49,  63, -42,   3,  37, -59,  53, -23},{  27, -46,  57, -61,  57, -47,  31, -12}}

kltCol8x8[5]={
{   9,  19,  30,  42,  52,  59,  61,  57},{  24,  46,  60,  56,  31,  -8, -45, -63},
{ -45, -61, -39,  14,  58,  48,  -8, -57},{  61,  43, -26, -58,  -6,  58,  28, -51},

{ -65,   1,  59,  -5, -59,  19,  55, -43},{  58, -46, -24,  63, -28, -34,  60, -30},

{ -42,  64, -44,  -2,  44, -62,  50, -19},{  25, -48,  61, -63,  56, -43,  26,  -9}}

kltCol8x8[6]={
{  10,  21,  33,  44,  53,  59,  60,  54},{  23,  47,  60,  54,  27, -12, -48, -63},
{ -39, -60, -39,  17,  59,  48,  -9, -59},{  56,  49, -24, -62,  -5,  58,  25, -50},

{ -64,  -6,  63,  -7, -58,  23,  51, -42},{  63, -42, -23,  60, -32, -29,  60, -33},

{ -49,  64, -46,   6,  35, -58,  52, -22},{  24, -42,  55, -62,  60, -49,  31, -12}}

kltCol8x8[7]={
{  10,  22,  34,  44,  53,  58,  59,  56},{  28,  52,  62,  51,  22, -15, -47, -60},
{ -47, -59, -29,  27,  62,  41, -14, -58},{  62,  36, -34, -55,   5,  60,  23, -53},

{ -67,  10,  58, -17, -54,  27,  51, -44},{  55, -50, -13,  62, -39, -26,  60, -33},

{ -38,  62, -50,   8,  37, -62,  53, -21},{  23, -44,  58, -62,  59, -48,  30, -11}}

kltCol8x8[8]={
{  32,  40,  44,  45,  44,  47,  53,  53},{ -69, -67, -39,  -9,  13,  30,  45,  50},
{ -60, -21,  42,  68,  47,   6, -34, -51},{  53, -21, -66,  -5,  62,  51,  -8, -47},

{ -45,  48,  24, -61, -13,  65,  27, -51},{  39, -63,  31,  29, -62,  19,  54, -46},

{ -24,  52, -63,  49,  -9, -39,  63, -34},{  -8,  22, -36,  51, -64,  66, -53,  23}}
If mmdtIdx = 2, then the transformation process defined in subclause 5.3.5.4 is invoked.

5.4.5.2 Rotational transformation process

Inputs of this process are

· the variable bitDepth and qP,

· an NxN array of transform coefficients c with elements cij
Outputs of this process are transform coefficients as NxN array d with elements dij.

The transform process shall convert the block of scaled transform coefficients to a block of output samples in a manner mathematically equivalent to the following.

Depending on the values of N, the following applies.

· If N is equal to 4, the following ordered steps are specified:

1. The scaled transform coefficients s with elements sij is derived as




sij = cij * (1<< ( qP / 6 )) with i, j = 0…3.

2. The rotational transformation process for 4x4 transform unit as specified in subclause 5.3.5.2.1 is invoked with bitDepth, qP, and s as the inputs and the output is assigned to the 4x4 array d of transform coefficients with elements dij.
· Otherwise (N is larget than 4), the following ordered steps are specified:
1. The scaled transform coefficients s with element sij is derived as



sij = cij * (1<< ( qP / 6 )) with i, j = 0…7.
2. The rotational transformation process for 8x8 transform unit as specified in subclause 5.3.5.2.2 is invoked with bitDepth and sij as the inputs and the output is assigned to the 8x8 array d8x8 of transform coefficients with elements d8x8ij.

3. The NxN array d of transform coefficients with element dij is derived by 



dij = d8x8ij 
with i, j = 0..7,




dij = sij     
otherwise
5.4.5.2.1 Rotational transformation process for 4x4 transform coefficients

Inputs of this process is a 4x4 array of transform coefficients s with elements sij
Outputs of this process are transform coefficients as a 4x4 array d with elements dij.
The variable addShift and addOffset is derived as follows.


shift = Min( Max( 0, 4 – increased_bit_depth_luma ), 8 )


if ( shift > 0 ) offset = 1 << ( shift – 1 ), otherwise offset = 0

When the value of variable idx is set to rotational_transform_idx – 1, output element dij is specified as follows.

· For j=0..3, a set of intermediate values tij is derived by
tij 
= INV_ROT_4[idx][9]*sij + INV_ROT_4[idx][12]*si+1,j + INV_ROT_4[idx][15]*si+2,j

ti+1,j
= INV_ROT_4[idx][10]*sij+ INV_ROT_ 4[idx][13]*si+1,j+ INV_ROT_4[idx][16]*si+2,j
ti+2,j
= INV_ROT_ 4[idx][11]*sij+ INV_ROT_4[idx][14]*si+1,j+ INV_ROT_4[idx][17]*si+2,j
tij 
= Sign( tij )*(Abs( tij ) >> ( 8-Shift ) )

ti+1,j
= Sign( ti+1,j )*( Abs( ti+1,j ) >> ( 8-shift ) )

ti+2,j 
= Sign( ti+2,j )*( Abs( ti+2,j ) >> ( 8-shift ) )

ti+3,j 
= ti+3,j << shift

· For i=0..3, the transformed result dij is computed from these intermediate values tij as

dij 
= INV_ROT_4[idx][0]*tij + INV_ROT_4[idx][3]*ti,j+1+ INV_ROT_4[idx][6]*ti,j+2
di,j+1 
= INV_ROT_4[idx][1]*tij + INV_ROT_4[idx][4]*ti,j+1+ INV_ROT_4[idx][7]*ti,j+2
di,j+2 
= INV_ROT_4[idx][2]*tij + INV_ROT_4[idx][5]*ti,j+1 + INV_ROT_4[idx][8]*ti,j+2
di,j+3 
= ti, j+3
dij 
= Sign( dij )*( ( Abs( dij ) + offset ) >> ( 8+shift ) )

di,j+1 
= Sign( di,j+1)*( ( Abs( di,j+1 ) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+2 
= Sign( di,j+2 )*( ( Abs( di,j+2 ) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+3 
= Sign(di,j+3 )*( ( Abs( di,j+3 ) + offset ) >> shift )

The matrix INV_ROT_4 is specified in Table 5‑7.
Table 5‑7 Specification of transpose of NV_ROT_4 matrix

	
	idx = 0
	idx = 1
	idx = 2
	idx = 3

	0
	248
	255
	237
	250

	1
	-55
	22
	-96
	-18

	2
	-28
	-8
	-9
	-54

	3
	-60
	-22
	90
	-13

	4
	-244
	254
	229
	220

	5
	-52
	-17
	-73
	-131

	6
	-16
	6
	35
	55

	7
	57
	17
	64
	130

	8
	-249
	255
	245
	213

	9
	250
	241
	243
	212

	10
	-49
	-84
	-80
	-143

	11
	-26
	-18
	-6
	9

	12
	-54
	69
	70
	134

	13
	-240
	221
	222
	192

	14
	-71
	-110
	-107
	-103

	15
	-11
	52
	38
	51

	16
	75
	98
	100
	90

	17
	-245
	231
	233
	234


5.4.5.2.2 Rotational transformation process for 8x8 transform coefficients

Inputs of this process is a 8x8 array of transform coefficients s with elements sij
Outputs of this process are transform coefficients as a 8x8 array d with elements dij.
The variable addShift and addOffset is derived as follows.


shift = Min( Max( 0, 4 – increased_bit_depth_luma ), 8 )


if ( shift > 0 ) offset = 1 << ( shift – 1 ), otherwise offset = 0

When the value of variable idx is set to rotational_transform_idx – 1, output element dij is specified as follows.

· For j=0..7, a set of intermediate values tij is derived by
tij
= INV_ROT_8[idx][9 ]*sij + INV_ROT_8[idx][12]*si+1,j+ INV_ROT_8[idx][15]*si+2,j
ti+1,j 
= INV_ROT_8[idx][10]*sij + INV_ROT_8[idx][13]*si+1,j+ INV_ROT_8[idx][16]* si+2,j
ti+2,j 
= INV_ROT_8[idx][11]*sij + INV_ROT_8[idx][14]*si+1,j+ INV_ROT_8[idx][17]* si+2,j
ti+3,j 
= INV_ROT_8[idx][27]*si+3,j + INV_ROT_8[idx][30]*si+4,j + INV_ROT_8[idx][33]*si+5,j
ti+4,j 
= INV_ROT_8[idx][28]*si+3,j + INV_ROT_8[idx][31]*si+4,j + INV_ROT_8[idx][34]*si+5,j
ti+5,j 
= INV_ROT_8[idx][29]*si+3,j + INV_ROT_8[idx][32]*si+4,j + INV_ROT_8[idx][35]*si+5,j
tij 
= Sign( tij )*( Abs( tij ) >> ( 8-shift ) )

ti+1,j
= Sign( ti+1,j )*( Abs( ti+1,j ) >> ( 8-shift ) )

ti+2,j
= Sign( ti+2,j )*( Abs( ti+2,j ) >> ( 8-shift ) )

ti+3,j
= Sign( ti+3,j )*( Abs( ti+3,j ) >> ( 8-shift ) )

ti+4,j 
= Sign( ti+4,j )*( Abs( ti+4,j ) >> ( 8-shift ) )

ti+5,j 
= Sign( ti+5,j )*( Abs( ti+5,j ) >> ( 8-shift ) )

ti+6,j 
= si+6,j << shift

ti+7,j
= si+7,j << shift

· For i=0..7, the transformed result dij is computed from these intermediate values tij as

dij
= INV_ROT_8[idx][0] * tij + INV_ROT_8[index][3] * ti,j+1 + INV_ROT_8[idx][6] * ti,j+2
di,j+1 
= INV_ROT_8[idx][1] * tij + INV_ROT_8[index][4] * ti,j+1 + INV_ROT_8[idx][7] * ti,j+2
di,j+2
= INV_ROT_8[idx][2] * tij + INV_ROT_8[index][5] * ti,j+1 + INV_ROT_8[idx][8] * ti,j+2
di,j+3 
= INV_ROT_8[idx][18] * ti,j+3 + INV_ROT_8[idx][21] * ti,j+4 + INV_ROT_8[idx][24] * ti,j+5
di,j+4 
= INV_ROT_8[idx][19] * ti,j+3 + INV_ROT_8[idx][22] * ti,j+4 + INV_ROT_8[idx][25] * ti,j+5
di,j+5 
= INV_ROT_8[idx][20] * ti,j+3 + INV_ROT_8[idx][23] * ti,j+4 + INV_ROT_8[idx][26] * ti,j+5
di,j+6 
= ti,j+6
di,j+7 
= ti,j+7
dij
= Sign( dij )*( ( Abs( dij ) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+1  = Sign( di,j+1 )*( ( Abs(di,j+1) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+2  = Sign( di,j+2 )*( ( Abs(di,j+2) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+3 
= Sign( di,j+3 )*( ( Abs(di,j+3) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+4
= Sign( di,j+4 )*( ( Abs(di,j+4) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+5 
= Sign( di,j+5 )*( ( Abs(di,j+5) + ( offset << 8 ) ) >> ( 8+shift ) )

di,j+6 
= Sign( di,j+6 )*( ( Abs(di,j+6) + offset ) >> shift )

di,j+7 
= Sign( di,j+7 )*( ( Abs(di,j+7) + offset ) >> shift )

The matrix INV_ROT_8 is specified in Table 5‑8.

Table 5‑8 Specification of transpose of INV_ROT_8 matrix

	
	idx = 0
	idx = 1
	idx = 2
	idx = 3

	0
	251
	243
	243
	174

	1
	-36
	-61
	-81
	-186

	2
	-31
	-50
	12
	23

	3
	23
	-75
	81
	181

	4
	237
	-230
	232
	158

	5
	-94
	-83
	-70
	-87

	6
	42
	-25
	11
	49

	7
	90
	94
	71
	75

	8
	236
	-237
	246
	240

	9
	236
	254
	252
	236

	10
	-100
	-27
	-41
	-99

	11
	3
	-18
	-9
	-10

	12
	100
	22
	-42
	-99

	13
	234
	249
	-251
	-235

	14
	-25
	-56
	-28
	-25

	15
	7
	24
	-4
	1

	16
	24
	54
	29
	27

	17
	255
	249
	-254
	-255

	18
	251
	243
	243
	174

	19
	-36
	-61
	-81
	-186

	20
	-31
	-50
	12
	23

	21
	23
	-75
	81
	181

	22
	237
	-230
	232
	158

	23
	-94
	-83
	-70
	-87

	24
	42
	-25
	11
	49

	25
	90
	94
	71
	75

	26
	236
	-237
	246
	240

	27
	236
	254
	252
	236

	28
	-100
	-27
	-41
	-99

	29
	3
	-18
	-9
	-10

	30
	100
	22
	-42
	-99

	31
	234
	249
	-251
	-235

	32
	-25
	-56
	-28
	-25

	33
	7
	24
	-4
	1

	34
	24
	54
	29
	27

	35
	255
	249
	-254
	-255


5.4.5.3 Scaling process for residual blocks

Inputs of this process are

· the variables bitDepth and qP,

· an NxN array d with elements dij which is either an array relating to a residual block of luma component or an array relating to a residual block of a chroma component.

Output of this process is an NxN array of scaled transform coefficients e with elements eij.

The scaling process for NxN block transform coefficient levels dij proceeds as follows.
· If rotational_transform_idx is not equal to 0, the scaled result is derived as


eij = (dij * LevelScaleNxN[ qP % 6 ][ i ][ j ]) , with i, j = 0..N-1


where N in the LevelScaleNxN is replaced with 4, 8, 16, 32 and 64 depending on the value of N.

· Otherwise (rotational_transform_idx is equal to 0), the scaled result is derived as


eij = (dij * LevelScaleNxN[ qP % 6 ][ i ][ j ] ) << ( qP / 6), with i, j = 0..N-1


where N in the LevelScaleNxN is replaced with 4, 8, 16, 32 and 64 depending on the value of N.

If mode dependent directional transform is invoked, LevelScaleNxN[m][i][j] = w[m] for m=0..5 and  i, j = 0..N-1 where w = [40 45 50 57 63 71].

5.4.5.4 Transformation process for residual blocks

Inputs of this process are

· the variable bitDepth,

· an NxN array of scaled transform coefficients e with elements eij.
Outputs of this process are residual sample values as NxN array r with elements rij.

The transformation process shall convert the block of scaled transform coefficients to a block of output samples in a manner mathematically equivalent to the following.
The final constructed residual samples values are derived as specified in the following ordered steps:

4. Each (horizontal) row of scaled transform coefficients eij (i, j = 0…N-1) is transformed to fij (i, j = 0…N-1) by invoking the one-dimensional transformation process as specified in subclause 5.3.5.4.1.

5. Each (vertical) column of the resulting matrix fij (i, j = 0…N-1) is transformed by invoking the one-dimensional transformation process as specified in subclause 5.3.5.4.1 where resulting matrix is gij (i, j = 0…N-1).
6. Depending on the value of N, following is applied.
· If N is equal to 4 or 8 or 64, the residual sample value rij is derived by


rij = ( gij + 28 ) >> 9
with i, j = 0..N-1

· Otherwise (N is equal to 16 or 32), the residual sample value rij is derived by


rij = ( gij + 29 ) >> 10
with i, j = 0..N-1

5.4.5.4.1 Transformation process for N-point input

Inputs of this process are an N-point array of scaled transform coefficients X with elements Xi.

Outputs of this process are residual sample values as N-point array Y with elements Yi.

Depending on the values of N, the following applies.

· If N is equal to 4, the transformation process for 4-point input as specified in subclause 5.3.5.4.2 is invoked with X as the input and Y as the output.

· Otherwise, if N is equal to 8, the transformation process for 8-point input as specified in subclause 5.3.5.4.3 is invoked with X as the input and Y as the output.

· Otherwise, if N is equal to 16, the transformation process for 16-point input as specified in subclause 5.3.5.4.4 is invoked with X as the input and Y as the output.

· Otherwise, if N is equal to 32, the transformation process for 32-point input as specified in subclause 5.3.5.4.5 is invoked with X as the input and Y as the output.

· Otherwise, if N is equal to 64, the transformation process for 64-point input as specified in subclause 5.3.5.4.6 is invoked with X as the input and Y as the output.

5.4.5.4.2 Transformation process for 4-point input

[Ed.: same as H.264/AVC]
5.4.5.4.3 Transformation process for 8-point input

[Ed.: same as H.264/AVC]
5.4.5.4.4 Transformation process for 16-point input

Inputs of this process are a 16-point array of scaled transform coefficients X with elements Xi.

Outputs of this process are residual sample values as a 16-point array Y with elements Yi.

16-point one-dimensional inverse transform process is defined as following 6 stages. Xi (i = 0...15) are elements of input vector and Yi (i=0...15) are elements of output vector. In each stage, sets of intermediate values Fi, Ei, Di, Ci, Bi (i = 0...15) are derived and fed into the next stage.
	Stage 1
	Stage 2
	Stage 3

	F8 = ( 6 * X1 - 63 * X15 ) >> 6

F9 = ( 49 * X9  - 40 * X7   ) >> 6

F10 = ( 30 * X5  - 56 * X11 ) >> 6

F11 = ( 61 * X13 - 18 * X3   ) >> 6

F12 = ( 61 * X3  + 18 * X13 ) >> 6

F13 = ( 30 * X11 + 56 * X5   ) >> 6

F14 = ( 49 * X7   + 40 * X9   ) >> 6

F15 = ( 6 * X15 + 63 * X1   ) >> 6


	E4 = ( 12 * X2 - 62 * X14 ) >> 6

E5 = ( 53 * X10 - 35 * X6 ) >> 6

E6 = ( 53 * X6 + 35 * X10 ) >> 6

E7 = ( 12 * X14 + 62 * X2 ) >> 6

E8 = F8 + F9

E9 = F8 - F9

E10 = F11 - F10

E11 = F11 + F10

E12 = F12 + F13

E13 = F12 - F13

E14 = F15 - F14

E15 = F15 + F14
	D0 = ( 45 * ( X0 + X8 ) ) >> 6

D1 = ( 45 * ( X0 - X8 ) ) >> 6

D2 = ( 24 * X4 - 59 * X12 ) >> 6

D3 = ( 59 * X4 + 24 * X12 ) >> 6

D4 = E4 + E5

D5 = E4 - E5

D6 = E7 - E6

D7 = E7 + E6

D9 = ( 24 * E14 - 59 * E9 ) >> 6

D10 = ( - 59 * E13 - 24 * E10 ) >> 6

D13 = ( 24 * E13 - 59 * E10 ) >> 6

D14 = ( 59 * E14 + 24 * E9 ) >> 6


	Stage 4
	Stage 5
	Stage 6

	C0 = D0 + D3
C3 = D0 - D3,
C8 = E8 + E11
C11 = E8 - E11
C12 = E15 - E12
C15 = E15 + E12
C1 = D1 + D2
C2 = D1 - D2
C9 = D9 + D10
C10 = D9 - D10
C13 = D14 - D13
C14 = D14 + D13
C5 = ( 45 * ( D6 - D5 ) ) >> 6
C6 = ( 45 * ( D6 + D5 ) ) >> 6

	B0 = C0 + D7

B7 = C0 - D7

B1 = C1 + C6

B6 = C1 - C6

B2 = C2 + C5

B5 = C2 - C5

B3 = C3 + D4

B4 = C3 - D4

B10 = ( 45 * ( C13 - C10 ) ) >> 6

B13 = ( 45 * ( C13 + C10 ) ) >> 6

B11 = ( 45 * ( C12 - C11 ) ) >> 6

B12 = ( 45 * ( C12 + C11 ) ) >> 6


	Y0 = B0 + C15

Y15 = B0 - C15

Y1 = B1 + C14

Y14 = B1 - C14

Y2 = B2 + B13

Y13 = B2 - B13

Y3 = B3 + B12

Y12 = B3 - B12

Y4 = B4 + B11

Y11 = B4 - B11

Y5 = B5 + B10

Y10 = B5 - B10

Y6 = B6 + C9

Y9 = B6 - C9

Y7 = B7 + C8

Y8 = B7 - C8


5.4.5.4.5 Transformation process for 32-point input

Inputs of this process are a 32-point array of scaled transform coefficients X with elements Xi.

Outputs of this process are residual sample values as a 32-point array Y with elements Yi.

32-point one-dimensional inverse transform process is defined as following 8 stages. Xi (i = 0...31) are elements of input vector and Yi (i=0...31) are elements of output vector. In each stage, sets of intermediate values Gi, Fi, Ei, Di, Ci, Bi, Ai (i = 0...31) are derived and fed into next stage.

	Stage 1
	Stage 2
	Stage 3

	G16 = ( 12 * X1 - 255 * X31 ) >> 8

G17 = ( 189 * X17 - 171 * X15 ) >> 8

G18 = ( 109 * X9 - 231 * X23 ) >> 8

G19 = ( 241 * X25 - 86 * X7 ) >> 8

G20 = ( 62 * X5 - 248 * X27 ) >> 8

G21 = ( 219 * X21 - 131 * X11 ) >> 8

G22 = ( 152 * X13 - 205 * X19 ) >> 8

G23 = ( 253 * X29 - 37 * X3 ) >> 8

G24 = ( 253 * X3 + 37 * X29 ) >> 8

G25 = ( 152 * X19 + 205 * X13 ) >> 8

G26 = ( 219 * X11 + 131 * X21 ) >> 8

G27 = ( 62 * X27 + 248 * X5 ) >> 8

G28 = ( 241 * X7 + 86 * X25 ) >> 8

G29 = ( 109 * X23 + 231 * X9 ) >> 8

G30 = ( 189 * X15 + 171 * X17 ) >> 8

G31 = ( 12 * X31 + 255 * X1 ) >> 8
	F8 = ( 25 * X2 - 254 * X30 ) >> 8

F9 = ( 197 * X18 - 162 * X14 ) >> 8

F10 = ( 120 * X10 - 225 * X22 ) >> 8

F11 = ( 244 * X26 - 74 * X6 ) >> 8

F12 = ( 244 * X6 + 74 * X26 ) >> 8

F13 = ( 120 * X22 + 225 * X10 ) >> 8

F14 = ( 197 * X14 + 162 * X18 ) >> 8

F15 = ( 25 * X30 + 254 * X2 ) >> 8

F16 = G16 + G17

F17 = G16 - G17

F18 = G19 - G18

F19 = G19 + G18

F20 = G20 + G21

F21 = G20 - G21

F22 = G23 - G22

F23 = G23 + G22

F24 = G24 + G25

F25 = G24 - G25

F26 = G27 - G26

F27 = G27 + G26

F28 = G28 + G29

F29 = G28 - G29

F30 = G31 - G30

F31 = G31 + G30
	E4 = ( 49 * X4 - 251 * X28 ) >> 8

E5 = ( 212 * X20 - 142 * X12 ) >> 8

E6 = ( 212 * X12 + 142 * X20 ) >> 8

E7 = ( 49 * X28 + 251 * X4 ) >> 8

E8 = F8 + F9

E9 = F8 - F9

E10 = F11 - F10

E11 = F11 + F10

E12 = F12 + F13

E13 = F12 - F13

E14 = F15 - F14

E15 = F15 + F14

E17 = ( 49 * F30 - 251 * F17 ) >> 8

E18 = (  - 251 * F29 - 49 * F18 ) >> 8

E21 = ( 212 * F26 - 142 * F21 ) >> 8

E22 = (  - 142 * F25 - 212 * F22 ) >> 8

E25 = ( 212 * F25 - 142 * F22 ) >> 8

E26 = ( 142 * F26 + 212 * F21 ) >> 8

E29 = ( 49 * F29 - 251 * F18 ) >> 8

E30 = ( 251 * F30 + 49 * F17 ) >> 8




	Stage 4
	Stage 5
	Stage 6

	D0 = ( 181 * ( X0 + X16 ) ) >> 8

D1 = ( 181 * ( X0 - X16 ) ) >> 8

D2 = ( 97 * X8 - 236 * X24 ) >> 8

D3 = ( 236 * X8 + 97 * X24 ) >> 8

D4 = E4 + E5

D5 = E4 - E5

D6 = E7 - E6

D7 = E7 + E6

D9 = ( 97 * E14 - 236 * E9 ) >> 8

D10 = (  - 236 * E13 - 97 * E10 ) >> 8

D13 = ( 97 * E13 - 236 * E10 ) >> 8

D14 = ( 236 * E14 + 97 * E9 ) >> 8

D16 = F16 + F19

D19 = F16 - F19

D20 = F23 - F20

D23 = F23 + F20

D24 = F24 + F27

D27 = F24 - F27

D28 = F31 - F28

D31 = F31 + F28

D17 = E17 + E18

D18 = E17 - E18

D21 = E22 - E21

D22 = E22 + E21

D25 = E25 + E26

D26 = E25 - E26

D29 = E30 - E29

D30 = E30 + E29
	C0 = D0 + D3

C3 = D0 - D3

C8 = E8 + E11

C11 = E8 - E11

C12 = E15 - E12

C15 = E15 + E12

C1 = D1 + D2

C2 = D1 - D2

C9 = D9 + D10

C10 = D9 - D10

C13 = D14 - D13

C14 = D14 + D13

C5 = ( 181 * ( D6 - D5 ) ) >> 8

C6 = ( 181 * ( D6 + D5 ) ) >> 8

C18 = ( 97 * D29 - 236 * D18 ) >> 8

C20 = ( - 236 * D27 - 97 * D20 ) >> 8

C26 = ( - 236 * D21 + 97 * D26 ) >> 8

C28 = ( 97 * D19 + 236 * D28 ) >> 8

C19 = ( 97 * D28 - 236 * D19 ) >> 8

C21 = ( - 236 * D26 - 97 * D21 ) >> 8

C27 = ( - 236 * D20 + 97 * D27 ) >> 8

C29 = ( 97 * D18 + 236 * D29 ) >> 8


	B7 = C0 - D7

B1 = C1 + C6

B6 = C1 - C6

B2 = C2 + C5

B5 = C2 - C5

B3 = C3 + D4

B4 = C3 - D4

B10 = ( 181 * ( C13 - C10 ) ) >> 8

B13 = ( 181 * ( C13 + C10 ) ) >> 8

B11 = ( 181 * ( C12 - C11 ) ) >> 8

B12 = ( 181 * ( C12 + C11 ) ) >> 8

B16 = D16 + D23

B23 = D16 - D23

B24 = D31 - D24

B31 = D31 + D24

B17 = D17 + D22

B22 = D17 - D22

B25 = D30 - D25

B30 = D30 + D25

B18 = C18 + C21

B21 = C18 - C21

B26 = C29 - C26

B29 = C29 + C26

B19 = C19 + C20

B20 = C19 - C20

B27 = C28 - C27

B28 = C28 + C27


	Stage 7
	Stage 8
	

	A0 = B0 + C15

A15 = B0 - C15

A1 = B1 + C14

A14 = B1 - C14

A2 = B2 + B13

A13 = B2 - B13

A3 = B3 + B12

A12 = B3 - B12

A4 = B4 + B11

A11 = B4 - B11

A5 = B5 + B10

A10 = B5 - B10

A6 = B6 + C9

A9 = B6 - C9

A7 = B7 + C8

A8 = B7 - C8

A20 = ( 181 * ( B27 - B20 ) ) >> 8

A27 = ( 181 * ( B27 + B20 ) ) >> 8

A21 = ( 181 * ( B26 - B21 ) ) >> 8

A26 = ( 181 * ( B26 + B21 ) ) >> 8

A22 = ( 181 * ( B25 - B22 ) ) >> 8

A25 = ( 181 * ( B25 + B22 ) ) >> 8

A23 = ( 181 * ( B24 - B23 ) ) >> 8

A24 = ( 181 * ( B24 + B23 ) ) >> 8


	Y0 = ( A0 + B31 ) 

Y31 = ( A0 - B31 ) 

Y1 = ( A1 + B30 ) 

Y30 = ( A1 - B30 ) 

Y2 = ( A2 + B29 ) 

Y29 = ( A2 - B29 ) 

Y3 = ( A3 + B28 ) 

Y28 = ( A3 - B28 ) 

Y4 = ( A4 + A27 ) 

Y27 = ( A4 - A27 ) 

Y5 = ( A5 + A26 ) 

Y26 = ( A5 - A26 ) 

Y6 = ( A6 + A25 ) 

Y25 = ( A6 - A25 ) 

Y7 = ( A7 + A24 ) 

Y24 = ( A7 - A24 ) 

Y8 = ( A8 + A23 ) 

Y23 = ( A8 - A23 ) 

Y9 = ( A9 + A22 ) 

Y22 = ( A9 - A22 ) 

Y10 = ( A10 + A21 ) 

Y21 = ( A10 - A21 ) 

Y11 = ( A11 + A20 ) 

Y20 = ( A11 - A20 ) 

Y12 = ( A12 + B19 ) 

Y19 = ( A12 - B19 ) 

Y13 = ( A13 + B18 ) 

Y18 = ( A13 - B18 ) 

Y14 = ( A14 + B17 ) 

Y17 = ( A14 - B17 ) 

Y15 = ( A15 + B16 ) 

Y16 = ( A15 - B16 ) 
	


5.4.5.4.6 Transformation process for 64-point input

Inputs of this process are a 64-point array of scaled transform coefficients X with elements Xi.

Outputs of this process are residual sample values as a 64-point array Y with elements Yi.

64-point one-dimensional inverse transform process is defined as following 10 stages. Xi (i = 0...63) are elements of input vector and Yi (i=0...63) are elements of output vector. In each stage, sets of intermediate values Hi,Gi, Fi, Ei, Di, Ci, Bi, Ai, Oi (i = 0...63) are derived and fed into next stage.

	Stage 1
	Stage 2
	Stage 3

	H32 = (25*X1-1024*X63) >> 10
H33 = (742*X33-706*X31) >> 10 

H34 = (415*X17-936*X47) >> 10 

H35 = (955*X49-369*X15) >> 10 

H36 = (224*X9-999*X55) >> 10 

H37 = (865*X41-548*X23) >> 10
H38 = (590*X25-837*X39) >> 10
H39 = (1009*X57-175*X7) >> 10
H40 = (125*X5-1016*X59) >> 10
H41 = (807*X37-630*X27) >> 10
H42 = (505*X21-891*X43) >> 10
H43 = (987*X53-273*X11) >> 10
H44 = (321*X13-972*X51) >> 10
H45 = (915*X45-460*X19) >> 10
H46 = (669*X29-775*X35) >> 10
H47 = (1021*X61-75*X3) >> 10
H48 = (1021*X3+75*X61) >> 10
H49 = (669*X35+775*X29) >> 10
H50 = (915*X19+460*X45) >> 10
H51 = (321*X51+972*X13) >> 10
H52 = (987*X11+273*X53) >> 10
H53 = (505*X43+891*X21) >> 10
H54 = (807*X27+630*X37) >> 10
H55 = (125*X59+1016*X5) >> 10
H56 = (1009*X7+175*X57) >> 10
H57 = (590*X39+837*X25) >> 10
H58 = (865*X23+548*X41) >> 10
H59 = (224*X55+999*X9) >> 10
H60 = (955*X15+369*X49) >> 10
H61 = (415*X47+936*X17) >> 10
H62 = (742*X31+706*X33) >> 10
H63 = (25*X63+1024*X1) >> 10

	G16 = (50*X2-1023*X62) >> 10 

G17 = (759*X34-688*X30) >> 10 
G18 = (438*X18-926*X46) >> 10 

G19 = (964*X50-345*X14) >> 10 

G20 = (249*X10-993*X54) >> 10 

G21 = (878*X42-526*X22) >> 10
G22 = (610*X26-822*X38) >> 10
G23 = (1013*X58-150*X6) >> 10
G24 = (1013*X6+150*X58) >> 10
G25 = (610*X38+822*X26) >> 10
G26 = (878*X22+526*X42) >> 10
G27 = (249*X54+993*X10) >> 10
G28 = (964*X14+345*X50) >> 10 

G29 = (438*X46+926*X18) >> 10
G30 = (759*X30+688*X34) >> 10 

G31 = (50*X62+1023*X2) >> 10
G32 = H32+H33
G33 = H32-H33
G34 = H35-H34
G35 = H35+H34
G36 = H36+H37
G37 = H36-H37
G38 = H39-H38
G39 = H39+H38
G40 = H40+H41
G41 = H40-H41
G42 = H43-H42
G43 = H43+H42
G44 = H44+H45
G45 = H44-H45
G46 = H47-H46
G47 = H47+H46
G48 = H48+H49
G49 = H48-H49
G50 = H51-H50
G51 = H51+H50
G52 = H52+H53
G53 = H52-H53
G54 = H55-H54
G55 = H55+H54
G56 = H56+H57
G57 = H56-H57
G58 = H59-H58
G59 = H59+H58
G60 = H60+H61
G61 = H60-H61
G62 = H63-H62
G63 = H63+H62
	F8 = (100*X4-1019*X60) >> 10
F9 = (792*X36-650*X28) >> 10
F10 = (483*X20-903*X44) >> 10
F11 = (980*X52-297*X12) >> 10
F12 = (980*X12+297*X52) >> 10
F13 = (483*X44+903*X20) >> 10
F14 = (792*X28+650*X36) >> 10
F15 = (100*X60+1019*X4) >> 10
F16 = G16+G17
F17 = G16-G17
F18 = G19-G18
F19 = G19+G18
F20 = G20+G21
F21 = G20-G21
F22 = G23-G22
F23 = G23+G22
F24 = G24+G25
F25 = G24-G25
F26 = G27-G26
F27 = G27+G26
F28 = G28+G29
F29 = G28-G29
F30 = G31-G30
F31 = G31+G30
F33 = (100*G62-1019*G33) >> 10
F34 = (-1019*G61-100*G34) >> 10
F37 = (792*G58-650*G37) >> 10
F38 = (-650*G57-792*G38) >> 10
F41 = (483*G54-903*G41) >> 10
F42 = (-903*G53-483*G42) >> 10
F45 = (980*G50-297*G45) >> 10
F46 = (-297*G49-980*G46) >> 10
F49 = (980*G49-297*G46) >> 10
F50 = (297*G50+980*G45) >> 10
F53 = (483*G53-903*G42) >> 10
F54 = (903*G54+483*G41) >> 10
F57 = (792*G57-650*G38) >> 10
F58 = (650*G58+792*G37) >> 10
F61 = (100*G61-1019*G34) >> 10
F62 = (1019*G62+100*G33) >> 10



	Stage 4
	Stage 5
	Stage 6

	E4 = (200*X8-1004*X56) >> 10
E5 = (851*X40-569*X24) >> 10
E6 = (851*X24+569*X40) >> 10
E7 = (200*X56+1004*X8) >> 10
E8 = F8+F9
E9 = F8-F9
E10 = F11-F10
E11 = F11+F10
E12 = F12+F13
E13 = F12-F13
E14 = F15-F14
E15 = F15+F14
E17 = (200*F30-1004*F17) >> 10
E18 = (-1004*F29-200*F18) >> 10
E21 = (851*F26-569*F21) >> 10
E22 = (-569*F25-851*F22) >> 10
E25 = (851*F25-569*F22) >> 10
E26 = (569*F26+851*F21) >> 10
E29 = (200*F29-1004*F18) >> 10
E30 = (1004*F30+200*F17) >> 10
E32 = G32+G35
E33 = F33+F34
E34 = F33-F34
E35 = G32-G35
E36 = G39-G36
E37 = F38-F37
E38 = F38+F37
E39 = G39+G36
E40 = G40+G43
E41 = F41+F42 

E42 = F41-F42 

E43 = G40-G43 

E44 = G47-G44 

E45 = F46-F45 

E46 = F46+F45 

E47 = G47+G44 

E48 = G48+G51 

E49 = F49+F50 

E50 = F49-F50 

E51 = G48-G51 

E52 = G55-G52 

E53 = F54-F53 

E54 = F54+F53 

E55 = G55+G52 

E56 = G56+G59 

E57 = F57+F58 

E58 = F57-F58 

E59 = G56-G59 

E60 = G63-G60 

E61 = F62-F61 

E62 = F62+F61 

E63 = G63+G60
	D0 = (724*(X0+X32)) >> 10
D1 = (724*(X0-X32)) >> 10
D2 = (392*X16-946*X48) >> 10
D3 = (946*X16+392*X48) >> 10
D4 = E4+E5
D5 = E4-E5
D6 = E7-E6
D7 = E7+E6
D9 = (392*E14-946*E9) >> 10
D10 = (-946*E13-392*E10) >> 10
D13 = (392*E13-946*E10) >> 10
D14 = (946*E14+392*E9) >> 10
D16 = F16+F19
D19 = F16-F19
D20 = F23-F20
D23 = F23+F20
D24 = F24+F27
D27 = F24-F27
D28 = F31-F28
D31 = F31+F28
D17 = E17+E18
D18 = E17-E18
D21 = E22-E21
D22 = E22+E21
D25 = E25+E26
D26 = E25-E26
D29 = E30-E29
D30 = E30+E29
D34 = (200*E61-1004*E34) >> 10
D35 = (200*E60-1004*E35) >> 10 

D36 = (-1004*E59-200*E36) >> 10 

D37 = (-1004*E58-200*E37) >> 10 

D42 = (851*E53-569*E42) >> 10 

D43 = (851*E52-569*E43) >> 10 

D44 = (-569*E51-851*E44) >> 10 

D45 = (-569*E50-851*E45) >> 10 

D50 = (851*E50-569*E45) >> 10 

D51 = (851*E51-569*E44) >> 10 

D52 = (569*E52+851*E43) >> 10 

D53 = (569*E53+851*E42) >> 10 

D58 = (200*E58-1004*E37) >> 10 

D59 = (200*E59-1004*E36) >> 10 

D60 = (1004*E60+200*E35) >> 10 

D61 = (1004*E61+200*E34) >> 10 


	C0 = D0+D3
C3 = D0-D3
C8 = E8+E11 

C11 = E8-E11 

C12 = E15-E12 

C15 = E15+E12 

C1 = D1+D2 

C2 = D1-D2 

C9 = D9+D10 

C10 = D9-D10 

C13 = D14-D13 

C14 = D14+D13 

C5 = (724*(D6-D5)) >> 10 

C6 = (724*(D6+D5)) >> 10 

C18 = (392*D29-946*D18) >> 10 

C20 = (-946*D27-392*D20) >> 10 

C26 = (-946*D21+392*D26) >> 10 

C28 = (392*D19+946*D28) >> 10 

C19 = (392*D28-946*D19) >> 10 

C21 = (-946*D26-392*D21) >> 10 

C27 = (-946*D20+392*D27) >> 10 

C29 = (392*D18+946*D29) >> 10 

C32 = E32+E39 

C39 = E32-E39 

C40 = E47-E40 

C47 = E47+E40 

C48 = E48+E55 

C55 = E48-E55 

C56 = E63-E56 

C63 = E63+E56 

C33 = E33+E38 

C38 = E33-E38 

C41 = E46-E41 

C46 = E46+E41 

C49 = E49+E54 

C54 = E49-E54 

C57 = E62-E57 

C62 = E62+E57 

C34 = D34+D37 

C37 = D34-D37 

C42 = D45-D42 

C45 = D45+D42 

C50 = D50+D53 

C53 = D50-D53 

C58 = D61-D58 

C61 = D61+D58 

C35 = D35+D36 

C36 = D35-D36 

C43 = D44-D43 

C44 = D44+D43 

C51 = D51+D52 

C52 = D51-D52 

C59 = D60-D59 

C60 = D60+D59 


	Stage 7
	Stage 8
	 Stage 9

	B0 = C0+D7
B7 = C0-D7
B1 = C1+C6
B6 = C1-C6
B2 = C2+C5
B5 = C2-C5
B3 = C3+D4
B4 = C3-D4
B10 = (724*(C13-C10)) >> 10
B13 = (724*(C13+C10)) >> 10
B11 = (724*(C12-C11)) >> 10
B12 = (724*(C12+C11)) >> 10
B16 = D16+D23
B23 = D16-D23
B24 = D31-D24 

B31 = D31+D24 

B17 = D17+D22 

B22 = D17-D22 

B25 = D30-D25 

B30 = D30+D25 

B18 = C18+C21 

B21 = C18-C21 

B26 = C29-C26 

B29 = C29+C26 

B19 = C19+C20 

B20 = C19-C20 

B27 = C28-C27 

B28 = C28+C27 

B36 = (392*C59-946*C36) >> 10 

B40 = (-946*C55-392*C40) >> 10 

B52 = (-946*C43+392*C52) >> 10 

B56 = (392*C39+946*C56) >> 10 

B37 = (392*C58-946*C37) >> 10 

B41 = (-946*C54-392*C41) >> 10 

B53 = (-946*C42+392*C53) >> 10 

B57 = (392*C38+946*C57) >> 10 

B38 = (392*C57-946*C38) >> 10 

B42 = (-946*C53-392*C42) >> 10 

B54 = (-946*C41+392*C54) >> 10 

B58 = (392*C37+946*C58) >> 10 

B39 = (392*C56-946*C39) >> 10 

B43 = (-946*C52-392*C43) >> 10 

B55 = (-946*C40+392*C55) >> 10 

B59 = (392*C36+946*C59) >> 10 
	A0 = B0+C15
A15 = B0-C15
A1 = B1+C14
A14 = B1-C14
A2 = B2+B13
A13 = B2-B13
A3 = B3+B12
A12 = B3-B12
A4 = B4+B11
A11 = B4-B11
A5 = B5+B10
A10 = B5-B10
A6 = B6+C9
A9 = B6-C9
A7 = B7+C8
A8 = B7-C8
A20 = (724*(B27-B20)) >> 10
A27 = (724*(B27+B20)) >> 10
A21 = (724*(B26-B21)) >> 10
A26 = (724*(B26+B21)) >> 10
A22 = (724*(B25-B22)) >> 10
A25 = (724*(B25+B22)) >> 10
A23 = (724*(B24-B23)) >> 10
A24 = (724*(B24+B23)) >> 10
A32 = C32+C47
A47 = C32-C47
A48 = C63-C48
A63 = C63+C48
A33 = C33+C46
A46 = C33-C46
A49 = C62-C49
A62 = C62+C49
A34 = C34+C45
A45 = C34-C45
A50 = C61-C50
A61 = C61+C50
A35 = C35+C44
A44 = C35-C44
A51 = C60-C51
A60 = C60+C51
A36 = B36+B43
A43 = B36-B43
A52 = B59-B52
A59 = B59+B52
A37 = B37+B42
A42 = B37-B42
A53 = B58-B53
A58 = B58+B53
A38 = B38+B41
A41 = B38-B41
A54 = B57-B54
A57 = B57+B54
A39 = B39+B40                                                                                                                     

A40 = B39-B40
A55 = B56-B55
A56 = B56+B55
	O0 = A0+B31 

O31 = A0-B31 

O1 = A1+B30 

O30 = A1-B30 

O2 = A2+B29 

O29 = A2-B29 

O3 = A3+B28 

O28 = A3-B28 

O4 = A4+A27 

O27 = A4-A27 

O5 = A5+A26 

O26 = A5-A26 

O6 = A6+A25 

O25 = A6-A25 

O7 = A7+A24 

O24 = A7-A24 

O8 = A8+A23 

O23 = A8-A23 

O9 = A9+A22 

O22 = A9-A22 

O10 = A10+A21 

O21 = A10-A21 

O11 = A11+A20 

O20 = A11-A20 

O12 = A12+B19 

O19 = A12-B19 

O13 = A13+B18 

O18 = A13-B18 

O14 = A14+B17 

O17 = A14-B17 

O15 = A15+B16 

O16 = A15-B16 

O40 = (724*(A55-A40)) >> 10 

O55 = (724*(A55+A40)) >> 10 

O41 = (724*(A54-A41)) >> 10 

O54 = (724*(A54+A41)) >> 10 

O42 = (724*(A53-A42)) >> 10 

O53 = (724*(A53+A42)) >> 10 

O43 = (724*(A52-A43)) >> 10 

O52 = (724*(A52+A43)) >> 10 

O44 = (724*(A51-A44)) >> 10 

O51 = (724*(A51+A44)) >> 10 

O45 = (724*(A50-A45)) >> 10 

O50 = (724*(A50+A45)) >> 10 

O46 = (724*(A49-A46)) >> 10 

O49 = (724*(A49+A46)) >> 10 

O47 = (724*(A48-A47)) >> 10 

O48 = (724*(A48+A47)) >> 10 


	Stage 10

	Y0 = O0+A63 

Y63 = O0-A63 

Y1 = O1+A62 

Y62 = O1-A62 

Y2 = O2+A61 

Y61 = O2-A61 

Y3 = O3+A60 

Y60 = O3-A60 

Y4 = O4+A59 

Y59 = O4-A59 

Y5 = O5+A58 

Y58 = O5-A58 

Y6 = O6+A57 

Y57 = O6-A57 

Y7 = O7+A56 

Y56 = O7-A56 

Y8 = O8+O55 

Y55 = O8-O55 

Y9 = O9+O54 

Y54 = O9-O54 

Y10 = O10+O53 

Y53 = O10-O53 
	Y11 = O11+O52 

Y52 = O11-O52 

Y12 = O12+O51 

Y51 = O12-O51 

Y13 = O13+O50
Y50 = O13-O50
Y14 = O14+O49
Y49 = O14-O49
Y15 = O15+O48
Y48 = O15-O48
Y16 = O16+O47
Y47 = O16-O47
Y17 = O17+O46
Y46 = O17-O46
Y18 = O18+O45
Y45 = O18-O45
Y19 = O19+O44
Y20 = O20+O43
Y43 = O20-O43
Y21 = O21+O42
Y42 = O21-O42
Y22 = O22+O41
	Y41 = O22-O41
Y23 = O23+O40
Y40 = O23-O40
Y24 = O24+A39
Y39 = O24-A39
Y25 = O25+A38
Y38 = O25-A38
Y26 = O26+A37
Y37 = O26-A37
Y27 = O27+A36
Y36 = O27-A36
Y28 = O28+A35
Y35 = O28-A35
Y29 = O29+A34
Y34 = O29-A34
Y30 = O30+A33
Y33 = O30-A33
Y31 = O31+A32
Y32 = O31-A32


5.4.6 Picture construction process prior to deblocking filter process

Inputs to this process are

· a sample array u with elements uij which is either a NxN luma block or NxN chroma block.
· largest coding unit address lcuAddr, prediction unit index puIdx and transform unit index tuIdx.
The position of the upper-left luma sample of the current largest coding unit is derived by invoking the inverse largest coding unit scanning process in subclause 3.2.1 with address lcuAddr as input and the output being assigned to ( xL, yL ).
The position of the upper-left luma sample of the current prediction unit puIdx inside the largest coding unit is derived by invoking the inverse prediction unit scanning process in subclause 3.2.4.1 with puIdx as input and the output being assigned to ( xP, yP ).
The position of the upper-left luma sample of the current transform unit tuIdx inside the prediction unit is derived by invoking the inverse transform unit scanning process in subclause 3.2.4.3 with tuIdx as input and the output being assigned to ( xO, yO ).
Let xS be xL + xP + xO and yS be yL + yP + yO.

When u is a luma block, for each sample uij of the luma block, the following applies.


S'L[ xS + j, yS + i ] = uij 
with i, j = 0..N-1

When u is a chroma block, for each sample uij of the chroma block, the following ordered steps are specified:

1. The subscript C in the variable S'C is replaced with Cb for the Cb chroma component and with Cr for the Cr chroma component.


xSC = xS / SubWidthC


ySC = yS / SubHeightC

2. Then, the following applies.


S'C[ xSC + j, ySC + i ] = uij
 with i, j = 0..N-1

5.5 In-loop filter process

5.5.1 Deblocking filter process

The deblocking filter process shall be applied to all prediction unit partition edges and transform unit edges of a picture, except edges at the boundary of the picture, and edges of prediction unit partitions and transform unit partitions smaller than 8 pixels in either vertical or horizontal direction. For the transform units and prediction units with edges smaller than 8 pixels, only the edges lying on the 8x8 grid are filtered.
The deblocking filter process is invoked for the luma and chroma components separately. The filter process is in LCU order. Each LCU is processed in CU order. For each CU, vertical edges are filtered first, starting with the edge on the left-hand side of the prediction unit proceeding through the edges towards the right-hand side of the prediction unit in their geometrical order. Then, horizontal edges are filtered starting with the edge on the top of the CU proceeding through the edges towards the bottom of the CU in their geometrical order.
The variables filterInternalEdgesFlag, filterLeftPuEdgeFlag, filterTopPuEdgeFlag are derived as specified by the following ordered steps.

1. The derivation process for neighbouring largest coding units specified in subclause 3.3.4.1 is invoked and the output is assigned to lcuAddrA and lcuAddrB

2. The variables filterInternalEdgesFlag, filterLeftPuEdgeFlag and filterTopPuEdgeFlag are derived as specified by the following ordered steps:

a. The variable filterInternalEdgesFlag is derived as follows.
· the variable filterInternalEdgesFlag is set equal to 1

b. The variable filterLeftPuEdgeFlag is derived as follows.

· If any of the following conditions is true, the variable filterLeftPuEdgeFlag is set equal to 0:

· CurrLcuAddr % PicWidthInLCUs is equal to 0

· the largest coding unit lcuAddA is not available

· Otherwise, the variable filterLeftPuEdgeFlag is set equal to 1

c. The variable filterTopPuEdgeFlag is derived as follows.

· If any of the following conditions is true, the variable filterTopPuEdgeFlag is set equal to 0:

· CurrLcuAddr is less than PicWidthInLCUs

· the largest coding unit lcuAddB is not available

· Otherwise, the variable filterTopPuEdgeFlag is set equal to 1


Fig. 5‑2 shows the possible edges from the partition boundaries inside the prediction unit which can be interpreted as luma or chroma edges.
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Fig. 5‑2 Partition boundaries in a prediction unit to be filtered

When interpreting the edges in Fig. 5‑2 as luma edges and chroma edges, the partition mode PartMode is considered as well as the value of the variables filterInternalEdgesFlag, filterLeftPUEdgeFlag and filterTopPUEdgeFlag.

The vertical edge interpretation depending on the partition mode is specified as follows:

· The first vertical edge can be filtered when filterLeftPuEdgeFlag is equal to 1 and the width of the prediction unit is equal or larger than 8 pixels.

· If PartMode is PART_nLx2N, the second vertical edge can be filtered when filterInternalEdgesFlag is equal to 1 and the distance between the first and the second vertical edges is equal or larger than 8 pixels.

· Otherwise, if PartMode is PART_Nx2N or PART_NxN, the third vertical edge can be filtered when filterInternalEdgesFlag is equal to 1 and the distance between the first and the third vertical edges is equal or larger than 8 pixels.

· Otherwise, if PartMode is PART_nRx2N, the fourth vertical edge can be filtered when filterInternalEdgesFlag is equal to 1 and the distance between the fourth vertical edges and the next PU or the picture boundary is equal or larger than 8 pixels.

The horizontal edge interpretation depending on the partition mode is specified as follows:

· The first horizontal edge can be filtered when filterTopPuEdgeFlag is equal to 1 and the height of the prediction unit is equal or larger than 8 pixels.

· If PartMode is PART_2NxnU, the second horizontal edge can be filtered when filterInternalEdgesFlag is equal to 1 and the distance between the first and the second horizontal edges is equal or larger than 8 pixels.

· Otherwise, if PartMode is PART_2NxN or PART_NxN, the third horizontal edge can be filtered when filterInternalEdgesFlag is equal to 1 and the distance between the first and the third horizontal edges is equal or larger than 8 pixels.

· Otherwise, if PartMode is PART_2NxnD, the fourth horizontal edge can filtered when filterInternalEdgesFlag is equal to 1 and the distance between the fourth horizontal edges and the next PU or the picture boundary is equal or larger than 8 pixels.

The vertical and horizontal edges interpretation depending on transform unit size is specified as follows:

Fig. 5-3 shows the possible edges from the partition boundaries inside the transform unit which can be interpreted as luma or chroma edges.
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Fig. 5‑3 Partition boundaries in a transform unit to be filtered

Only vertical edges in the transform unit with a distance equal to 8 or larger can be filtered. This means that if MinTransformUnitSize=4 only every second vertical edge can be filtered. Only horizontal edges in the transform unit with a distance equal to 8 or larger can be filtered. This means that if MinTransformUnitSize=4 only every second horizontal edge can be filtered.
When a horizontal or vertical edge from either partitions of a prediction unit or from partitions of a transform unit can be filtered according to above processes, another process follows to check if parts of respective edge can be filtered. The deblocking filter operates on k parts, where k ranges 0 to K-1, of edges for luma as well as for chroma, where K is the width or height of the current CU divided by 8 for horisontal edges and vertical edges respectively. The size of each part is 8 pixel. The pixels on respective side of parts of the edges are in the following denoted A and B where B corresponds to a part of the partition at largest coding unit address lcuAddr, prediction unit index puIdx and transform unit index tuIdx. In the following, A corresponds to the left neighbouring partition to B for vertical edges and to the above neighbouring partition to B for horizontal edges. 
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Notation of an 8 pixel part of a vertical edge for deblocking

The k:th part of a vertical edge in luma the pixels in partition A and B have following correspondance with reconstructed pixel values in luma:

qji = S'L[ xS + j, yS + i + k*8]

pji = S'L[ xS - j - 1, yS + i + k*8]  
with j=0..3 and i=0..7

where S'L , xS and yS are defined in 5.3.5.

The k:th part of a horizontal edge in luma the pixels in partition A and B have following correspondance with reconstructed pixel values in luma:

qji = S'L[ xS + j + k*8, yS + i ] 

pji = S'L[ xS + j + k*8, yS - i - 1 ]  
with j=0..7 and i=0..3

The k:th part of a vertical edge in chroma the pixels in partition A and B have following correspondance with reconstructed pixel values in chroma:

qji = S'C[ xSC + j, ySC + i + k*8] 

pji = S'C[ xSC - j - 1, ySC + i+ k*8 ]  
with j=0..3 and i=0..7

where S'C , xSC and ySC are defined in 5.3.5.

The k:th part of a horizontal edge in chroma the pixels in partition A and B have following correspondance with reconstructed pixel values in chroma:

qji = S'C[ xSC + j+ k*8, ySC + i ] 

pji = S'C[ xSC + j+ k*8, ySC - i - 1]  
with j=0..7 and i=0..3

Luma filtering

A part of the luma edge between A and B can be filtered if one of the following conditions is true

· A or B has PredMode==MODE_INTRA

· or A or B has nonzero transform coefficients

· or A and B use different reference frames or different number of motion vectors

-
or one motion vector is used to predict partition A and one motion vector is used to predict the partition B and the absolute difference between the horizontal or vertical component of the motion vectors used is greater than or equal to 4 in units of quarter luma frame samples,

-
or two motion vectors and two different reference pictures are used to predict the partition A and two motion vectors for the same two reference pictures are used to predict the partition B and the absolute difference between the horizontal or vertical component of the two motion vectors used in the prediction of the two partitions for the same reference picture is greater than or equal to 4 in units of quarter luma frame samples,

-
or two motion vectors for the same reference picture are used to predict the partition A and two motion vectors for the same reference picture are used to predict the partition B and the absolute difference between the horizontal or vertical component of the corresponding motion vectors used in the prediction of the two partitions is greater than or equal to 4 in units of quarter luma frame samples.

· and  |p22 - 2*p12 + p02| + |q22 - 2*q12 + q02| + |p25 - 2*p15 + p05| + |q25 - 2*q15 + q05| < β

The filtering is also performed on the 8 pixel edge if the conditions described above are fulfilled for any pair of the smaller partitions or transform units on the different sides of the edge. For example, if A consists of two 4x4 partitions (A1 and A2) then the above process except the last item is done for both partition pairs A1 - B and A2 – B , and the last item is applied for the pair A-B. If pairs A1 - B or pair A2 - B need to be filtered then the whole 8 pixel edge between A and B is filtered.

A part of the luma edge between A and B is not filtered if one of the following conditions is true.

· A and B belong to the same transform unit partition and the same prediction unit partition

· or the edge is a prediction unit border and both A and B have planar_flag ==1.  

If the edge between A and B is filtered, one of two types of filtering (weak or strong filtering) is performed. The choice between the strong and the weak filtering is done separately for each line depending on the following conditions. For each line i = 0,7, the strong filtering is performed if all the following conditions are true, otherwise, weak filtering is performed.

· d < (β>>2)
· and (|p3i - p0i| + |q0i – q3i|) < (β>>3)  
· and |p0i – q0i| < ((5*tC + 1)>>1),




where tC and β depends on qp their relations are shown in the table below. The tC is calculated as tC (qp+4) when A or B has PredMode==MODE_INTRA. 

Relation between qp, tc and β

	qp
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	tc
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	β
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	6
	7

	qp
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

	tc
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2
	2
	2
	2
	3
	3
	3
	3
	4

	β
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	20
	22
	24
	26
	28
	30
	32

	qp
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53

	tc
	4
	4
	5
	5
	6
	6
	7
	8
	9
	9
	10
	10
	11
	11
	12
	12
	13
	13

	β
	34
	36
	38
	40
	42
	44
	46
	48
	50
	52
	54
	56
	58
	60
	62
	64
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	14
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Weak filtering

Weak filtering mode filtering is performed based on the above conditions, 

( = Clip(-tC,tC, (13*(q0i - p0i) + 4*( q1i - p1i) - 5*( q2i - p2i)+16)>>5))

i = 0,7

p0i = Clip0-255(p0i + ()



i = 0,7

q0i = Clip0-255(q0i - () 



i = 0,7

p1i = Clip0-255(p1i + (/2) 



i = 0,7

q1i = Clip0-255(q1i - (/2) 



i = 0,7

Strong filtering

Strong filtering mode is performed with the following set of operations.

p00=Clip0-255((p2i + 2*p1i + 2*p0i +2*q0i + q1i + 4)>>3);

i = 0,7
q00=Clip0-255((p1i + 2*p0i + 2*q0i + 2*q1i + q2i + 4)>>3);

i = 0,7
p10=Clip0-255((p2i + p1i + p0i + q0i +2)>>2);



i = 0,7
q10=Clip0-255((p0i + q0i + q1i + q2i +2)>>2);



i = 0,7
p20=Clip0-255((2*p3i + 3*p2i + p1i + p0i + q0i + 4)>>3);

i = 0,7
q20=Clip0-255((p0i + q0i + q1i + 3*q2i + 2*q3i + 4)>>3);


i = 0,7

Chroma filtering

The chroma edge between A and B can be filtered if the following condition is true.

· A or B has PredMode==MODE_INTRA

The filtering is not applied if both following conditions are true.

· The edge is a prediction unit edge 

 and both A and B have planar_flag==1.

If filtering is performed based on the above condition,

( = Clip(-tC,tC,((((q0i - p0i) << 2) + p1i - q1i + 4)  >> 3))

i = 0,7

p0i = Clip0-255(p0i + ()





i = 0,7

q0i = Clip0-255(q0i - ()





i = 0,7

tC depend on qp and their relations are shown in the table above. For chroma filtering tC is calculated as tC (qp+4).

Planar mode filtering

There is a special filtering mode which is applied to the prediction unit edge when both prediction units are encoded in intra planar mode. Luma and chroma edges between A and B are filtered with planar filtering if all of the following conditions are true, otherwise normal filtering described in Luma and Chroma filtering are performed.

· Edge between A and B is a prediction unit edge

· Both A and B have planar_flag==1 

· The prediction units for both A and B have the same size.
Let variable blkSize equals to width (or height) of prediction unit, blkSizeHalf= blkSize>>1 and blkSizeQuarter = blkSize>>2 and bitShift = log2(blkSize) - 1. If luma edges are filtered, let S = S'L , xPos = xS, yPos = yS, otherwise  let S = S'C , xPos = xSC, yPos = ySC
The horizontal planar mode filtering is performed with the following set of operations.

for(k=0;k<blkSize;k++) {

   a1 = S [xPos - blkSizeQuarter][yPos+k];

   a2 = S [xPos + blkSizeQuarter][yPos+k];

   for(l=1;l<blkSizeHalf;l++)
      S[xPos-blkSizeQuarter+l] [yPos+k] = (a1*(blkSizeHalf-l) + a2*l + blkSizeQuarter) >> bitShift;

}

The vertical planar mode filtering for luma component is performed with the following set of operations.

for(k=0; k<blkSize; k++) {

   a1 = S[xPos +k] [yPos-blkSizeQuarter];

   a2 = S[xPos +k] [yPos+blkSizeQuarter];

   for(l=1; l<blkSizeHalf; l++) 
      S[xPos +k][ yPos -blkSizeQuarter+l] = (a1*(blkSizeHalf-l) + a2*l + blkSizeQuarter) >> bitShift;

}
5.5.2 Adaptive loop filter process

This process is invoked when adaptive_loop_filter_flag is equal to 1.

This process is performed on a coding unit basis after the completion of the slice construction process prior to adaptive loop filter process for the entire decoded slice, with all coding units in a slice processed in order of coding unit scan order.

The following filter coefficients are derived by invoking the process specified in subclause 5.4.2.1.

· Filter coefficients cL_hor for horizontal filtering of the samples of the reconstructed signal of the luma component

· Filter coefficients cL_ver for vertical filtering of the luma samples of the reconstructed signal of the luma component

· Filter coefficients cL_pred_hor for horizontal filtering of the samples of the prediction signal of the luma component

· Filter coefficients cL_pred_ver for vertical filtering of the samples of the prediction signal of the luma component

· Filter coefficients cL_qpe_hor for horizontal filtering of the samples of the quantized prediction error signal of the luma component

· Filter coefficients cL_qpe_ver for vertical filtering of the samples of the quantized prediction error signal of the luma component

· Filter coefficients cC_hor for horizontal filtering of the samples of the reconstructed signal of the chroma components
· Filter coefficients cC_ver for vertical filtering of the samples of the reconstructed signal of the chroma components

· Filter coefficients cC_pred_hor for horizontal filtering of the samples of the prediction signal of the chroma components

· Filter coefficients cC_pred_ver for vertical filtering of the samples of the prediction signal of the chroma components

· Filter coefficients cC_qpe_hor for horizontal filtering of the samples of the quantized prediction error signal of the chroma components

· Filter coefficients cC_qpe_ver for vertical filtering of the samples of the quantized prediction error signal of the chroma components

When interpreting the luma samples of the coding unit as to be filtered, depending on alf_cu_control_flag and alf_flag, the following applies.

· If alf_cu_control_flag is equal to 0, the luma samples are filtered,
· Otherwise (alf_cu_control_flag is equal to 1), if alf_flag is equal to 1, the luma samples are filtered.

· Otherwise, the luma samples are not filtered.

When interpreting the chroma samples of the coding unit as to be filtered, depending on alf_chroma_idc, the following applies.
· If alf_chroma_idc is equal to 1, the Cr samples are filtered.

· Otherwise, if alf_chroma_idc is equal to 2, the Cb samples are filtered.

· Otherwise, if alf_chroma_idc is equal to 3, both chroma samples are filtered.

· Otherwise (alf_chroma_idc is equal to 0), both chroma samples are not filtered.

For the luma samples of the coding unit interpreted as to be filtered, the following ordered steps are specified: 

1. The position of the upper-left sample of the largest coding unit with address lcuAddr is derived by invoking the inverse largest coding unit scanning process in subclause 3.2.1 with lcuAddr as the input and the output being assigned to ( xL, yL ).

2. The relative position of the upper-left sample of the current coding unit with index cuIdx is derived by invoking the inverse coding unit scanning process in subclause 3.2.3 with cuIdx as the input and the output being assigned to ( xP, yP ).

3. The filtering process for luma samples specified in subclause 5.4.2.2 is invoked with the position (xL+xP,yL+yP), the samples of the reconstructed signal (after deblocking) of the luma component S’L[ x, y ], the samples of the prediction signal of the luma component SL_pred[ x, y ], and the samples of the quantized prediction error signal of the luma component SL_qpe[ x, y ], with x = 0..PicWidthInSamplesL, y = 0..PicHeightInSamplesL as input and the output being assigned to pf[ x, y ], with x, y = 0..CuSize-1 as output.
4. The reconstructed samples in the current slice are updated as follows.

S’’L[ xL + xP + x, yL + yP + y ] = pf[ x, y ], with x, y = 0..CuSize – 1
For the chroma samples of the coding unit interpreted as to be filtered, the following ordered steps are specified (with C being Cb or Cr): 

1. The position of the upper-left sample of the largest codint unit with address lcuAddr is derived by invoking the inverse largest coding unit scanning process in subclause 3.2.1 with lcuAddr as the input and the output being assigned to ( xL, yL ).


xLC = xL / SubWidthC


yLC = yL / SubHeightC

2. The relative position of the upper-left sample of the current codint unit with index cuIdx is derived by invoking the inverse coding unit scanning process in subclause 3.2.3 with cuIdx as the input and the output being assigned to ( xP, yP ).


xPC = xP / SubWidthC


yPC = yP / SubHeightC

3. The filtering process for luma samples specified in subclause 5.4.2.3 is invoked with the position (xLC + xPC, yLC + yPC), the samples of the reconstructed signal (after deblocking) of the chroma component S’C[ x, y ], the samples of the prediction signal of the chroma component SC_pred[ x, y ], and the samples of the quantized prediction error signal of the chroma component SC_qpe[ x, y ], with x = 0..PicWidthInSamplesC, y = 0..PicHeightInSamplesC as input and the output being assigned to pf[ x, y ], with x, y = 0..CuSizeC-1 as output.
4. The reconstructed samples in the current slice are updated as follows.

S’’C[ xLC + xPC + x, yLC + yPC + y ] = pf[ x, y ], with x, y = 0..CuSizeC – 1
5.5.2.1 Derivation process for filter coefficients

Outputs of this process are 
· Filter coefficients cL_hor for horizontal filtering of the samples of the reconstructed signal of the luma component

· Filter coefficients cL_ver for vertical filtering of the luma samples of the reconstructed signal of the luma component

· Filter coefficients cL_pred_hor for horizontal filtering of the samples of the prediction signal of the luma component

· Filter coefficients cL_pred_ver for vertical filtering of the samples of the prediction signal of the luma component

· Filter coefficients cL_qpe_hor for horizontal filtering of the samples of the quantized prediction error signal of the luma component

· Filter coefficients cL_qpe_ver for vertical filtering of the samples of the quantized prediction error signal of the luma component

· Filter coefficients cC_hor for horizontal filtering of the samples of the reconstructed signal of the chroma components

· Filter coefficients cC_ver for vertical filtering of the samples of the reconstructed signal of the chroma components

· Filter coefficients cC_pred_hor for horizontal filtering of the samples of the prediction signal of the chroma components

· Filter coefficients cC_pred_ver for vertical filtering of the samples of the prediction signal of the chroma components

· Filter coefficients cC_qpe_hor for horizontal filtering of the samples of the quantized prediction error signal of the chroma components

· Filter coefficients cC_qpe_ver for vertical filtering of the samples of the quantized prediction error signal of the chroma components

Derivation of the coefficients of the horizontal filters:

cL_hor [i][j] with i=0...AlfNumFilters-1, j = 0..AlfLengthLuma_hor – 1 shall be derived as follows.
The first luma filter cL_hor[0] ‘s coefficients with elements cL_hor[0][j], j = 0.. AlfLengthLuma_hor – 1 shall be derived as,


cL_hor[0][j] = alf_coeff_luma_hor[0][j] 



for  j = 0.. (AlfLengthLuma_hor – 1)/2-1

cL_hor[0][j] = (1<<alf_quant_step_size_luma_hor) + alf_coeff_luma_hor[0][j]



for j = (AlfLengthLuma_hor – 1)/2


cL_hor[0][j] = alf_coeff_luma_hor[0][j]



for  j = (AlfLengthLuma_hor – 1)/2+1.. AlfLengthLuma_hor – 1.
The other luma filter cL_hor[i]’s coefficients with elements cL_hor[i][j], i=1...AlfNumFilters-1, j = 0.. AlfLengthLuma_hor – 1 shall be derived as follows.

    If Alf_PredMethod is equal to 1,


cL_hor[i][j] = alf_coeff_luma_hor[i][j] + cL_hor[i-1][j]

for  j = 0.. AlfLengthLuma_hor – 1
    otherwise,


cL_hor[i][j] = alf_coeff_luma_hor[i][j] 

for  j = 0.. AlfLengthLuma_hor – 1

cL_pred_hor [i][j] with i=0...AlfNumFilters-1, j = 0..AlfLengthLuma_pred_hor – 1 shall be derived as follows.
The first luma filter cL_pred_hor[0] ‘s coefficients with elements cL_pred_hor[0][j], j = 0.. AlfLengthLuma_pred_hor – 1 shall be derived as,


cL_pred_hor [0][j] = alf_coeff_luma_pred_hor[0][j] 
for  j = 0.. (AlfLengthLuma_pred_hor – 1)/2-1


cL_pred_hor [0][j] = alf_coeff_luma_pred_hor[0][j] - alf_coeff_luma_hor[0][AlfLengthLuma_hor – 1)/2]


for j = (AlfLengthLuma_pred_hor – 1)/2

cL_pred_hor [0][j] = alf_coeff_luma_pred_hor[0][j] 


  for  j = (AlfLengthLuma_pred_hor – 1)/2+1.. AlfLengthLuma_pred_hor – 1
The other luma filter cL_pred_hor[i]’s coefficients with elements cL_pred_hor[i][j], i=1...AlfNumFilters-1, j = 0.. AlfLengthLuma_pred_hor – 1 shall be derived as follows.

    If Alf_PredMethod is equal to 1,


cL_pred_hor[i][j] = alf_coeff_luma_pred_hor[i][j] + cL_pred_hor[i-1][j]


for  j = 0.. AlfLengthLuma_pred_hor – 1
    otherwise,


cL_pred_hor[i][j] = alf_coeff_luma_pred_hor[i][j]

for  j = 0.. AlfLengthLuma_pred_hor – 1
The first luma filter cL_qpe_hor[0] ‘s coefficients with elements cL_qpe_hor[0][j], j = 0.. AlfLengthLuma_qpe_hor – 1 shall be derived as,


cL_qpe_hor[0][j] = alf_coeff_luma_qpe_hor[0][j] 
for  j = 0.. (AlfLengthLuma_qpe_hor – 1)/2-1


cL_qpe_hor[0][j] = 


cL_pred_hor [0][ (AlfLengthLuma_pred_hor – 1)/2] + alf_coeff_luma_qpe_hor[0][j] 



for j = (AlfLengthLuma_qpe_hor – 1)/2

cL_qpe_hor[0][j] = alf_coeff_luma_qpe_hor[0][j] 



  for  j = (AlfLengthLuma_qpe_hor – 1)/2+1.. AlfLengthLuma_qpe_hor – 1
The other luma filter cL_qpe_hor[i]’s coefficients with elements cL_qpe_hor[i][j], i=1...AlfNumFilters-1, j = 0.. AlfLengthLuma_qpe_hor – 1 shall be derived as follows.

    If Alf_PredMethod is equal to 1,


cL_qpe_hor[i][j] = alf_coeff_luma_qpe_hor[i][j] + cL_qpe_hor[i-1][j]



for  j = 0.. AlfLengthLuma_qpe_hor – 1
    otherwise,


cL_qpe_hor[i][j] = alf_coeff_luma_qpe_hor[i][j]

for  j = 0.. AlfLengthLuma_qpe_hor – 1
The chroma filter coefficients cC_hor with elements cC_hor[i], i = 0.. AlfLengthChroma_hor – 1 are derived as follows.


cC_hor[i] = alf_coeff_chroma_hor[i] 


for i = 0.. AlfLengthChroma_hor – 2

cC_hor[i] = (1<<alf_quant_step_size_chroma_hor) – sum – alf_coeff_chroma_hor [i], 
otherwise

where


sum = ∑( mi * alf_coeff_chroma_hor [ i ] ) with i = 0.. AlfLengthChroma_hor - 2
mi 
= 2 with i = 0… AlfLengthChroma_hor – 3


= 1 with i = AlfLengthChroma_hor – 2
The chroma filter coefficients cC_pred_hor with elements cC_pred_hor[i], i = 0.. AlfLengthChroma_pred_hor – 1 are derived as follows.


cC_pred_hor[i] = alf_coeff_chroma_pred_hor [i]



for i = 0.. (AlfLengthChroma_pred_hor –1)/2-1


cC_pred_hor[i] = alf_coeff_chroma_pred_hor[i] - alf_coeff_chroma_hor[(AlfLengthChroma_hor –1)/2]



for i = (AlfLengthChroma_pred_hor –1)/2

cC_pred_hor[i] = alf_coeff_chroma_pred_hor[i]



for i = (AlfLengthChroma_pred_hor –1)/2+1.. AlfLengthChroma_pred_hor –1
The chroma filter coefficients cC_qpe_hor with elements cC_qpe_hor[i], i = 0.. AlfLengthChroma_qpe_hor – 1 are derived as follows.


cC_qpe_hor[i] = alf_coeff_chroma_qpe_hor [i]



for i = 0.. (AlfLengthChroma_qpe_hor –1)/2-1


cC_qpe_hor[i] = alf_coeff_chroma_qpe_hor[i] + cC_pred_hor[(AlfLengthChroma_pred_hor –1)/2]



for i = (AlfLengthChroma_qpe_hor –1)/2

cC_qpe_hor[i] = alf_coeff_chroma_qpe_hor[i]



for i = (AlfLengthChroma_qpe_hor –1)/2+1.. AlfLengthChroma_qpe_hor –1
The derivation of the coefficients of the vertical filters follows the one of the vertical filters as specified above. The subscript “hor” need to be replaced by the subscript “ver”.
5.5.2.2 Filter process for luma samples

Inputs to this process are:

· Position ( ox, oy )

· Samples of the reconstructed signal of the luma component S’L[ x, y ] , 



with x = 0..PicWidthInSamplesL, y = 0..PicHeightInSamplesL
· Samples of the prediction signal of the luma component SL_pred[ x, y ] , 



with x = 0..PicWidthInSamplesL, y = 0..PicHeightInSamplesL
· Samples of the quantized prediction error signal of the luma component SL_qpe[ x, y ], 


with x = 0..PicWidthInSamplesL, y = 0..PicHeightInSamplesL
Output of this process are:

· Filtered samples pf[ x, y ], with x, y = 0..CuSize-1 as output
In a first step, the vertical filter process is performed as follows:

pf_tmp[ x, y ] =[ ∑(cL_ver[i] * S’L[ x+ox, y+oy+i-((AlfLengthLuma_ver-1)>>1) ] )


+∑(cL_pred_ver[j] * SL_pred [ x+ox, y+ oy+j-((AlfLengthLuma_pred_ver-1)>>1) ] )


+∑(cL_qpe_ver[k] * SL_qpe [ x+ox, y+ oy+k-((AlfLengthLuma_qpe_ver-1)>>1) ] )]



>> Alf_filter_precision_Luma_ver
 with i = 0.. AlfLengthLuma_ver-1, j = 0.. AlfLengthLuma_pred_ver -1, k = 0.. AlfLengthLuma_qpe_ver -1.

In a second step, the horizontal filter process is performed as follows:

pf[ x, y ] =[ ∑(cL_hor[i] * pf_tmp’)


+∑(cL_pred_hor[j] * SL_pred [ x+ox +j-((AlfLengthLuma_pred_hor-1)>>1), y+ oy ] )


+∑(cL_qpe_hor[k] * SL_qpe [ x+ox +k-((AlfLengthLuma_qpe_hor-1)>>1), y+ oy ] )]



>> Alf_filter_precision_Luma_hor
 with i = 0.. AlfLengthLuma_hor -1, j = 0.. AlfLengthLuma_pred_hor-1, k = 0.. AlfLengthLuma_qpe_hor-1.
The variable pf_tmp’ is derived as follows:

· If pf_tmp [x +j-((AlfLengthLuma_hor-1)>>1), y] is the result of the vertical filter process, then pf_tmp’ is set to pf_tmp[x +j-((AlfLengthLuma_hor-1)>>1), y]
· Otherwise (if pf_tmp[x +j-((AlfLengthLuma_hor-1)>>1), y] is not the result of the vertical filter process), then pf_tmp’ is set to S’L [x +xo+j-((AlfLengthLuma_hor-1)>>1), y+yo]
5.5.2.3 Filter process for chroma samples

Inputs to this process are:

· Position ( ox, oy )

· Samples of the reconstructed signal of the chroma component S’C[ x, y ] , 


with x = 0..PicWidthInSamplesC, y = 0..PicHeightInSamplesC
· Samples of the prediction signal of the chroma component SC_pred[ x, y ] ,



with x = 0..PicWidthInSamplesC, y = 0..PicHeightInSamplesC
· Samples of the quantized prediction error signal of the chroma component SC_qpe[ x, y ],



with x = 0..PicWidthInSamplesC, y = 0..PicHeightInSamplesC
Output of this process is:

· Filtered samples pf[ x, y ], with x, y = 0..CuSizeC-1 as output

In a first step, the vertical filter process is performed as follows:

pf_tmp[ x, y ] =[ ∑(cC_ver[i] * S’C[ x+ox, y+oy+i-((AlfLengthChroma_ver-1)>>1) ] )



+∑(cC_pred_ver[j] * SC_pred [ x+ox, y+ oy+j-((AlfLengthChroma_pred_ver-1)>>1) ] )



+∑(cC_qpe_ver[k] * SC_qpe [ x+ox, y+ oy+k-((AlfLengthChroma_qpe_ver-1)>>1) ] )]




>> Alf_filter_precision_Chroma_ver
 with i = 0.. AlfLengthChroma_ver-1, j = 0.. AlfLengthChroma_pred_ver -1, k = 0.. AlfLengthChroma_qpe_ver -1.

In a second step, the horizontal filter process is performed as follows:

pf[ x, y ] =[ ∑(cC_hor[i] * pf_tmp’)


+∑(cC_pred_hor[j] * SC_pred [ x+ox+j-((AlfLengthChroma_pred_hor-1)>>1), y+oy ] )


+∑(cC_qpe_hor[k] * SC_qpe [ x+ ox+k-((AlfLengthChroma_qpe_hor-1)>>1), y+oy ] )]



>> Alf_filter_precision_Chroma_hor

 with i = 0.. AlfLengthChroma_hor -1, j = 0.. AlfLengthChroma_pred_hor-1, k = 0.. AlfLengthChroma_qpe_hor-1.

The variable pf_tmp’ is derived as follows:

· If pf_tmp [x +j-((AlfLengthChroma_hor-1)>>1), y] is the result of the vertical filter process, then pf_tmp’ is set to pf_tmp[x +j-((AlfLengthChroma_hor-1)>>1), y]

· Otherwise (if pf_tmp[x +j-(( AlfLengthChroma _hor-1)>>1), y] is not the result of the vertical filter process), then pf_tmp’ is set to S’C [x +xo+j-(( AlfLengthChroma _hor-1)>>1), y+yo]

[Ed.: the indices may need some refinement]
[Ed.: clipping to be added]
6 Parsing Process
Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

6.1 VLC Parsing process for side information

[Ed.: first draft from A119]
Following ordered steps are specified:

1. The context variable, ctxID is derived (subclause 6.1.1).

2. The modeIdx variable is decoded and the variables related to prediction unit transform unit are computed (subclause 6.1.2).

3. For each one of the transform unit within the coding unit, the coded block pattern information is computed (subclause 6.1.3).

6.1.1 Derivation of ctxID for prediction unit mode

Input to this process is the slice tpye specified by slice_type. Output of this process is the context identification variable ctxID.
The ctxID variable is given as: 

ctxID = 0 for slice_type == I_SLICE

ctxID = 1 for slice_type == P_SLICE

ctxID = 2 for slice_type == B_SLICE

6.1.2 VLC Parsing process for prediction unit mode

This process is invoked when entropy_coding_mode_flag is equal to 0.

The syntax element mode_table_idx is decoded using subclause 6.1.2.1. The variable modeIdx is decoded using subclause 6.1.2.2. 
The modeIdx variable is used to decode the values of the following:

· pred_mode 
· intra_split_flag 

· inter_partitioning_idc

· ref_idx_l0

· inter_pred_idc
· split_transform_unit_flag

· PU_dQP_idx

[Ed.: more details to be further edited]
6.1.2.1 Parsing process for the mode_table_idx

Input to this process is context variable array modeTableVLC_idx.
The mode_table_idx syntax element is decoded from the bitstream using VLC table given by modeTableVLCTable[ modeTableVLC_idx[ ctxID ]]. The values of VLC table array modeTableVLCTable is given in the below table

VLC table numbers for mode table
	ctxID
	modeTableVLCTable

	0
	0,0,5,5,5,5,2

	1
	5,5,5,5,5,5,2

	2
	5,5,5,5,5,5,2


After the mode_table_idx syntax element is decoded, modeTableVLC_idx [ ctxID ] is updated according to the following:


If (modeTableVLCTable [ ctxID ] < mode_table_idx)



modeTableVLC_idx [ ctxID ] = modeTableVLCTable [ ctxID ] + 1


else if (modeTableVLCTable [ ctxID ] > mode_table_idx)



modeTableVLC_idx [ ctxID ] = modeTableVLCTable [ctxID] – 1


if(modeTableVLCTable [ ctxID ] < 0)



 modeTableVLCTable [ ctxID ] = 0


else if(modeTableVLCTable [ ctxID ] > 6 )



modeTableVLCTable [ ctxID ] = 6

6.1.2.2 Derivation of modeIdx

The inputs to this process are context identification information ctxID and the two dimensional context list array modeTableIdxCtxList.
The modeIdx variable is derived from the mode_table_idx syntax element as follows:

modeTableIdx = modeTableIdxCtxList [idx][ mode_table_idx]

The entries of the modeTableIdxCtxList are updated as follows:

    modeTableIdx2 = max(0, mode_table_idx-1);






    modeIdx2 = modeTableIdxCtxList [idx][ modeTableIdx2 ]
    modeTableIdxCtxList [ctxID][ modeTableIdx2] = modeTableIdx

    modeTableIdxCtxList [ctxID][ mode _table_idx] = modeTableIdx2

The initial values of the modeTableIdxCtxList are defined as
[Ed.: size of context list array to be further defined]
modeTableIdxCtxList [idx][n] = n; 
n=0..127, idx = 0..2

6.1.3 VLC Parsing process for coded block pattern

[Ed: Initial draft]
This process is invoked when entropy_coding_mode_flag is equal to 0.
The syntax element cbp_table_idx is decoded using sublcause XX. The variable cbpIdx is decoded using subclause XX. 
6.1.3.1 Parsing process for the cbp_table_idx
Input to this process is variable array cbpTableVLC_idx.

The cbp_table_idx syntax element is decoded from the bitstream using VLC table given by cbpTableVLCTable[ cbpTableVLC_idx[ ctxID ]]. The values of the VLC table array cbpTableVLCTable is given in the below table.

VLC table numbers for cbp
	ctxID
	modeTableVLCTable

	0
	10,10,10,2,2,2,2,7

	1
	10,10, 6,6,6,6,7,7

	2
	10,10, 6,6,6,6,7,7


After the cbp_table_idx syntax element is decoded, cbpTableVLC_idx[ ctxID ] is updated according to the following:


If (cbpTableVLCTable [ ctxID ] < cbp_table_idx)



cbpTableVLCTable _idx [ ctxID ] = cbpTableVLCTable [ ctxID ] + 1


else if (cbpTableVLCTable [ ctxID ] > cbp_table_idx)



cbpTableVLCTable _idx [ ctxID ] = cbpTableVLCTable [ctxID] – 1


if(cbpTableVLCTable [ ctxID ] < 0)



 cbpTableVLCTable [ ctxID ] = 0


else if(cbpTableVLCTable [ ctxID ] > 7 )



cbpTableVLCTable [ ctxID ] = 7
6.1.3.2 Derivation of modeIdx

The inputs to this process are context identification information ctxID and the two dimensional context list array cbpTableIdxCtxList.

The cbpIdx variable is derived from the cbp_table_idx syntax element as follows:

cbpTableIdx = cbpTableIdxCtxList [idx][ cbp_table_idx]

The entries of the cbpTableIdxCtxList are updated as follows:

    cbpTableIdx2 = max(0, cbp_table_idx-1);






    cbpIdx2 = modeTableIdxCtxList [idx][ modeTableIdx2 ]
    cbpTableIdxCtxList [ctxID][ modeTableIdx2] = cbpTableIdx

    cbpTableIdxCtxList [ctxID][ mode _table_idx] = cbpTableIdx2

The initial values of the cbpTableIdxCtxList are defined as

cbpTableIdxCtxList[0] =  
{14,7,3,11,1,0,4,2,9,12,6,10,13,5,8,30,31,62,15,46,28,34,22,35,41,33,39,17,18,20,36,47,16,26,44,23,25,43,29,27,19,32,42,38,56,45,50,52,24,57,60,49,61,54,51,58,55,40,59,37,21,48,53}
cbpTableIdxCtxList[1] = 
{14,11,2,12,4,6,10,9,13,1,3,5,8,0,7,15,31,46,30,62,38,42,44,20,45,36,18,22,34,27,41,25,43,28,29,26,47,40,21,19,52,16,60,37,61,32,23,58,17,24,54,39,33,35,59,57,50,53,56,51,49,48,55}
cbpTableIdxCtxList[2] = 

{14,11,2,12,4,6,10,9,13,1,3,5,8,0,7,15,31,46,30,62,38,42,44,20,45,36,18,22,34,27,41,25,43,28,29,26,47,40,21,19,52,16,60,37,61,32,23,58,17,24,54,39,33,35,59,57,50,53,56,51,49,48,55} 
6.2 VLC Parsing process for transform coefficients

[Ed.: more editorial work needed in this section]
This process is invoked when entropy_coding_mode_flag is equal to 0.

Inputs to this process are bits from slice data, the index of the current transform unit tuIdx, the size of the current transform unit tuSize.

Output of this process is the list coeffLevel containing transform coefficient levels of the transform block with index tuIdx.
Let W,H equal to width and height of the transform unit indicated with tuIdx. The variable numTotalCoeff specifies the total coefficients in the transform unit block and it is set to WxH. The variable numCodedCoeffs specifies the number of coded coefficients and it is equal to 16 if tuSize equals to TU_4x4, otherwise the variable numCodedCoeffs is set to 64.

Let codedCoeffLevel is a one dimensional array with size equal to numCodedCoeffs.

Following ordered steps are specified:
1. All transform coefficient levels, with indices from 0 to numTotalCoeff - 1, in the list coeffLevel are set equal to 0.

2. All transform coefficient levels, with indices from 0 to numCodedCoeffs - 1, in the list codedCoeffLevel are set equal to 0.

3. The context variable, ctxID is derived (subclause 6.2.1).

4. The position and the level of the last non-zero transform coefficient in zigzag scan order are derived and the list codedCoeffLevel is updated (subclause 6.2.2).
5. The combined run and level information are derived in run mode coding and the list codedCoeffLevel is updated (see subclause in 6.2.3).
6. The remaining coefficient levels are calculated and the list codedCoeffLevel is updated (see subclause in 0)
7. The coeffLevel array is updated using codedCoeffLevel array as follows (see subclause in 6.2.1).
If tuSize > TU_ 16x16 and PredMode == MODE_INTRA, a single 8x8 coefficient block uvCoeffLevel is decoded for both of the chroma components. The decoded uvCoeffLevel are deinterleaved to uCoeffLevel and vCoeffLevel as follows:
for(i = 0; i<32;i++) {

uCoeffLevel[i] = uvCoeffLevel[i*2];

vCoeffLevel[i] = uvCoeffLevel[i*2+1];
}

for(i = 32; i<64;i++) {

uCoeffLevel[i] = 0; 

vCoeffLevel[i] = 0;
 }

6.2.1 Derivation of ctxID for transform coefficients
Input to this process are prediction unit specified by the prediction unit index puIdx, transform unit size specified by tuSize. Output of this process is the context identification variable ctxID.
The ctxID variable is given where for tuSize = TU_4x4: 

ctxID = 0 for tuSize == TU_4x4 and PredMode == MODE_INTRA

ctxID = 1 for tuSize == TU_4x4 and PredMode == MODE_INTER and slice_type == P_SLICE

ctxID = 2 for tuSize == TU_4x4 and PredMode == MODE_INTER and slice_type == B_SLICE

for other values of tuSize:

ctxID = 0 for U and UV blocks

ctxID = 1 for V blocks

ctxID = 2 for tuSize == TU_8x8 and PredMode == MODE_INTRA

ctxID = 3 for tuSize == TU_8x8 and PredMode == MODE_INTER and slice_type == P_SLICE

ctxID = 4 for tuSize == TU_8x8 and PredMode == MODE_INTER and slice_type == B_SLICE

ctxID = 5 for tuSize == TU_16x16 and PredMode == MODE_INTRA

ctxID = 6 for tuSize == TU_16x16 and PredMode == MODE_INTER and slice_type == P_SLICE

ctxID = 7 for tuSize == TU_16x16 and PredMode == MODE_INTER and slice_type == B_SLICE

ctxID = 8 for tuSize > TU_16x16 and PredMode == MODE_INTRA

ctxID = 9 for tuSize > TU_16x16 and PredMode == MODE_INTER and slice_type == P_SLICE

ctxID = 10 for tuSize> TU_16x16 and PredMode == MODE_INTER and slice_type == B_SLICE

6.2.2 Parsing process for the level and position of last non-zero coefficient

Inputs to this process are bits from slice data.
Output of this process is the updated list codedCoeffLevel containing transform coefficient levels of the last non-zero coefficient in zig-zag scan within the transform block, and the variable lastPos, indicating the position of the last non-zero coefficient.
The syntax element last_pos_table_idx is decoded using subclause 6.2.2.1. The variable lastPosIdx is derived using subclause 6.2.2.2. The variables lastPos and levelMagnitudeGreaterThanOneFlag are calculated as follows:

–
If the variable tuSize is equal to TU_4x4, the variable lastPos is set to lastPosIdx%16 and the variable levelMagnitudeGreaterThanOneFlag  is set to lastPosIdx>>4
–
Otherwise, the variable lastPos is set to lastPosIdx%64 and the variable levelMagnitudeGreaterThanOneFlag  is set to lastPosIdx>>6

The magnitude of the last non-zero coefficient, lastPosMag is calculated as follows:

–
If levelMagnitudeGreaterThanOneFlag is set to 1, the last_pos_level syntax element is decoded from the bitstream and lastPosMag = last_pos_level

–
If levelMagnitudeGreaterThanOneFlag is set to 0, lastPosMag variable is set to 1

–
last_pos_sign syntax element is decoded from the bitstream. If the value of last_pos_sign is equal to 1, lastPosMag is set to -1* lastPosMag 

The codedCoeffLevel array is updated as codedCoeffLevel[ lastPos ] = lastPosMag. The currPos variable is updated as currPos = lastPos
6.2.2.1 Parsing process for the position of last non-zero coefficient

Input to this process is context variable array lastPosVLC_idx.
The last_pos_table_idx syntax element is decoded from the bitstream using VLC table given by lpVLCTable[ lastPosVLC_idx[ ctxID ] ]. The values of VLC table array lpVLCTable is given in the below table
VLC table numbers for last non-zero coefficient

	ctxID
	lpVLCTable

	0
	[ 10,10,10,10, 2,2,2,7,9,9,9,9,9,4,4,4,4 ]

	1
	[ 10,10,10,10,10,2,9,9,9,9,9,9,9,4,4,4,4 ]

	2
	[ 2, 2, 2, 2, 2,7,7,7,7,7,7,7,7,7,4,4,4 ]

	3
	[ 2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4 ]

	4
	[ 2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4 ]

	5
	[ 10, 1, 2, 2, 2,2,7,7,7,7,9,9,9,4,4,4,4 ]

	6
	[ 10,10, 2, 2, 7,7,7,7,7,7,7,7,4,4,4,4,4 ]

	7
	[ 10,10, 2, 2, 7,7,7,7,7,7,7,7,4,4,4,4,4 ]

	8
	[ 2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4 ]

	9
	[ 2, 2, 2, 2, 7,7,7,7,7,7,7,7,7,7,7,7,4 ]


After the last_pos_table_idx syntax element is decoded, lastPosVLC_idx[ ctxID ] is updated according to the following:


If (lpVLCTable [ ctxID ] < last_pos_table_idx)



lastPosVLC_idx[ ctxID ] = lpVLCTable [ ctxID ] + 1


else if (lpVLCTable [ ctxID ] > last_pos_table_idx)



lastPosVLC_idx[ ctxID ] = lpVLCTable [ctxID] – 1


if( lpVLCTable[ ctxID ] < 0)



 lpVLCTable[ ctxID ] = 0


else if( lpVLCTable[ ctxID ] > 16 )



lpVLCTable[ ctxID ] = 16

6.2.2.2 Derivation of lastPosIdx

The input to this process are context identification information ctxID and the two dimensional context list array lastPosCtxList.

The lastPosIdx variable is derived from the last_pos_table_idx syntax element as follows:

lastPosIdx = lastPosCtxList[idx][ last_pos _table_idx]

The entries of the lastPosCtxList are updated as follows:

    lastPosTableIdx2 = max(0, last_pos _table_idx-1);






    lastPosIdx2 = lastPosCtxList [idx][ lastPosTableIdx2]
    lastPosCtxList[ctxID][ lastPosTableIdx2] = lastPosIdx
    lastPosCtxList [ctxID][ last_pos _table_idx] = lastPosIdx2
Initial values of the lastPosCtxList are defined as:

for tuSize = TU_4x4:

lastPosCtxList[idx][n] = n; 
n=0,31

for other tuSize values:

For idx = 5,6,7:   lastPosCtxList[idx][n] = n; 
n=0,127

For idx = 0,1:

lastPosCtxList = 
{0,2,1,4,7,3,6,11,13,9,18,22,19,17,8,10,20,24,28,27,21,26,38,42,37,31,23,12,16,33,30,44,45,49,46,36,57,50,55,47,39,43,35,75,66,56,60,58,54,70,63,29,77,87,69,48,51,64,71,65,80,85,76,94,5,15,14,34,52,25,41,72,74,53,59,81,82,68,40,62,95,127,89,84,67,73,126,79,125,93,90,61,32,124,123,83,86,122,88,78,121,92,91,120,119,118,117,116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,100,99,98,97,96}

For idx=2:

lastPosCtxList = 
{0,1,2,9,14,3,5,17,15,6,8,16,23,18,4,11,24,27,25,20,10,26,50,40,34,31,21,12,13,28,33,32,35,43,57,46,76,65,55,45,38,36,22,39,47,49,53,60,75,95,70,61,59,51,64,63,68,101,111,69,67,74,99,97,7,30,19,42,66,41,54,83,72,29,37,71,81,86,52,58,79,85,84,77,48,62,104,92,89,80,78,56,44,88,93,87,94,96,105,82,127,114,110,109,100,91,73,90,106,103,126,118,125,124,113,117,107,98,112,116,115,123,122,102,108,121,120,119}
For idx=3,4,8,9:

lastPosCtxList = 
{0,3,1,4,6,5,12,16,7,2,10,14,15,17,8,13,22,21,18,20,19,37,35,30,26,24,23,11,9,27,29,28,31,38,45,57,71,50,41,36,34,32,25,33,39,40,44,55,79,90,62,46,49,42,54,53,63,87,94,60,64,74,86,95,43,58,52,51,65,66,67,76,59,47,56,61,73,81,69,72,88,84,78,75,70,77,98,85,83,82,92,68,48,91,97,93,100,102,106,112,127,110,107,104,96,101,80,89,103,109,117,113,126,125,124,116,105,99,108,115,114,123,122,121,111,120,119,118}

6.2.3 Parsing process for run mode decoding 
Inputs to this process are bits from slice data, current coefficient position currPos, number of coded coefficients numCodedCoeff.
Output of this process is the updated list codedCoeffLevel. 

While the variable runMode is equal to 1 and variable pos < numCodedCoeff, the codedCoeffLevel array is updated as follows:

–
Variable vlcIdx is determined as follows:


if( (numCodedCoeff - 1) - i > 27 )



vlcIdx = 3


else



vlcIdx = runsVLCTable[ 63 - (maxNumCoeff-1)]


where runsVLCTable is a one dimensional array with values given as:

runsVLCTable = {8,0,0,5,5,5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7,7...}

–
The syntax element is_level_one_run is decoded and variables run and isLevelOne are calculated using the below table. 
Mapping from k, level, and run into codeNumber

	
	
	isLevelOne_run

	currPos
	isLevelOne
	run = 0,1...

	0
	1
	1,0

	
	0
	2

	1
	1
	2,1,0

	
	0
	4,3

	2


	1
	1,3,2,0

	
	0
	4,6,5

	3
	1
	2,1,3,4,0

	
	0
	6,5,7,8

	4
	1
	1,5,3,2,4,0

	
	0
	6,10,8,7,9

	5
	1
	1,2,6,5,3,4,0

	
	0
	7,8,11,10,9,12

	6
	1
	2,1,3,5,4,7,6,0

	
	0
	9,8,10,12,11,13,14

	7
	1
	1,5,4,2,3,6,8,7,0

	
	0
	9,13,12,10,11,14,15,16

	8
	1
	1,3,8,7,5,2,4,9,6,0

	
	0
	10,12,16,15,14,11,13,18,17

	9
	1
	1,2,5,10,9,7,3,4,11,6,0

	
	0
	8,12,15,17,18,16,13,14,20,19

	10
	1
	2,1,3,4,7,8,5,6,9,11,10,0

	
	0
	13,12,14,15,17,18,16,19,20,22,21

	11
	1
	1,4,3,2,5,7,6,8,10,11,12,9,0

	
	0
	13,17,15,14,16,19,18,20,22,23,24,21

	12
	1
	1,2,6,7,5,3,4,8,9,13,11,12,10,0

	
	0
	14,16,18,21,19,15,17,20,22,26,23,24,25

	13
	1
	1,2,4,8,9,7,6,3,5,12,14,13,11,10,0

	
	0
	15,16,19,21,23,22,20,17,18,26,28,27,24,25

	14
	1
	1,2,3,5,9,10,8,7,4,6,13,16,15,14,12,0

	
	0
	11,17,18,20,22,24,23,26,19,21,27,30,29,25,28

	15
	1
	1,2,3,4,5,8,10,7,6,9,11,13,18,15,16,12,0

	
	0
	14,17,19,20,21,23,25,24,22,26,27,29,31,28,32,30

	16
	1
	1,3,4,2,5,6,10,9,7,8,11,12,13,16,17,18,14,0

	
	0
	15,19,22,20,21,24,26,25,23,27,32,29,28,30,33,34,31

	17
	1
	1,2,4,7,6,3,5,8,9,10,11,18,15,13,14,17,19,12,0

	
	0
	16,21,24,25,26,20,22,27,23,28,30,35,31,29,34,33,36,32

	18
	1
	1,2,5,7,9,10,6,3,4,8,11,17,20,18,15,13,14,19,12,0

	
	0
	16,21,24,25,29,28,27,23,22,26,31,36,34,37,33,32,30,38,35

	19
	1
	1,3,5,7,9,14,12,8,6,2,4,15,18,21,20,16,10,11,22,13,0

	
	0
	17,23,25,27,29,31,33,30,26,19,24,35,37,39,40,36,32,28,38,34

	20
	1
	0,2,4,7,10,9,16,15,14,8,3,5,17,19,22,20,18,11,13,21,12

	
	0
	6,23,25,29,27,31,30,34,38,32,24,26,36,82,39,37,83,28,33,84,35

	21
	1
	2,1,3,4,5,8,9,11,13,10,6,7,12,14,21,24,23,18,15,19,22,16,0

	
	0
	20,17,25,26,27,28,31,34,35,30,29,32,33,36,37,43,44,38,39,40,41,42

	22
	1
	1,5,4,2,3,6,8,7,11,12,9,10,13,14,15,18,22,21,17,19,20,25,16,0

	
	0
	26,28,27,23,24,29,31,32,38,34,30,33,35,37,36,43,44,40,41,85,42,86,39

	23
	1
	1,4,8,6,5,2,3,7,9,12,10,11,13,16,15,14,18,20,21,19,23,22,25,17,0

	
	0
	24,28,33,29,31,26,27,34,35,36,32,30,37,40,38,42,45,47,39,43,46,41,87,44

	24
	1
	0,3,7,12,10,6,5,2,4,8,9,11,13,17,24,21,16,15,19,20,22,25,26,23,18,1

	
	0
	14,28,34,36,33,35,31,27,30,29,32,37,40,46,38,44,39,47,48,49,45,41,42,50,43

	25
	1
	0,2,5,9,13,11,10,8,6,3,4,7,12,15,19,26,23,20,16,14,18,22,27,24,25,21,1

	
	0
	17,28,31,36,35,39,37,34,33,30,29,32,38,43,86,87,45,46,44,41,40,88,48,89,47,42

	26
	1
	1,2,4,7,11,15,12,9,10,8,5,3,6,14,16,23,24,25,21,20,13,19,27,28,26,22,17,0

	
	0
	18,29,31,33,39,36,35,38,41,40,34,30,32,43,48,53,90,49,42,50,37,44,51,47,52,45,46

	27
	1
	0,2,3,5,7,11,15,14,12,10,13,8,4,9,17,19,22,24,26,21,23,16,20,29,30,28,25,18,1

	
	0
	6,27,31,33,34,38,39,37,40,42,41,35,32,36,44,45,87,48,88,49,46,89,43,47,90,50,51,91

	>=28


	1
	0,1,2,3,4,5,7,9,10,13,8,12,11,6,14,15,18,20,24,31,32,30,28,26,22,25,33,37,38,17,19,21,23,29,36,34,45,40, 43,42,44,39,35,46,48,53,54,51,61,62,67,66,68,65,73,74,71,69,86,82,90,88,98,94

	
	0
	16,27,41,47,50,57,58,60,59,55,52,63,56,49,64,70,72,77,76,80,84,81,79,78,75,83,85,87,91,95,92,104,89,93,96,99,100,102,101,97,105,103,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126


–
The magnitude of non-zero coefficient is given as level and is calculated as follows: 


–
If the variable isLevelOne is equal to 1, the level_sign is decoded from the bitstream. If the value of level_sign is equal to 1, the variable level is set to -1. If the value of level_sign is equal to 0, the variable level is set to 1.

–
Otherwise, if the variable isLevelOne is equal to 0, the level_magnitude_minus2 and level_sign syntax elements are decoded from the bitstream. If the value of level_sign is equal to 0, the value of level is set to level_magnitude_minus2 + 2. Otherwise, the value of level is set to -1*(level_magnitude_minus2+2)
–
The codedCoeffLevel array is updated as codedCoeffLevel [ currPos ] = level
–
The variable currPos is updated as currPos = currPos - run

–
The variable runMode is calculated as follows:


runMode = 1


if (tuSize == TU_4x4 || PredMode == MODE_INTRA)



runMode == (isLevelOne)


else if(currPos < 14 || sumBigCoef > 2)



runMode = 0


where the variable sumBigCoef is calculated as: 

for(i = currPos; i < 64; i++) {



sumBigCoef += ( Abs(codedCoeffLevel [ i ] ) > 1 ? Abs(codedCoeffLevel [ i ] ) : 0 );

6.2.4 Parsing process for level mode decoding
Inputs to this process are bits from slice data, a maximum number of non-zero transform coefficient levels, maxCoeff, current coefficient position currPos.
Output of this process is the updated list codedCoeffLevel. 

The variable vlcMagIdx is initialized to 0. 
While the variable currPos is larger than -1, the codedCoeffLevel array is updated as follows:

–
The level_magnitude syntax element is decoded from the bitstream

–
The codedCoeffLevel [ currPos ] is updated as follows:


–
If the level_magnitude is not equal to 0, the level_sign is decoded from the bitstream. If the value of level_sign is equal to 1, the variable codedCoeffLevel [ currPos ] is set to -1*level_magnitude. If the value of level_sign is equal to 0, the variable codedCoeffLevel [ 0 ] is set to level_magnitude.

–
The variable currPos is updated as currPos - 1.

–
The variable vlcMagIdx is updated as follows:


if (level_magnitude > vlc_level_table [ vlcMagIdx ] )



vlcMagIdx++;

The one dimensional vlc_level_table array is given as

VLC Table Index for Decoding Level

	x
	vlc_level_table[x]

	0
	4

	1
	6

	2
	14

	3
	28

	4
	∞


The codedCoeffLevel [ 0 ] is updates as follows:

–
If the PredMode == MODE_INTRA and none of the prediction samples are available for prediction (subclause 5.1.1.3) the level_magnitude syntax element is decoded from the bitstream using the VLC table given with the variable dcVLC_id. The variable dcVLC_id is equal to 3 if the decoded block is a luminance block, otherwise dcVLC_id is equal to 1.
–
If the level_magnitude is not equal to 0, the level_sign is decoded from the bitstream. If the value of level_sign is equal to 1, the variable codedCoeffLevel [ 0 ] is set to -1*level_magnitude. If the value of level_sign is equal to 0, the variable codedCoeffLevel [ 0 ] is set to level_magnitude.

6.2.5 Update process for coeffLevel array

Inputs to this process are one dimensional coded coefficient levels array codedCoeffLevel, one dimensional transform coefficient levels array coeffLevel, number of total coefficients numTotalCoeff and number of total coded coefficients, numCodedCoeffs. 
If the tuSize is larger than TU_8x8 the following ordered steps are specified
1. The inverse scanning process for the transform coefficients as described specified in subclause 5.3.3 is invoked with codedCoeffLevel as the input and the two-dimensional array ccl as the output.

2. The inverse scanning process for the transform coefficients as described specified in subclause 5.3.3 is invoked with coeffLevel as the input and the two-dimensional array cl as the output.

3. The two dimensional array cl is updated as follows
cl[ i, j ] = ccl[ i,j ], with i = 0..7, j = 0..7  
4. The forward scanning process for the transform coefficients as described in subclause 6.2.2 is invoked with cl as input and coeffLevel as output

Otherwise, if tuSize is smaller than or equal to TU_4x4 the coefficient level array is updated as follows

coeffLevel[ i ] = codedCoeffLevel[ i ] , with i = 0.. numCodedCoeffs-1

6.2.6 Forward scanning process for transform coefficients

Input to this process is a list of N values listTrCoeffs.

Output of this process is a variable c containing a one dimensional array of N values. 

The variable cij which is located in the ( j, i ) position in the array c is derived as follows.


cij = BlocktoZigzagPosition( listTrCoeffs, N, idx ).

6.3 VLC Tables 

	n = 0
	n = 1
	n = 2
	n = 3
	n = 4
	n = 5
	n = 6
	n = 7
	n = 8
	n = 9
	n = 10

	1
	1x
	1xx
	1xxx
	1xxxx
	1x
	1xx
	1xxx
	1
	100
	1

	01
	01x
	01xx
	01xxx
	01xxxx
	01x
	01xx
	01xxx
	01
	1010
	01x

	001
	001x
	001xx
	001xxx
	001xxxx
	001x
	001xx
	001xxx
	00
	1011
	001xx

	0001
	0001x
	0001xx
	0001xxx
	0001xxxx
	..
	..
	..
	
	11xxx
	0001xxx

	00001
	00001x
	00001xx
	00001xxx
	00001xxxx
	
	
	
	
	01xxxx
	..

	0000001
	0000001x
	0000001xx
	0000001xxx
	0000001xxxx
	
	
	
	
	001xxxx
	

	00000001
	00000001x
	00000001xx
	00000001xxx
	00000001xxxx
	
	
	
	
	..
	

	000000001x
	000000001xx
	000000001xxx
	000000001xxxx
	000000001xxxxx
	
	
	
	
	
	

	0000000001xx
	0000000001xxx
	0000000001xxxx
	0000000001xxxxx
	0000000001xxxxxx
	
	
	
	
	
	

	..
	..
	..
	..
	..
	
	
	
	
	
	


The tables list the codes for code number 0,1,2,3..etc.  However, for a more compact description most of the entries in the table ends with a number of “x” -es.  As an example 1xx in VLC table 2 represents 4 codes with code numbers 0-3:

100

101

110

111

Generally the code numbers increase in the same way as the natural number representation of the codes increase.  The symbol “..” in the tables indicate that the tables continue in the obvious way.
6.4 Parsing process for Exp-Golomb codes of order k

This process is invoked when the descriptor of a syntax element in the syntax tables  is equal to ge(v). 

Inputs to this process are bits from the RBSP.

Outputs of this process are syntax element values.

Syntax elements coded as ge(v) are Exp-Golomb-coded of order k. The parsing process for these syntax elements begins with reading the bits starting at the current location in the bitstream up to and including the first non-zero bit, counting k bits, and sign bit if available. This process is specified as follows:  

  q = -1, nr = 0, m = pow(2.0, k)

  uiSymbol = 1;

  while (uiSymbol)

  {

    uiSymbol  = read_bits (uiSymbol)

    q++;

  }

  for(a = 0; a < k; ++a)          

  {

    uiSymbol  = read_bits (uiSymbol)

    if(uiSymbol) nr += 1 << a

  }

  nr += q * m

  if (nr != 0){

    uiSymbol  = read_bits (uiSymbol)

    codeNum = (uiSymbol)? nr: -nr;

  }

6.5 Parallel V2V Parsing process

The parallel V2V parsing process for slice data is identical to the CABAC parsing process for slice data (cf. subclause 9.3 in ITU‑T Rec. H.264 | ISO/IEC 14496-10), except for the subroutine for initializing the parallel V2V decoder, and the parallel V2V decoding process for a single bin. The flowchart for initializing the parallel V2V decoding engine is given below. The parallel V2V decoding process for a single bin and the subroutine V2V_Decode_Sequence() are specified in subsections Error! Reference source not found. and 13.2.3.3.
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In the above, tempTable is an array defined by unsigned int[StateCount], and input is a bit array. Note that the above process produces two arrays: mergedStatesMapping, which maps a state from 64 possible states as defined in CABAC in ITU‑T Rec. H.264 | ISO/IEC 14496-10 to a merged state index in {0, 1, ..., mergedStateCount-1}, and mergedTree, which maps a merged state index to one of the 24 V2V codes. The V2V codes that are available for the latter mapping are identified by another bit array selectedTree: 


selectedTree[i] is set to 1 if the ith V2V code is selected; and is set to 0 otherwise.

7 Unit definition
7.1 Coding Tree Block (CTB)

The coding unit (CTB) is defined as a basic unit which has a square shape. Although it has a similar role to the macroblock and sub-macroblock in AVC, the main difference lies in the fact that CTB can have various sizes, with no distinction corresponding to its size. All processing except frame-based loop filtering is performed on a CTB basis, including intra/inter prediction, transform, quantization and entropy coding. Two special terms are defined: the largest coding unit (LCTB) and the smallest coding unit (SCTB). For convenient implementation, LCTB size and SCTB size are limited to values which are a power of 2 and which are greater than or equal to 8.
It is assumed that a picture consists of non-overlapped LCTBs. Since the CTB is restricted to be a square shape, the CTB structure within a LCTB can be expressed in a recursive tree representation adapted to the picture. That is, CTB is characterized by LCTB size and the hierarchical depth in the LCTB that the CTB belongs to.
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Fig. 1: Illustration of recursive CTB structure (LCTB size = 128, maximum hierarchical depth = 5)

Figure 1 shows an example where LCTB size is 128 and the maximum hierarchical depth is 5. The recursive structure is represented by a series of split flags. For CTBd, which has depth d and size 2Nx2N, the coding of CTB is performed in the current depth when split flag is set to zero. When the split flag is set to 1, CTBd is split into 4 independent CTBd+1 which have depth (d+1) and size NxN. In this case, CTBd+1 is called a sub-CTB of CTBd similar to a sub-macroblock in AVC. Unless the depth of sub-CTB (d+1) is equal to the maximum allowed depth (4 in this case), each CTBd+1 is processed in a recursive manner. If the depth of sub-CTB (d+1) is equal to the maximum allowed depth, further splitting is not allowed. Note that a CTB can be further split into PUs.
The sizes of LCTB and SCTB are specified in the Sequence Parameter Set (SPS). The embedded information in the SPS is LCTB size (s) and the maximum hierarchical depth (h) in a LCTB. For example, if s = 128 and h = 5, then 5 kinds of CTB sizes are possible: 128x128 (LCTB), 64x64, 32x32, 16x16 and 8x8 (SCTB). If s = 16 and h = 2, then 16x16 (LCTB) and 8x8 (SCTB) are possible; this is a similar block structure to AVC. Therefore, if the LCTB size and maximum hierarchical depth are given, this defines the possible CTB sizes which are allowed.
This kind of arbitrary unit representation provides several major benefits. The first benefit comes from the support of CTB sizes greater than the conventional 16x16 macroblock. When the region of interest is homogeneous, a large CTB can represent the region in a smaller number of symbols than is possible in the case of several small blocks. 

Furthermore, supporting arbitrary LCTB sizes enables the codec to be readily optimized for various content, applications and devices. Compared to the use of fixed size macroblock, support of various LCTB sizes is one of the major properties. It is especially useful for low resolution video services, which is still commonly used in the market. By choosing LCTB size and maximum hierarchical depth appropriately, the hierarchical block structure can be optimized in a better way for the targeted application. In the later stage of the standardization, the range of LCTB sizes could be specified in the Profiles and Levels section to match the requirements more specifically. 
Finally, by eliminating the distinction between macroblock and sub-macroblock and using only one unit type, CTB, the multi-level hierarchical structure can be specified in a very simple and elegant way: LCTB size, maximum hierarchical depth and a series of split flags. Together with the proposed size-independent syntax representation, it’s sufficient to specify syntax items of one general size for the remaining coding tools. This kind of consistency can greatly simplify the specification effort as well as the actual parsing process. 

The maximum depth for CTB hierarchy is arbitrary and potentially larger than the maximum depth allowed in the AVC block hierarchy. Therefore, the text includes a size-independent syntax representation which specifies all syntax elements in a consistent way independent of the CTB size. By contrast, in AVC block level syntax elements such as transform_8x8_mode_flag, coded_block_flag and intra_pred_modes are coded differently depending on whether the block size is 16, 8 or 4.  The splitting process for the CTB can be specified recursively and all other syntax elements for the leaf CTB are defined in the same way independent on the CTB size. This kind of representation is very useful in terms of reduced parsing complexity and improved clarity if a large hierarchical depth is allowed.

For the purpose of mode decision, transmission of the data associated with each block etc. all CTBs are traversed in raster scan order (left-to-right, top-down), and within each CTB, the subblocks are traversed in depth-first order.
7.2 Prediction unit (PU)

Once the splitting process is done, prediction methods are specified for every CTB which is not further split i.e. the leaf nodes of the CTB hierarchical tree. 

Coupled with CTB, a basic unit for the prediction mode is introduced: the prediction unit (PU). It should be noted that the PU is defined only for the last-depth CTB, i.e., the leaf nodes of the CTB-related quadtree and its size is limited to that of the CTB.

Similar to conventional standards, we define two different terms to specify the prediction method: the prediction type and the PU splitting. The prediction type is one of the values among intra or inter, which roughly describe the nature of the prediction method. After that, possible PU splittings are defined according to the prediction type.

 The PU for intra has 2 different possible splittings: 2Nx2N (i.e. no split) and NxN (quarter split). The PU for inter has 8 different possible splittings: 4 symmetric splittings (2Nx2N, 2NxN, Nx2N, NxN) and 4 asymmetric splittings (2NxnU, 2NxnD, nLx2N and nRx2N). The number N is derived from the size of the CTB which the PU belongs to. For example, if the size of CTB is 128x128, then both 128x128 and 64x64 PUs for intra are possible. For inter prediction, 128x128, 128x64, 64x128, 64x64, 128x32 (for 2NxnU and 2NxnD), 128x96 (for 2NxnU and 2NxnD), 32x128 (for nRx2N and nLx2N) and 96x128 (for nRx2N and nLx2N) are possible.
Figure 1a shows an example where a 64x64 block is asymmetrically partitioned into 64x16, 64x48, 16x64, or 48x16 blocks, instead of two 64x32 or 32x64 blocks. Note that the motion partitions shown in the figure correspond to 2NxnU, 2NxnD, nLx2N, and nRx2N, respectively.


[image: image66]
Figure 1a: Example of asymmetric motion partitions for 64x64 block

 In addition, we have geometrical shapes for partitioning of inter PUs that are described as follows.

For each CTB, one type of PU splittings is defined by an arbitrary straight line across the CTB that divides the CTB into two regions. The boundary of the PU partition is defined by an angle subtended by a line perpendicular to the boundary with the X axis  and the distance of the partition line from the origin . The equation of the line defining the partition boundary is specified as

[image: image67.png]



Two 32 bit lookup tables are used, one to store the slope, [image: image68.png]1/tan 8




, and the other to store the Y-intercept, [image: image69.png]/siné




. The region to which each pixel belongs is calculated on the fly.

At each level CTB, 32 different values of  are defined (from 0 to  in steps of ). The number of values that  [image: image71.png]


 can take depends on the CTB size. For example, for CTB size of 16×16,  takes 8 possible values (from 0 to 7 in steps of 1). For block sizes of 32×32 and 64×64,  takes 16 and 32 possible values, respectively. 
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Figure 2: Parameters defining a geometry motion partition

For a CTB that is predicted in a manner described above, overlapped block motion compensation (OBMC) is applied. Let the two regions created by a geometry partition be denoted by region 1 and region 2. Let the corresponding motion vectors be denoted by [image: image74.png]


 and [image: image76.png]


, respectively. A pixel from region 1 (2) is defined to be a boundary pixel if any of its four connected neighbors (left, top, right, and bottom) belongs to region 2 (1). Fig. 2 shows an example where light blue pixels belong to the boundary of region 1 and white pixels belong to the boundary of region2. If a pixel is not a boundary pixel, normal motion compensation is performed using the appropriate motion vector. If a pixel is a boundary pixel, the motion compensation is performed using a weighted sum of the motion predictions from the two motion vectors, [image: image78.png]


 and [image: image80.png]


. The weights are [image: image82.png]2/3



  for the region containing the boundary pixel and [image: image84.png]1/3



 f for the other region. 
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Figure 3: Overlapped motion compensation for geometry partitions

All information related to prediction is signaled on a PU basis, for instance, the direction of intra prediction for intra or the motion vector difference and reference index for inter. Motion vector prediction and motion compensation are also performed on a PU basis.

For each inter predicted blocks, individual motion parameters are transmitted.  In order to achieve an improved coding efficiency, the block merging process enables to merge neighbouring blocks into so-called regions.  By doing so, the motion parameters do not need to be transmitted for each block of the region individually, but instead the parameters are transmitted only for once for the whole region.

For each inter prediction block, the set of all prediction blocks that are coded before that block in processing order is called the “set of causal blocks”.  The set of blocks that is admissible for merging with a particular block is called the “set of available blocks” and is always a subset of the set of causal blocks.  If a particular block is encoded and its set of available blocks is not empty, it is signaled whether this block is to be merged with one block out of this set and if so, with which of them.  Otherwise, merging cannot be used for this block.

The set of available blocks is formed as follows.  Starting from the top-left sample position of the current block, its left neighbouring sample position and its top neighbouring sample position is derived.  The set of available blocks can have only up to two elements, namely those blocks out of the set of causal blocks that contain one of the two sample positions.  Thus the set of available blocks can only have the two direct neighbouring blocks of the top-left sample position of the current block as its elements.  Note that only inter predicted blocks can be members of the set of available blocks.

If the set of available blocks is not empty, one flag called merge_flag is signaled, specifying whether the current block is merged with any of the available blocks.  Otherwise, or if the merge_flag is equal to 0 (for “false”), this block is not merged with one of its causal blocks and all parameters are transmitted ordinarily.  If the merge_flag is equal to 1 (for “true”), the following applies.  If the set of available blocks contains one and only one block, this block is used for merging.  Otherwise the set of available blocks contains exactly two blocks.  If the motion parameters of these two blocks are identical, these motion parameters are used for the current block.  Otherwise (the two blocks have different motion parameters), a flag called merge_left_flag is signaled.  If merge_left_flag is equal to 1 (for “true”), the block containing the left neighbouring sample position of the top-left sample position of the current block is selected out of the set of available blocks.  If merge_left_flag is equal to 0 (for “false”), the other (i.e., top neighbouring) block out of the set of available blocks is selected.  The motion parameters of the selected block are used for the current block.
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Fig. 3: Two examples illustrating the set of causal blocks (grey) and the set of available blocks (A, B).

Fig. 3 shows two examples for a quadtree-based division of a picture into prediction blocks.  On the left side of Fig. 4, the top two blocks of the biggest size are so-called macroblocks, i.e., they are prediction blocks of the maximum possible size.  The other blocks in this left figure are obtained as a subdivision of their corresponding macroblock.  The current block is marked with an “X”.  All the grey-shaded blocks are encoded before the current block, so they form the set of causal blocks.  As explicated in the description of the derivation of the set of available blocks, only the blocks containing the direct (i.e. top or left) neighbouring samples of the top-left sample position of the current block can be members of the set of available blocks.  Thus the current block can be merged with either block “A” or block “B”.  If merge_flag is equal to 0 (for “false”), the current block “X” is not merged with any of the two blocks.  If blocks “A” and “B” have identical motion parameters, no distinction needs to be made, since merging with any of the two blocks will lead to the same result.  So, in this case, the merge_left_flag is not transmitted.  Otherwise, if blocks “A” and “B” have different prediction parameters, merge_left_flag equal to 1 (for “true”) will merge blocks “X” and “B”, whereas merge_left_flag equal to 0 (for “false”) will merge blocks “X” and “A”.

In Fig. 4 (right) another example is shown.  Here the current block “X” and the left neighbour block “B” are macroblocks, i.e., they have the maximum allowed block size.  The size of the top neighbour block “A” is one quarter of the macroblock size.  The blocks which are element of the set of causal blocks are grey-shaded.  Note that the current block “X” can only be merged with the two blocks “A” or “B”, not with any of the other top neighbouring blocks.
7.3 Transform unit (TU)

In addition to the CTB and PU definitions, the transform unit (TU) for transform and quantization is defined separately. It should be noted that the size of the TU may be as large as the size of the CTB. Like the partitioning used for prediction, the partitioning of a single prediction error block into transform blocks is represented by quad trees. The greatest applicable transform size and the maximum depth of such quad trees (giving the minimum applicable size) are variable and are signaled in the bit stream. Transform blocks with an edge length of any positive power of two can be employed. Transform block sizes are constrained to the range 4x4 to 64x64 (for chroma, also 2x2 transforms may be used).
8 Motion representation

8.1 Motion vector prediction for rectangular partitions

A new method to form motion vector prediction is introduced. Unlike in AVC, this method takes the temporal distance of the reference frames into account for motion vector prediction. The neighboring blocks that are used for the prediction of the vertical components are illustrated in Figure 2.

[image: image88.emf]CBDAX


Figure 2: Neighboring blocks used for motion vector prediction
But the motion vectors of neighboring blocks A, B, and C may point to different reference frames in the buffer. Therefore, the motion vectors are normalized based on their temporal distance from the current frame, before taking the median. This is illustrated in Figure 3 for an IPPP configuration. In the figure, blue colored frames are the reference frames stored in the buffer. Let [image: image90.png]A, B, C,and X,



 refer to the reference frames corresponding to blocks A, B, C, and X, respectively. Let their temporal distances from the current frame be denoted by [image: image92.png]d(A,).d(B,).d(C,). and d(X,)



, respectively. Then, each of the neighboring motion vectors, [image: image94.png]MV, Ye{aA B C



 is scaled as follows:
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This scheme is applied to both P and B frames.
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Figure 3: Reference frames and their temporal distances from the current frame

Furthermore, in order to reduce the bit rate required for transmitting the motion vectors, we employ a concept in which the prediction and coding of the components of a motion vector is interleaved. In a first step, the vertical motion vector component is predicted using motion vector competition and the difference between the actual vertical component and its prediction is coded. Then, only the motion vectors of the neighborhood for which the absolute difference between their vertical component and the coded vertical component for the current motion vector is minimized are used for the prediction of the horizontal component.

In the following, we consider the prediction and reconstruction of a motion vector currMv for a prediction block. 
1- Vertical component prediction. The prediction and coding of the components of a motion vector is interleaved. In a first step, the vertical motion vector component is predicted using a set of predictors (set_v).  The set of predictors contains the median motion vector computed from neighboring motion vectors as in AVC, and possibly the motion vector associated to the collocated block in the previously decoded frame. The difference between the actual vertical component and the selected predictor is coded. The selected predictor from set_v is signaled in the bitstream if necessary (i.e. if vertical components of the two predictors in the set are different).

2- Then, only the motion vectors of the neighborhood for which the absolute difference between their vertical component and the coded vertical component for the current motion vector is minimized, are used for the prediction of the horizontal component.

At the slice level, 1 bit signals the configuration selected for set_v.

The location of the top‑left luma sample of the prediction block, relative to the top-left luma sample of the picture, is denoted by ( x0, y0 ). The width and height of the prediction block are given by currW and currH, respectively. Given the transmitted motion vector difference mvDiff (with horizontal component mvDiff[ 0 ] and vertical component mvDiff[ 1 ]), the prediction and reconstruction of the motion vector currMv is done as described in the following. For the following description, only one reference list is considered. All motion vectors are motion vectors for this one reference list.

As first step, the vertical component mvPred[ 1 ] of the prediction vector mvPred is derived as specified by the following ordered steps:

1. A list listMvCompY of vertical motion vector components is derived as follows.

a. Let blkA, blkB, and blkC be the prediction blocks that contain the luma samples at locations ( x0 − 1, y0 ), ( x0, y0 − 1 ), and ( x0 + currW, y0 − 1), respectively.

b. When blkC is not contained in the same slice as the current block, or it follows the current block in coding order, blkC is replaced with the prediction block that contains the luma sample at location ( x0 − 1, y0 − 1 ).

c. For each of the prediction blocks blkX (with X being replaced by A, B, and C), the following applies:

If the block blkX represents a motion-compensated block that is contained in the same slice as the current block and precedes the current block in coding order, the following applies with mvX being the motion vector that is associated with blkX:

The motion vector mvX is scaled as described above and inserted into the list listMvCompY.

2. Let numCompY be the number of entries in the list listMvCompY and let listMvCompY[ k ], with k = 0..numCompY − 1, be the entries of the list listMvCompY. Depending on numCompY, the vertical component mvPred[ 1 ] of the motion vector predictor is derived as follows.

· If numCompY is equal to 0, mvPred[ 1 ] is set equal to 0.

· Otherwise, if numCompY is equal to 1, mvPred[ 1 ] is set equal to listMvCompY[ 0 ].

· Otherwise, if numCompY is equal to 2, mvPred[ 1 ] is set equal to ( listMvCompY[ 0 ] + listMvCompY[ 1 ] + 1 ) >> 1.

· Otherwise (numCompY is greater than 2), the entries in listMvCompY are sorted in increasing order and then mvPred[ 1 ] is set equal to listMvCompY[ numCompY >> 1 ].

Given the predictor mvPred[ 1 ] for the vertical motion vector component, the vertical motion vector component currMv[ 1 ] of the current motion vector is reconstructed by setting currMv[ 1 ] equal to ( mvPred[ 1 ] + mvDiff[ 1 ] ). Then, given the reconstructed vertical motion vector component currMv[ 1 ], the predictor mvPred[ 0 ] for the horizontal motion vector component is derived as follows:

· Let setOfBlks be the set of neighboring prediction blocks that are contained in the same slice as the current block, precede the current block in coding order, and contain a luma sample at any of the following locations:

· ( x0 − 1, y ) with y = 0..currH

· ( x, y0 − 1 ) with x = −1..currW + 1

1. A list listMv of motion vectors is derived as follows:

For each block blkX of the set setOfBlks, the following applies with mvX being the motion vector that is associated with blkX:

The motion vector mvX is scaled as described above and inserted into the list listMv.

2. Let numMv be the number of entries in the list listMv. If numMv is equal to 0, the predictor mvPred[ 0 ] for the horizontal motion vector component is set equal to 0; otherwise, mvPred[ 0 ] is derived as specified in the following with listMv[ k ] (k = 0..numMv − 1) representing the k-th entry in the list listMv:

a. The variable compY is initially set equal to listMv[ 0 ][ 1 ] and the variable minDelta is set equal to abs( listMv[ 0 ][ 1 ] − currMv[ 1 ] ), where abs( ) specifies the absolute value of the argument.

b. For i proceeding over the range of 1 to numMv − 1, inclusive, the following applies:

When abs( listMv[ i ][ 1 ] − currMv[ 1 ] ) is less than minDelta or (abs( listMv[ i ][ 1 ] − currMv[ 1 ] ) is equal to minDelta and listMv[ i ][ 1 ] is less than compY), compY is set equal to listMv[ i ][ 1 ].

c. The list listMvCompX is derived as follows.

For i proceeding over the range of 0 to numMv − 1, inclusive, if listMv[ i ][ 1 ] is equal to compY, the value listMv[ i ][ 0 ] is inserted into the list listMvCompX.

d. Let numCompX be the number of entries in the list listMvCompX and let listMvCompX[ k ], with k = 0..numCompX − 1, be the entries of the list listMvCompX. Depending on numCompX, the horizontal component mvPred[ 0 ] of the motion vector predictor is derived as follows.

· If numCompX is equal to 1, mvPred[ 0 ] is set equal to listMvCompX[ 0 ].

· Otherwise, if numCompX is equal to 2, mvPred[ 0 ] is set equal to ( listMvCompX[ 0 ] + listMvCompX[ 1 ] + 1 ) >> 1.

· Otherwise (numCompX is greater than 2), the entries in listMvCompX are sorted in increasing order and then mvPred[ 0 ] is set equal to listMvCompX[ numCompX >> 1 ].

Given the predictor mvPred[ 0 ] for the horizontal motion vector component, the horizontal motion vector component currMv[ 0 ] of the current motion vector is reconstructed by setting currMv[ 0 ] equal to ( mvPred[ 0 ] + mvDiff[ 0 ] ).
8.2 Motion vector prediction for geometric block partitions

The process of forming motion vector prediction for a geometric block partition is shown Figure 2. Motion vectors of neighboring blocks are used to form the motion vector prediction. Depending on the partition, a subset of blocks from [image: image98.png]{AB.CEF}



 are used to form motion vector prediction. The choice of block for motion vector prediction depends upon whether they lie on the same side or opposite side of the geometry partition boundary.
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Figure2: Motion vector prediction for a block having geometry partition

Let blkA, blkB, blkC, blkD, blkE and blkF be the prediction blocks that contain the luma samples at locations ( x0 − 1, y0 ), ( x0, y0 − 1 ), ( x0 + currW, y0 − 1), ( x0 − 1, y0 − 1 ), ( x0 + currW − 1, y0 − 1 ), and ( x0 − 1, y0 + currW − 1),   respectively. For each partition, if blkX (X being replaced A, B, C, D, E and F) is sharing a boundary with the partition, blkX is used to derive the prediction motion vector.

The prediction motion vector mvPred is derived as specified by the folowing ordered steps:  

1. If blkA, blkB and blkC are all connected to the current partition, median filter is used to derive  mvPred.

2. Otherwise, if blkA is connected to the current partition, mvPred = mvA
3. Otherwise, if blkB is connected to the current partition, mvPred = mvB
4. Otherwise, if blkE is connected to the current partition, mvPred = mvE
5. Otherwise, if blkF is connected to the current partition, mvPred = mvF
6. Otherwise, if blkC is connected to the current partition, mvPred = mvC
7. Otherwise mvPred = (0,0)
8.3 Interpolation Methods

This text uses single pass switched interpolation filters with offsets (single pass SIFO). The 1/4th pixel motion positions are shown in the figure.
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8.3.1 Single pass switched Interpolation Filters with offsets (single pass SIFO)

In this text, 7 different filter sets are defined. Each filter set consists of 15 filters, one for each fractional pixel position. 

· Filter set 0: This filter set uses high precision filtering with the filters shown in the following table with the exception of position ‘g’, where a non-separable filter is used. 

Table 8‑1: 6-tap separable filters

	1/4
	{     8,  -32,  224,   72,  -24,    8 } (8 additions, 4 shifts)


	1/2
	{     8,  -40,  160,  160,  -40,    8 } (6 additions, 3 shifts)

	3/4
	{     8,  -24,   72,  224,  -32,    8 } (8 additions, 4 shifts)


The filter coefficients are scaled by 256 and the intermediate data is kept in higher precision. For position ‘g’, the following filter is used (followed by right shift by 7 bits):

	0
	 5
	 5
	0

	5
	22
	22
	5

	5
	22
	22
	5

	0
	 5
	 5
	0


· Filter set 1: This filter set uses 12 tap filters for both horizontal and vertical filtering. The filter coefficients are scaled by 256. A higher bit depth of filter coefficients leads to more accurate interpolation; for comparison, AVC uses 5 bits for filter coefficients. Also, the intermediate values are maintained at higher bit precision.

Table 8‑2: 12-tap separable filters

	¼
	{-1, 5, -12, 20,-40, 229,  76, -32, 16, -8, 4,-1 } (18 additions, 6 shifts)

	½
	{-1, 8, -16, 24,-48, 161, 161, -48, 24, -16, 8,-1 } (15 additions, 4 shifts)

	¾
	{-1, 4, -8, 16, -32,  76, 229, -40, 20, -12, 5,-1 } (18 additions, 6 shifts)


· Filter set 2: This set of interpolation filter is referred to as the Directional Interpolation Filter (DIF) and is used for all 15 quarter-pixel positions. For each of the three horizontal positions and the three vertical positions which are aligned with full pixel positions, a single 6-tap filter is used. For the 9 innermost quarter-pixel positions two 6-tap filters at +45 degree and -45 degree angles are used. 

The filter coefficients for DIF are 

[3 -15 111 37 -10 2]/128 for ¼ displacement (and mirrored for ¾ displacement)

[3 -17 78 78 -17 3]/128 for ½ displacement 

· Filter set 3: The third set of interpolation filters consists of Separable Filters (SF) where interpolated samples are calculated by first applying a 6-tap filter horizontally and then vertically.

The filter coefficients for SF are 

[3 -15 111 37 -10 2]/128 for ¼ displacement (and mirrored for ¾ displacement)

[3 -17 78 78 -17 3]/128 for ½ displacement 

· Filter set 4:  Consists of a combination of a 2-tap pre-filter and a 4-tap interpolation filter. 

· The pre-filter is a 1D IIR filter in horizontal and vertical directions. The coefficients are given below:

· Left-to-right filtering: [ 1 ] / [ 1, c ]

· Right-to-left filtering: [ c ] / [ 1, c ]

where, the constant c = -11276. The pre-filter produces the same number of samples as the input to it. The filtering can be performed on the picture region to be interpolated.

· The interpolation filter is implemented as a sequence of 1D horizontal and vertical filtering step. The FIR filters consist of 4-taps. The filter coefficients are the same for both horizontal and vertical directions. The filters used for different sub-pel positions are given below:

· Full-pel: [6242,   20284,  6242,         0] / 32768

· 1/4 pel : [2888,   19078,  10520,   280] / 32768

· 1/2 pel : [1073,   15311,  15311, 1073] / 32768

· 3/4 pel : [280,    10520,  19078,  2888] / 32768

· Filter set 5 and 6: For each set, positions a, b, and c use a six-tap horizontal filters. Positions d, h, and l use six-tap vertical filters. For the remaining fractional pixel positions, 4×4 non-separable filters are used. Each of the non-separable filters has horizontal, vertical or diagonal symmetry.

8.3.2 Choice of filter set and offsets

The choice of the filter and offset is signalled to the decoder for each slice. For each of the 15 fractional pixel positions, the choice of the filter is signalled using 3 bits. Before encoding a frame, the encoder selects a filter for each fractional pixel position based on statistics gathered from previously encoded frames. In this text, the filter that minimizes prediction error for the previously encoded frames is selected. For each fractional pixel position, the minimization is performed only on blocks whose motion vector points to that fractional pixel location. The choice of filter remains the same irrespective of the reference frame in which the motion search is being performed.

For reference frame 0 from each list, offsets are sent to the decoder for each of the 15 fractional pixel positions as well as the full pixel position For other reference frames only one frame offset is sent. The offsets are encoded using exponential Golomb codes.
8.3.3 Partition based Illumination Compensation

Intensity compensation parameters are signaled at each partition using scale and offset parameters.

In the single-list prediction case, one scale s and one offset o are transmitted. For bi-prediction, two transformed scales t0 and t1, and one offset o are transmitted. Scales s0 and s1 are derived from t0 and t1 as s0 = (64 + t0)/2+t1 and s1 = (64+t0) – s0.

The scales are applied to all components, whereas the offsets are applied only to the luma component (in the following the offset o is considered to be 0 for chroma components).

In the single-list prediction case, a predicted, illumination-compensated, sample w is set to ((64+s)*v)/64+o, where v is a motion-compensated sample. For bi-prediction, a predicted sample w is obtained by the weighted average (s0*v0+s1*v1)/64+o where v0 and v1 are the motion-compensated samples from each list.

The parameters s, t0, t1 and o are coded differentially in combination with motion vector differences.

This feature is enabled by a flag on slice level.

8.4 Adaptive Motion Vector Resolution

For each region in a motion partition, the motion accuracy can be adaptively chosen to be 1/4th pixel or 1/8th pixel. We will refer to this as adaptive motion vector resolution. The choice of motion vector resolution is signaled to the decoder. For each motion vector, a motion vector resolution flag is encoded. If the flag is zero, the motion vector precision is 1/4th otherwise 1/8th. If the flag is 1 and motion vector is nonzero, refinement information for this motion vector is sent which specifies 1/8th pel precision. 

The encoder always maintains the motion vector (MV) and MVD information at 1/8th pixel resolution. Then, the MV prediction for the current block is formed with 1/8th pixel accuracy. If the current block has only 1/4th pixel motion accuracy, the MV prediction is converted to 1/4th pixel accuracy. On the other hand if the current block has 1/8th pixel motion accuracy, the MVD is formed directly by subtracting the MV prediction from the motion vector for the current block. Once MVD is formed, if the current block has 1/4th pixel accuracy, for all the neighboring blocks used for determining the MVD contexts, the MVDs are converted to 1/4th pixel accuracy. Similar procedure is followed for 1/8th pixel accuracy.
9 Intra-frame prediction

For blocks of size 64x64 : 33 Directions (ADI+Planar)
For blocks of size 32x32 : 33 Directions (ADI+Planar)
For blocks of size 16x16 : 33 Directions (ADI+Planar)
For blocks of size 8x8 : 33 directions (Angular+Planar)
For blocks of size 4x4: 9 directions (AVC)
9.1 Adaptive reference sample smoothing

In addition, a smoothing operation can be applied to the reference samples as a pre-processing step before calculating the prediction.  This smoothing operation corresponds to applying an FIR-filter (1,2,1)>>2 with low-pass characteristics to the samples along the two reference rays.  Whether this smoothing operation is used is determined by the encoder and signaled in the bit stream.

9.2 Planar prediction 

The planar prediction is designed to be able to reconstruct smooth image segments in a visually pleasing way. It provides maximal continuity of the image plane at the macroblock borders and is able to follow gradual changes of the pixel values by signalling a planar gradient for each macroblock coded in this mode.  When a macroblock is coded in planar mode its bottom-right sample is signalled in the bitstream, the rightmost and bottom samples of the macroblock are linearly interpolated, and the middle samples are bilinearly interpolated from the border samples. When planar mode is signalled, the same algorithm is applied to luminance and both chrominance components separately with individual signalling of the bottom-right samples (16x16 based operation for luminance and 8x8 based for chrominance). The process is illustrated in the picture below.

[image: image101.png]
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Planar prediction of an 8x8 (chrominance) block. Bottom-right sample is signalled in the bitstream, rightmost and bottom samples are interpolated linearly, and the middle samples are interpolated bi-linearly.

9.3 Angular prediction 

In order to be able to accurately represent directional structures the Intra 8x8 coding mode provides a possibility to predict the blocks at any direction shown below.
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Available prediction directions in the angular mode of Intra 8x8 macroblocks.

In the angular mode the prediction direction is given by the displacement of the bottom row of the block and the reference row above the block in the case of vertical prediction or displacement of the rightmost column of the block and reference column left from the block in the case of the horizontal prediction. The displacement is signalled at 1 pixel accuracy. When projection of the predicted pixel falls inbetween reference samples, the predicted value for the pixel is linearly interpolated from the reference samples (at 1/8th pel accuracy). The process is illustrated in the picture below for the sixth row of the block when building vertical prediction at +1 pixel displacement.
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Figure 4 An example of angular prediction when operating the sixth row of the block with +1 pixel displacement. Projections of the pixels now fall at the 6/8 sub-pixel location (circles) in the reference row of pixels.

9.4 Arbitrary Directional Intra (ADI)

Arbitrary Directional Intra (ADI) generates prediction pixels by directional extrapolation or calculation using the nearest boundary pixels of the already decoded area. But in ADI, even boundary pixels from the left down region may be used as context pixels for prediction as depicted in below

                      [image: image105.emf] 
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Example of context pixels for ADI

Whilst the 9 prediction modes are defined separately as Vertical, Horizontal, DC, Diagonal Down-Left, Diagonal Down-Right, Vertical-Right, Horizontal-Down, Vertical-Left, and Horizontal-Up in AVC, most of prediction modes in ADI are defined by integer pair information (dx, dy). The (dx, dy) pair represents the direction which each mode uses for context pixel extrapolation 
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prediction methods defined by (dx, dy)

9.5 Edge based prediction

If the edge based prediction mode is switched on, the DC prediction mode can be replaced by an adaptive directional prediction mode depending on the presence of an edge in the neighboring reconstructed pixels.
The edge-based prediction mode consists of two steps: 

· edge detection based on the Sobel operators to determine if an edge is present and if an edge is present, its direction
· extrapolation of the reference pixels along the direction of the detected edge

If an edge intersecting with the block to be predicted is detected, the reference pixels are extrapolated along the direction of the detected edge as showed in Figure 5.
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Figure 5: Computation of the edge based prediction for intra coding

The prediction of the pixel p(x,y) is: 

9.6 Combined Intra Prediction (CIP)

The CIP is a low-complexity tool for providing improved prediction, especially in large blocks where a directional linear prediction may not work well, even with the large range of angles available to ADI. CIP predictions comprise a weighted combination of an ADI prediction together with a pixel-by-pixel mean prediction. It provides pixel-by-pixel adaptation but is a simpler tool than, for example, local template matching approaches.
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Figure 4‑12 Example of Combined Intra Prediction utilizing a local mean and ADI prediction

The local mean is constructed as the average of pixel values to the left, top-left and above the current picture. In the decoder and within the local decoder in the encoder, these values are the reconstructed values after inverse quantization and transform. In the encoder, the reconstructed values are not available because quantization and transform of the prediction residue have not yet been performed, so original values are used This local mean prediction is therefore different between forward prediction (encoder only) and reconstruction (encoder and decoder).

The combination factor is a 5-bit number between 0 and 31/32 which determines the proportion of local mean in the prediction. Since this number is less than 1, the prediction/reconstruction difference noise is damped, and pixel-by-pixel prediction adaptation is possible without noise blow-up. The ADI component provides an overall prediction direction and the local mean prediction provides local adaptation.

For each CTB, a single CIP flag is sent for all PUs. If set, the flag indicates that CIP prediction is used, otherwise ADI prediction is used. The use of CIP is signaled in the SPS.
10 Spatial transforms

10.1 Large transform (16x16, 32x32, 64x64)

For smooth data, a large transform has several advantages such as better energy compaction and reduced quantization error. In HD sequences, most image patterns in a macroblock represent a small part of objects or backgrounds which can be described as homogeneous texture patterns with little variation. Therefore, the coding efficiency of high resolution video can be improved by the use of large transforms as well as large block sizes. By contrast, AVC supports only 4x4 and 8x8 transform sizes. Larger transform sizes can also be chosen (or set) for each coding unit (blocks or partitions). Transform sizes larger than the prediction unit can also be supported.
3 additional sizes of transform are included: 16x16, 32x32 and 64x64. In a large transform design, it is very important to minimise complexity. The transforms in this text are based on Chen’s fast DCT algorithm [10]. Chen’s algorithm is not the fastest one, but it has reduced implementation complexity due to the regular butterfly structure. Moreover, it is readily extensible to larger transform sizes. 

[image: image109.emf]

Figure 5‑1 Signal flow graph of Chen’s fast 16-point DCT transform



Figure 5‑1 shows the signal flow graph of Chen’s fast factorization of a 16 point DCT transform. In this figure, multiplication constants are represented by sinusoidal functions of specific angles, requiring floating point operations. To solve this problem, we scale and approximate the factors by fixed precision using pre-defined values, which can be calculated by cost effective shift operations. The approximated constants are shown in Table 0., with pre-defined precision value 64 in this case. Here, the ak’s are approximated values of cos(k*pi/32) for k =1,2,…,15.

Table 0 Approximated constants for 16 point transform

	a1
	a2
	a3
	a4
	a5
	a6
	a7
	a8
	a9
	a10
	a11
	a12
	a13
	a14
	a15

	63/64
	62/64
	61/64
	59/64
	56/64
	53/64
	49/64
	45/64
	40/64
	35/64
	30/64
	24/64
	18/64
	12/64
	6/64


When the constant is approximated by the dyadic rational, the transform is no longer truly orthogonal. However, this minor non-orthogonality does not result in any perceptible negative effects on the compression performance, whilst the complexity can be significantly reduced.

10.2 Rotational transform (ROT)

DCT is the most widely used transform in block based video and image codecs. The input to the transform is the residual, i.e. the difference between the prediction and the original signal. But it is well-known that the DCT basis functions are not optimal for some types of residual signal. For example, the residual signal having strong diagonal components cannot be represented efficiently with the DCT basis vectors. 

Typically, directional transform schemes are exploited to solve this problem since spatial domain rotation makes it dificult to maintain the original square shape of the block and generally requires many floating point operations. However, it’s hard to develop directional transform cores, especially since many transforms of different sizes are needed. This text uses mode dependent directional transforms (MDDT) for block sizes of 4×4 and 8×8, and uses ROT for the higher block sizes. ROT can be applied as a 2nd transform after the DCT operation for block sizes of 16×16 or higher.

The main idea of ROT is to change the coordination system of the transform basis, instead of direct rotation of the input source. For this purpose, the following matrices are defined as
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where Rvertical and Rhorizontal represent the rotation matrices for horizontal and vertical directions with the rotation angles of ((1, (2, (3) and ((4, (5, (6), respectively. In this text, only four out of all possible rotation angles are quantized and used, in order to minimize the encoder-side complexity. The chosen transform is signalled to the decoder using the chosen intra prediction direction as the context.

Furthermore, since ROT is a second transform, not all of the DCT coefficients are processed. For the TUs larger than 8×8, only 8x8 low-frequency areas are rotated by multiplying by the ROT matrix since most coefficients are already compacted into these low-frequency areas.
10.3 Mode dependent directional transforms for intra-prediction residuals

In this text, nine directional intra prediction modes are used for block size of 4×4 and 33 directional intra prediction modes are used for block sizes of 8×8 (INTRA4x4 and INTRA8x8). For each directional prediction mode, the prediction residual exhibits a different directionality. In addition, the magnitude of the error increases for predicted pixels farther away from the boundary pixels used for prediction. To take advantage of this, mode dependent directional transforms (MDDT) are used to encode 4×4 and 8×8 intra prediction residuals. The type of MDDT is coupled with the selected intra prediction direction, so is not explicitly signaled. We briefly describe design and implementation of the MDDT.

For the 8×8 block size, the 33 intra prediction directions are clustered into nine separate directions. Thus, for both 4×4 and 8×8 blocks, nine separate MDDT transforms are designed. The Karhunen-Loève transform (KLT) derived from the statistics of the intra prediction residuals for that mode, would be the optimal transform choice from a rate-distortion perspective. However, KLT is a non-separable transform. For a residual block of size 
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. Thus, KLT is prohibitively expensive in term of storage and computational requirement. A separable directional transform is used, which can be described as
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where X, Y, C, and R are all of size [image: image115.png]N x N



 and i is the prediction mode. Singular Value Decomposition (SVD) is applied to the training set of residuals first in the row direction and then, in the column direction. A fixed-point approximation of the transform matrices to reduce computational cost is used.

Adaptive coefficient scanning

After applying separable directional transform, the 2-D transform coefficient matrix is converted to 1-D. In AVC, zigzag scanning order is used for this purpose. In the case of MDDT, even after separable directional transforms are applied, the resulting 2-D transform coefficient matrix still carries some directionality. For example, consider vertical prediction (mode 0). After prediction, transform and quantization, the nonzero coefficients tend to exist along the horizontal direction. By using coefficient scanning oriented in the horizontal direction instead of the zigzag scanning, the non-zero coefficients in the 2D matrix can be further compacted toward the beginning of the 1-D vector. This in turn improves entropy coding efficiency. Quantized transform coefficients of different prediction modes carry different statistics. Therefore, for each mode, adaptive coefficient scanning is used. This is accomplished as follows:

6. At the beginning of each video slice, initialize the coefficient scanning order for each prediction mode;

7. When a block is entropy-coded, for each non-zero coefficient coded, increment the count at the corresponding position by one;

8. After each macroblock is coded, update the coefficient scanning order according to the statistics collected;

9. Normalize the collected statistics if needed;

10. Use the updated order for coding of future blocks. Go back to 2 until slice is finished.

10.4 Transform Selection

For the luma component of the inter residual signal, two switchable transforms can be adaptively selected for each block size. Therefore, the selected transform can better fit the residue data. The selection is between the DCT and a KLT using a rate-distortion criterion. For transform sizes smaller than 16x16, no explicit flag is sent to indicate which transform is used for each block. Instead, the flag is incorporated within the transform coefficients themselves to reduce overhead. At the decoder, the transform coefficients are first recovered and the parity of their sum is computed. If the parity is even, the inverse DCT is applied. If the parity is odd, the inverse KLT is applied. When the transform size is 16x16 and above, an explicit flag is used to indicate which transform to apply.

For a residual block of size NxN, a separable KLT transform is used, which can be described as:
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where X, Y, Cinter, are of size NxN. 

The KLT basis functions are derived from the statistics of the inter prediction residuals from a representative set of sequences. The offline training is done so that the KLT complements the DCT. The transform is implemented in integer arithmetic and the norms are forced to be the same as those of the DCT. In this way, the quantization tables and entropy coding of the DCT can be reused. Also, the first basis vector of the KLT is forced to be constant, so it is consistent with the first basis vector of the DCT, which improves subjective quality at low bit-rates.

The scanning order of the KLT coefficients is the same as for the DCT coefficients.

10.5 Quantization

The basic principle for quantization and de-quantization of coefficients for large transforms is the same as that used in AVC, i.e. a scalar quantizer with dead-zone. 

11 Deblocking filter

Deblocking filter operates across 8x8 block edges for luma as well as for chroma blocks. 
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Notation of Block Edge for Deblocking

Luma filtering

The luma edge between blocks A and B can be filtered if one of the following conditions is true

· Block A or Block B has mbMode==INTRA

· or Block A or block B has nonzero transform coefficients

· or The absolute difference between the horizontal or vertical component of the motion vectors used for Block A and Block B is greater than or equal to 4 in units of quarter luma samples,
· and |p22 - 2*p12 + p02| + |q22 - 2*q12 + q02| + |p25 - 2*p15 + p05| + |q25 - 2*q15 + q05| < β

The luma edge between blocks A and B is not filtered if one of the following conditions is true.

· Block A and Block B belong to the same macroblock and mb_svt_flag==1 

· or Block A and Block B belong to the same macroblock and (mbMode==INTER_16x16 or mbMode==INTRA) and transform 16x16 is used

· or the edge is an internal edge of a large macroblock LMB32

· or the edge is an internal edge of a large macroblock LMB64

· or the edge is a macroblock border and both Block A and Block B have planar_flag ==1.  

If the edge between Block A and Block B is filtered, one of two types of filtering (weak or strong filtering) is performed. The choice between the strong and the weak filtering is done separately for each line depending on the following conditions. For each line i = 0,7, the strong filtering is performed if all the following conditions are true, otherwise, weak filtering is performed.

· d < (β>>2)
· and (|p3i - p0i| + |q0i – q3i|) < (β>>3)  
· and |p0i – q0i| < ((5*tC + 1)>>1),




where tC and β depends on qp their relations are shown in Table 1. tC is increased by 4 when one of Block A or Block B has mbMode==INTRA. 

Table 1 Corr_qpc, tc and β

	qp
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	13
	13
	14
	15
	16
	17

	Corr_qpc
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0
	0

	tc
	0
	0
	0
	0
	0
	0
	0
	0
	1
	1
	1
	1
	1
	1
	1
	1
	1
	2

	Β
	0
	0
	0
	0
	0
	0
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17

	qp
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35

	Corr_qpc
	0
	0
	1
	1
	1
	1
	2
	2
	2
	3
	3
	4
	4
	5
	5
	6
	6
	6

	tc
	2
	2
	2
	3
	3
	3
	3
	4
	4
	4
	5
	5
	6
	6
	7
	8
	9
	9

	Β
	18
	20
	22
	24
	26
	28
	30
	32
	34
	36
	38
	40
	42
	44
	46
	48
	50
	52

	qp
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	
	
	
	
	
	
	
	

	Corr_qpc
	7
	7
	7
	8
	8
	8
	
	
	
	
	
	
	
	
	
	
	
	

	tc
	10
	10
	11
	11
	12
	12
	13
	13
	14
	14
	
	
	
	
	
	
	
	

	Β
	54
	56
	58
	60
	62
	64
	
	
	
	
	
	
	
	
	
	
	
	


Weak filtering

Weak filtering mode filtering is performed based on the above conditions, 

( = Clip(-tC,tC, (13*(q0i - p0i) + 4*( q1i - p1i) - 5*( q2i - p2i)+16)>>5))

i = 0,7

p0i = Clip0-255(p0i + ()



i = 0,7

q0i = Clip0-255(q0i - () 



i = 0,7

p1i = Clip0-255(p1i + (/2) 



i = 0,7

q1i = Clip0-255(q1i - (/2) 



i = 0,7

Strong filtering

Strong filtering mode is performed with the following set of operations.

p0i=Clip0-255((p2i + 2*p1i + 2*p0i +2*q0i + q1i + 4)>>3);

i = 0,7
q0i=Clip0-255((p1i + 2*p0i + 2*q0i + 2*q1i + q2i + 4)>>3);

i = 0,7
p1i=Clip0-255((p2i + p1i + p0i + q0i +2)>>2);



i = 0,7
q1i=Clip0-255((p0i + q0i + q1i + q2i +2)>>2);



i = 0,7
p2i=Clip0-255((2*p3i + 3*p2i + p1i + p0i + q0i + 4)>>3);

i = 0,7
q2i=Clip0-255((p0i + q0i + q1i + 3*q2i + 2*q3i + 4)>>3);


i = 0,7

Chroma filtering

The chroma edge between blocks A and B can be filtered if the following condition is true.

· Block A or Block B has mbMode==INTRA

The filtering is not applied if both following conditions are true.

· The edge is a macroblock edge 

 and both Block A and Block B have planar_flag==1.

If filtering is performed based on the above condition,

( = Clip(-tC,tC,((((q0i - p0i) << 2) + p1i - q1i + 4)  >> 3))

i = 0,7

p0i = Clip0-255(p0i + ()





i = 0,7

q0i = Clip0-255(q0i - ()





i = 0,7

tC depend on qp and their relations are shown in Table 1. For chroma filtering tC is increased by 4.

Planar mode filtering

There is a special filtering mode which is applied to the macroblock edge when both macroblocks are encoded in intra planar mode. Luma and chroma edges between blocks A and B are filtered with planar filtering if all of the following conditions are true, otherwise normal filtering described in 0 and 0 are performed.

· Edge between Macroblock A and Macroblock B is a macroblock edge

· Both Macroblock A and Macroblock B have planar_flag==1 

Planar luma filtering

The planar mode filtering for luma component is performed with the following set of operations.

p3i = (7*p3i + 3)/7


i = 0,15
p2i = (6*p3i + q3i
 + 3)/7


i = 0,15
p1i = (5*p3i + 2*q3i + 3)/7


i = 0,15
p0i = (4*p3i + 3*q3i + 3)/7


i = 0,15
q0i = (3*p3i + 4*q3i + 3)/7


i = 0,15
q1i = (2*p3i + 5*q3i + 3)/7


i = 0,15
q2i = (p3i + 6*q3i + 3)/7


i = 0,15
q3i = (7*q3i + 3)/7


i = 0,15
Planar chroma filtering

The planar mode filtering for chroma component is performed with the following set of operations.

p1i = (4*p1i + 2)/4


i = 0,7
p0i = (3*p1i + q1i
 + 2)/4


i = 0,7
q0i = (2*p1i + 2q1i + 2)/4


i = 0,7

q1i = (p1i + 3*q1i + 2)/4


i = 0,7

12 In-loop filtering

The purpose of the adaptive loop filtering (ALF) process is to further reduce the distortion between the original picture and the reconstructed picture caused by complex lossy coding. Filters minimizing the distortion for both luma and chroma components are calculated using the Wiener filter approach. Based on the prediction signal 
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, the quantized prediction error 
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, the following adaptive loop filter operation is performed:
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After filters are applied in a frame or coding units, filter coefficients are explicitly sent in the bitstream. This adaptive loop filter increases reconstructed picture quality as well as reference picture quality for the next picture coding. The filtering control basis is usually obtained independently from the prediction structure, which results in a large amount of information being sent to the decoder and its inability to access prediction information in its process.

In this text, Coding Block Tree (CBT) synchronized ALF is presented. By utilizing the coding unit structure, the amount of control information to be sent is reduced. Due to the flexible coding unit structure from large to small block, coding unit boundary provides great flexibility to be used as control basis in the adaptive loop filter process. Since the optimal coding unit boundary obtained from previous coding stages reflects objects’ boundaries having similar properties, like prediction and quantization error, a simple control scheme which infers filter control structure from the coding unit structure and the optimal control depth reduces the complexity of the optimal control map while achieving similar performance.

The filter control information is signaled in the slice header in order to avoid re-multiplexing of the information at the CU level coded data.

Once the control units for filtering are determined, a control flag indicating whether filtering is applied is sent to maximize filter performance and reduce complexity of filter application. Depending on the largest block size, the maximum depth, sequence property and coding parameters, the number of coding units can be too many to be used as filter control units itself. Thus the optimal control depth is sent to indicate the maximum depth (i.e., the smallest size) of a coding unit boundary to be used as filter control map.

The text uses M set of non-separable/separable filters. The M sets of non-separable/separable filters is transmitted to the decoder for each frame. Whenever the ALF segmentation map indicates that a block should be filtered, for each pixel, a specific set of filters is chosen based on a measure of local characteristic of an image, called activity measure. The text uses the sum-modified Laplacian measure. The sum-modified Laplacian for pixel  is calculated as follows:
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13 Entropy Coding

13.1 Low-Complexity Entropy Coding

General
All syntax elements are encoded using either FLC or “UVLC-like” VLC tables. Each syntax element use one out of 10 pre-determined VLC tables that are designed for different probability distributions. All VLC tables are organized in the conventional way with the shortest binary codeword at the beginning. 

Encoding of a parameter/event using a VLC table is typically done in three steps:

1) Convert the parameter/event value to a table index by using some enumeration scheme.
2) Use the table index to generate a code number through lookup in a sorting table. The purpose of the sorting table is to assign code numbers according to increasing probability so that parameters/events with the high probability are assigned a code number with a low value.

3) Use the code number to generate a binary codeword by lookup in the pre-determined VLC table.

The VLC encoding process is illustrated in Figure 5, while the VLC decoding process is illustrated in Figure 6.
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Adaptivity

Two different forms of adaptivity are applied to VLC encoding:

1) For some parameters/events, the particular VLC table to be used depends on the value of previously encoded parameters/events. A context variable is maintained that indicates expected probability distribution of the events. This variable is updated as the events are encoded and it is used to look-up VLC table number.

2) For some parameters/events, the sorting table is made adaptive. This process is most easily described in terms of decoder operations as follows: For each binary codeword that is decoded into a code number, determine the corresponding table index by lookup into an inverse sorting table. Next, swap that entry in the inverse sorting table with the entry immediately above. This mechanism ensures that a table index value that occurs frequently eventually propagates towards the top of the inverse sorting table, corresponding to the most likely value and the shortest binary codeword. On the encoder side, both a sorting table and the corresponding inverse sorting table need to be updated simultaneously.  Updating the inverse sorting table on the decoder side is illustrated in Figure 7.
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Transform coefficients

Entropy coding of transform coefficients is performed by an improved version of CAVLC as follows:

1) Organize the quantized transform coefficients, each represented by a level and sign in a 1D array using the conventional zig-zag scan.

2) Coefficients are encoded backwards along the 1D array from the most high frequency coefficient towards the DC coefficients.

3) Each event (to be described below) is encoded using an “UVLC-like” table. Different VLC tables are used for different events.

4) First, the last significant coefficient (last_coeff) is coded in two steps:

i. Code the position (in backward scan order) of last_coeff (last_pos) and a flag (levelFlag = level>1) as a combined event.

ii. If level>1 code the value of level as a single event

iii. Code the sign as one bit

5) If level==1, continue encoding non-zero levels in run-mode.

6) If level>1, switch to level-mode if any of the following is true:
i. Cumulative sum of all level of coefficients coded so far >1 (excluding the level of last_coeff), is bigger than a threshold
ii. The position of the current level is bigger than the threshold position
7) In run-mode, encode each non-zero coefficient using the preceding run and levelFlag as a combined event. Then encode the sign and level (if levelFlag==1).

8) In level-mode, encode each coefficient (including zero coefficients) as level and sign.

For the combined last_coeff/levelFlag event, an adaptive sorting table is used. 

Side information

The following parameters are coded as a combined event for each macroblock:

· macroblock mode

· motion vector partition

· transform size

· macroblock level CBP information

· reference frame index for P frames

· dqp flag (indicating whether or not dqp is signalled for that MB) 

For this combined event, an adaptive sorting table is used.

The following side information parameters are encoded separately as single events:

· block level CBP

· motion vector differences

· reference frame index for B frames

· intra prediction modes

Block level CBP is encoded using an adaptive sorting table.

13.2 High Coding Efficiency Entropy Coding

For entropy coding, a variation of CABAC (as found in AVC) is employed. The binarization and context modeling are basically the same as in CABAC of AVC, except from a few modifications and additions as further explained below. However, the actual coding of the bins is based on a novel concept that has been introduced in order to support parallelized implementations of entropy encoding and decoding with load balancing.
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Fig. 7  Illustration of the novel entropy coding concept

Figure 10: Parallel V2V entropy coding

13.2.1 Novel entropy coding concept

In Fig. 9, the basic entropy coding concept is illustrated. If a syntax element does not already represent a binary syntax element, it is first binarized, i.e., it is mapped onto a sequence of binary decisions (bins). For each bin a context is selected. A context represents a (binary) probability model for a class of bins; it is characterized by the probability and the value of the less probable bin (LPB). As in AVC, the LPB probability is represented by one out of 64 states. At the beginning of the encoding/decoding of a slice, the probability models are initialized using fixed values (as in CABAC of AVC). And after encoding/decoding a bin with a particular model, the model (i.e., the corresponding probability and value of the LPB) is updated. The probability model update, i.e., the probability estimation process is the same as in CABAC of AVC. The association of a bin with a context model is also similar as in CABAC of AVC. It depends on the syntax element, the bin number, and, for some bins, the values of neighboring syntax elements.

The above described binarization and association of the bins with context models is basically the same as in CABAC of AVC. The main difference is the next step. Instead of arithmetically coding the bins with the associated probability models using a single arithmetic coding engine as in CABAC of AVC, the estimated LPB probabilities are quantized, i.e., they are mapped onto a small number of LPB probability intervals and for each of these probability intervals a separate bin encoder/decoder is operated. In one implementation, we used 12 probability intervals and thus 12 different bin encoders/decoders. Each bin encoder/decoder operates at a fixed LPB probability, which can be considered as the representative probability for an LPB interval. The selection of a bin encoder/decoder is implemented via a look-up table that associates a bin encoder with each of the 64 state indices for the LPB probability. Hence, the 64 states that are used for estimating the LPB probability of a context model are mapped onto the selected (e.g. 12 in one of the proposed implementation) probability classes, for each of which a separate bin encoder/decoder is operated. The partial bitstreams that are generated by the bin encoders can be written to different partitions of a NAL unit (with the partitioning of the NAL unit being indicated in the slice header) or they can be interleaved into a single bitstream.

The bin encoders and decoders represent simple variable length bin to variable length (V2V) codes, by which a variable number of bins is mapped onto variable length codewords and vice versa.

In the case where parallel processing at the decoder is desired, a load balancing scheme is provided to distribute the computational load onto multiple bin decoders evenly. 

13.2.2 V2V codes

For the bin encoders (cf. 9), V2V codes are employed. It should be again noted that each bin encoder operates at a fixed LPB probability. And for a fixed LPB probability, we can simply construct a code that maps a variable number of bins onto a variable length codeword and vice versa. As a particular example, the following table shows an example for such a mapping. In the example the bins "0" represent the more probable bin values and the bins "1" represent the less probable bin values. The example code has been designed for a LPB probability of 0.15 and it yields a redundancy of only 0.25 % relative to the entropy limit for this probability. Generally, it is possible to get closer to the entropy limit when the table size is increased.

Table 1: Example for a mapping between a variable number of bins and variable length codewords

Sequence of bins


codewords

	(bits order is from left to right)
	

	0000
	1

	01
	001

	10
	010

	001
	011

	0001 00
	0001

	11
	0000 1

	0001 1
	0000 00

	0001 01
	0000 01


At the end of a slice or due to a flush event (e.g. buffer full), it is possible that a bin sequence does not represent any bin sequence that is associated with a codeword, that is the bin sequence sits at an internal node of the V2V tree. To encode the bin sequence when such an event happens, a secondary codeword set for the internal nodes in the V2V tree is needed. One such secondary codeword set works as follows: In order to terminate the codeword, the shortest codeword for a bin sequence that contains the current bin sequence as prefix is written. At the decoder side, the additionally decoded bins are discarded. As an example, we could use the mapping in the above table and have a bin sequence "00" at the end of a slice. Then we would write the codeword "1" (corresponding to the bin sequence "0000"). At the decoder side, the codeword "1" would be translated into the bin sequence "0000", but the decoder would discard (ignore) the last two decoded bins.

The partial bitstreams can be written to different partitions of the slice data NAL unit (with transmitting the partitioning information in the slice header). It is also possible to combine the partial bitstreams into one single bitstream. Let Lk be the encoded length of the kth partial bitstream, where 0 <= k < N, where N=StateCount. We define a prefix code C the following way:

If n < 128, then C(n) = n << 1;
Else if n < 16512, then C(n) = ((n - 128) << 2) | 1;
Else if n < 2113664, then C(n) = ((n - 16512) << 3) | 3;
Else C(n) = ((n - 2113664) << 3) | 7;

where "<<" is a right shift, and "|" is a bit-wise OR.

The output of the parallel framework is the concatenation of the following:

1. [Header] C(Lk) for 0 <= k < N,
2. [Payload] The encoded sequence for bitstream k (0 <= k < N).

The decoder first decodes the Lk values from the header, and uses these values to find the starting point of the encoded sequence k within the payload. After this, the N bitstreams can be decoded independently of each other from the payload, hence parallel decoding is feasible.

It is also possible to interleave the codewords from different partial bitstreams.  This is in particular beneficial for small slice data NAL units, for which parallelized bin decoding is not required. In order to realize such an interleaving, a first-in-first-out codeword buffer for variable-length codewords can be introduced at the encoder side. When a particular bin encoder starts the encoding of a new bin sequence (i.e., the bin encoder receives the first bin after having written the previous codeword), it reserves the next variable-length codeword entry in the codeword buffer. When the received bins represent a bin sequence that corresponds to a codeword, this codeword is written to the previously reserved codeword entry, that is, output in a first-in-first-out order. Examples for the codeword buffer status are illustrated in Fig. 8. At the decoder side, the codewords can be directly read from the bitstream in decoding order.
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Fig. 8  Examples for the codeword buffer status

Figure 11: Interleaving codewords by using a first-in-first-out codeword buffer 

It is also possible to combine the codeword interleaving with a low-delay buffer control. That means, we can suitably restrict the buffer delay that is introduced by the codeword interleaving. With such a low-delay control, a particular codeword is terminated when the maximum number of bits (this maximum number of bits represents the maximum codeword length for a particular bin encoder and is given by the corresponding mapping table) that are associated with the reserved or completed buffer entries following the buffer entry for the particular codeword is greater than a particular threshold. At the decoder side, the extra decoded bins must be discarded; this can be done by using the same measure of the maximum number of bits as at the encoder side.

13.2.3 Parallel V2V decoding process

[Ed.: Cross-references in this section to be corrected]
This process is invoked when entropy coding mode flag is equal to 3.

This section describes the decoding process of the encoded bitstream to reconstruct a sequence of bin symbols.

13.2.3.1 V2V decoding for a binary decision

Input to this process is a state index k, and the MPS for state k, where 0 <=k < 64.

Output of this process is the value of the bin. 

The process has access to the bit array decodedSequence[t], where t = mergedStatesMapping[k]. Note that the table mergedStatesMapping is determined in the process of initializing the parallel V2V decoding engine (cf. subsection Error! Reference source not found.). 

The process maintains a table named nextSymbol with mergedStateCount entries, where nextSymbol[t] gives the next unprocessed offset of decodedSequence[t]. 

The algorithm returns MPS if decodedSequence[t][nextSymbol[t]] is 0, and 1 otherwise.  In both cases, nextSymbol[t] is incremented by 1.

13.2.3.2 V2V decoding of partial bitstream

This subsection describes the process of extracting partial bitstreams to enable parallel V2V decoding. In this section, the input encoded bitstream is denoted by X. 

The process extracts N encoded subsequences from the encoded bitstream X, where N = numBinDecoders by using the information in the parallel V2V header as follows. 

Step 1: Calculate sumLength = sequenceCodedLength[0]+…+sequenceCodedLength[mergedStateCount-1].

Step 2: Populate an array F’ of length mergedStateCount as follows. For j=0, .., N-1


F’[j] = round(sumLength/N)*j + balancedAlignment[j];

      and


F’[N-1] = sumLength-1.

Step 3: For j=0, …, N-1, extract the jth encoded subsequence codedSequence[j] as X[F’[j]]… X[F’[j+1]-1]

These N encoded subsequences can then be decoded in parallel to obtain M bin sequences by using the following V2V_Decode_Sequence subroutine, where M = mergedStateCount. Note that for each codedSequence[j], V2V_Decode_Sequence(k) might be called for more than one times, each time with a different merged state index k. 

After V2V_Decode_Sequence, each of the M bin sequences is stored in a bit array specified by an entry in decodedSequence. 

13.2.3.3 V2V Decode_Sequence

Input to this subroutine is a merged state index k, where 0 <= k < M. 

The function of the subroutine V2V_Decode_Sequence is to populate the bit array decodedSequence[k], which holds the decoded bin symbols for the merged state index k. 

For the given merged state index k, the subroutine determines whether a bit associated with that given state is available from a bit sequence obtained from a previously decoded codeword and, if so, adding that bit to the bit array decodedSequence[k], and, if no such bits are available then works as follows: 

parse the bitstream to extract a next codeword according to the V2V decoding tree corresponding to the state k;

decode the next codeword to obtain a new bit sequence associated with that state k; and

add a bit from the new bit sequence to the bit array decodedSequence[k]. 

The following flow diagram provides an informative illustration of Decode_Sequence. Note that input in the diagram is a bit array representing the partial bitstream described above to be decoded. 
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The subroutine Parse_Next_Codeword extracts a codeword by traversing the V2V decoding tree for the state k.

The following is an informative process pseudo-code illustrates the process of Parse_Next_Codeword:

pos = 0

node = decodingTree[mergedTree[k]][0]

while (!(node >> 30)) {

    codeLength = node >> 16;

    if (offset + length >= 8*sequenceCodedLength[k])

        return;

    word = input[offset .. offset + codeLength – 1];

    offset += codeLength;

    pos = (node & 0xffff) + word;

    node = decodingTree[mergedTree[k]][pos];

}

if ((node >> 30) == 1) {

    phrase = (1 << ((node >> 25 & 0x1f)) | (node & 0x1ffffff);

} else if ((node >> 30) == 2) {

    prefLen = (node & 0xffffff) – 1;

    phrase = 2;

} else {

    prefLen = (node & 0xffffff) – 1;

    phrase = 3;

}

The M decoded bin symbol sequences in decodedSequence are then interleaved based on the context model (defined in subsections Error! Reference source not found. and Error! Reference source not found. below) as specified in the parallel V2V parsing process in subsection 6.5 to generate the reconstructed sequence of bin symbols.

13.2.4 Encoding process for load balancing in parallel V2V (Informative)

[Ed.: Would this section be better to be moved to an Informative Annex?]
This section describes the load balancing of bins for an arbitrary (possibly unknown) number of bin decoders available in the parallel framework described in Figure 9 above. In this section all length values are expressed in bits, unless stated otherwise.

The parallel V2V encoding process creates the encoded bit streams S’k of length M’k for each of the input bin symbol sequence  Sk, k=0,…,N, with the given entropy coder, where N=mergeStateCount 
The output of the load balancing extension to the parallel framework is the concatenation of the following:

· [First part of the header] C(M’k) for k = 0,…,N,

· [Second part of the header,] auxiliary offset information
· [Payload] S’k (k=0,…,63)

The byte-align prefix code C() is the same as defined in Section 4.1.12.1.

The format and content of the second part of the header depends on the V2V codes used to encode the Sk sequences, and a distributor function.  This part is a self-delimiting sequence.  

Let D(a, b) be the set of all (v1,…,vb) vectors, for which vk is a positive integer (k=1,…,b), and v1 + v2 + … + vb = a.  Let S’ = S’0 + … + S’N.  Then, using the notations above, the distributor function is a function of the form F : {0,1}^K -> D(K, b).  The distributor partitions the concatenated encoded sequences into b units, such that decoding each unit would take approximately the same time.

In this form, the distribution function gives the lengths of the decodable segments.  The starting positions of these segments are given by the associated function F’(x), where for F(x)= (v1,…,vb), F’(x)=(0, v1, v1+v2, v1+v2+v3, …, v1+…+vb).  Obviously, the functions F and F’ mutually determine each other.

Example: the uniform distributor assumes that the decoding complexity of any S’k depends only on M’k, that is, the length of S’k.  Then, for the concatenated encoded bit stream x of length S’, F(x) = (S’/b, S’/b, …, S’/b) (the division may be rounded up or down to meet the final sum M’0+…+ M’N).  Example: the weighted distributor assumes that the decoding complexity of any S’k is uniform within S’k, but may vary according to k.  Let wk be this complexity for S’k, and W=w0*M’0 + … + w63*M’63.  Then the distributor assigns the values F’(x) = (v1,…,vb) such that for any k < b: the decoding complexity of the segment x[vk,…,vk+1-1] is W/b.  

The format of the second part of the header is as follow: 
Consider a V2V bin encoder.  For all k=1,…,b-1, let Bk be the number of bits, which we have to read ahead from F’(x)[k] to arrive at the start of the next codeword.  That is, Bk=0 if a codeword starts right at F’(x)[k], Bk=1 if the next codeword starts at F’(x)[k+1], and so on.  Then Part 2 of the header is the concatenation of the values C(Bk) for k=1,…,b-1.

It is possible to achieve load balancing for any specific set of b segments and d bin decoders; however, some sets obviously perform better than others.  The best performance among all (b, d) values is reached when b is a multiple of d.

Example: If d divides b, then the load balancing algorithm simplifies to Gk=b/d for all k=1,…,d.

The general method works with the case when the encoder has no information about the number d of bin decoders at the side of the decoder.  In the case that the encoder has a knowledge of some potential candidates d1, d2, …, dk for the number of bin decoders, we present the following improvement: let b be a number which is a multiple of all of d1, …, dk (the least common multiple of the numbers d1, …, dk is adequate).  In this case, for all the candidates the load distribution algorithm simplifies to the previous example, while for all other bin decoder numbers it resorts to the general algorithm.

Example: Suppose that the encoder knows that target decoders may be equipped with any one of 1, 2, 3, 4, 6, 8, 10, 12 or 16 bin decoders.  The least common multiple of these numbers is 240, so the encoder should set b=240.

Example: If the encoder sets b=2t, then optimal load balancing is achieved for each of 1, 2, 4, 8, …, 2t bin decoders.

13.2.5 Binarization and context modeling

As already mentioned above, we have reused the binarization and context modeling schemes of AVC CABAC for most syntax elements in this video coding algorithm, especially for those which have already been present in AVC like, e.g., syntax elements related to intra prediction modes or motion parameters. For entropy coding of novel syntax elements like, e.g., flags indicating the quadtree structure, suitable context models have been designed. In addition, for coding of syntax elements related to transform coefficients of larger block sizes, an improved context modeling scheme has been employed.

13.2.6 Improved context modeling scheme for coding of transform coefficients

The novel context modeling scheme applies to the syntax elements significant_coeff_flag, last_significant_coeff_flag, and coeff_abs_level_minus_one of blocks of size 8x8 and larger, and it is complemented by an adaptive switching of the scan during encoding/decoding of the significance map (specifying the locations of non-zero transform coefficient levels).

Coding of the significance map

Coding of the syntax elements significant_coeff_flag and the last_significant_coeff_flag, as constituting the significance map, is improved by an adaptive scan and a new context modeling based on a defined neighborhood of already coded scan positions. This turned out to be beneficial especially for large block sizes.
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Fig. 9  Illustration of the two scanning patterns for the significance map

Scanning order
The scanning order for coding the significance map is adapted by switching between two predefined scan patterns. For the first scanning pattern, the diagonal sub-scans are scanned from bottomleft to topright (left illustration of Fig. 9), and for the second scanning pattern, the diagonal subscans are scanned from topright to bottomleft (right illustration of Fig. 9). The coding of the significance map starts with the second scanning pattern. While coding the syntax elements, the number of significant transform coefficient values is counted by two counters c1 and c2. The first counter c1 counts the number of significant transform coefficients that are located in the bottom-left part of the transform block; i.e., this counter is incremented by one when a significant transform coefficient level is coded/decoded for which the horizontal coordinate x inside the transform block is less than the vertical coordinate y. The second counter c2 counts the number of significant transform coefficients that are located in the top-right part of the transform block; i.e., this counter is incremented by one when a significant transform coefficient level is coded/decoded for which the horizontal coordinate x inside the transform block is greater than the vertical coordinate y. At the end of each diagonal sub-scan, it is decided whether the first or the second of the predefined scanning patterns is used for the next diagonal sub-scan. This decision is based on the values of the counters c1 and c2. When the counter for the bottom-left part of the transform block is greater than the counter for the bottom-left part, the scanning pattern that scans the diagonal sub-scans from bottom-left to top-right is used; otherwise (the counter for the bottom-left part of the transform block is less than or equal to the counter for the bottom-left part), the scanning pattern that scans the diagonal sub-scans from topright to bottom-left is used.

Context modeling
For 4x4 blocks, the context modeling for the syntax elements significant_coeff_flag is done as specified in AVC. For 8x8 blocks, the transform block is decomposed into 16 sub-blocks of 2x2 samples, and each of these sub-blocks is associated with a separate context. The context model selection for larger transform blocks (e.g., for blocks greater than 8x8) is based on the number of already coded significant transform coefficients in a predefined neighborhood (inside the transform block). For coding of the last_significant_coeff_flag, a context modeling has been designed that depends on a distance measure of the current scan position to the top-left corner of the given transform block. To be more specific, the context model for coding the last_significant_coeff_flag is chosen based on the scan diagonal on which the current scan position lies (i.e., it is chosen based on x + y, where x and y represent the horizontal and vertical location of a scan position inside the transform block, respectively). To avoid overfitting, the distance measure x + y is mapped on a reduced set of context models in a certain way (e.g. by quantizing x + y).

Coding of absolute values of transform coefficient levels

The coding process for absolute transform coefficient levels maps each quadratic (or rectangular) block of size 8x8 and larger onto an ordered set (vector) of 4x4 sub-blocks by using a forward zig-zag scan; while the transform coefficient levels inside a sub-block are processed in a reverse zig-zag scan. Following the handling of 4x4 blocks in AVC CABAC, the context model set for each sub-block consists of two times five context models with five models for both the first bin and all remaining bins (up to and including the 14. bin) of the coeff_abs_level_minus_one syntax element, where the selection of context models is done exactly as in the original CABAC. However, as a novel feature, different sub-blocks may select different sets of context models, where the choice of the context model set for a sub-block depends on certain statistics of one or more already coded sub-blocks.

Annex A
V2V codes

Below is a list of 24 probabilities, for each of which a V2V code is designed. 

{

    0.5,

    0.450506597760524,

    0.427628588228792,

    0.405912389251525,

    0.385299000776178,

    0.3657324189411,

    0.329529735495763,

    0.296910639998243,

    0.267520404529016,

    0.241039414551772,

    0.206150689104538,

    0.176311856288332,

    0.150791980385154,

    0.122416666076214,

    0.0993808828224043,

    0.0806798631847359,

    0.0654979120596046,

    0.0504725601389833,

    0.0388940539763316,

    0.0299716802664306,

    0.0197531197411209,

    0.015,

    0.01,

    0.005

};

Below is the mapping from 64 states defined in ITU‑T Rec. H.264 | ISO/IEC 14496-10 to 16 (StateCount) states. This mapping is static and only only used to initialize the parallel V2V decoding engine. 

const UInt QStatesMapping[] = {

   0,   0,   1,   2,       3,   3,   4,   4,

   4,   5,   5,   5,       6,   6,   6,   7,

   7,   7,   7,   8,       8,   8,   8,   9,

   9,   9,   9,   9,      10,  10,  10,  10,

  10,  10,  11,  11,      11,  11,  11,  11,

  11,  12,  12,  12,      12,  12,  12,  12,

  13,  13,  13,  13,      13,  13,  13,  14,

  14,  14,  14,  14,      14,  14,  15,  15

};

[Ed. note: Tables of the trees to be added] 

Annex B
Byte stream format

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from patterns in the data, such as ITU-T Rec. H.222.0 | ISO/IEC 13818-1 systems or ITU-T Rec. H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit syntax structure contains one start code prefix followed by one nal_unit( NumBytesInNALunit ) syntax structure. It may (and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also contain one or more additional leading_zero_8bits syntax elements.

Byte stream NAL unit syntax and semantics

Byte stream NAL unit syntax
	byte_stream_nal_unit( NumBytesInNALunit ) {
	C
	Descriptor

	
while( next_bits( 24 )  !=  0x000001 &&





next_bits( 32 ) != 0x00000001 )
	
	

	

leading_zero_8bits  /* equal to 0x00 */
	
	f(8)

	
if( next_bits( 24 ) != 0x000001 )
	
	

	

zero_byte  /* equal to 0x00 */
	
	f(8)

	
start_code_prefix_one_3bytes  /* equal to 0x000001 */
	
	f(24)

	
nal_unit( NumBytesInNALunit )
	
	

	
while( more_data_in_byte_stream( ) &&





next_bits( 24 ) != 0x000001 &&





next_bits( 32 ) != 0x00000001 )
	
	

	

trailing_zero_8bits  /* equal to 0x00 */
	
	f(8)

	}
	
	


Byte stream NAL unit semantics
The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the byte stream NAL units. The content of each byte stream NAL unit is associated with the same access unit as the NAL unit contained in the byte stream NAL unit.

leading_zero_8bits is a byte equal to 0x00.

zero_byte is a single byte equal to 0x00.

When any of the following conditions are fulfilled, the zero_byte syntax element shall be present:

–
the nal_unit_type within the nal_unit( ) is equal to 7 (sequence parameter set) or 8 (picture parameter set),

–
the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

Byte stream NAL unit decoding process
Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four bytes in the bitstream form the four-byte sequence 0x00000001.

The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been decoded:

1.
When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this discarded byte.

2.
The next three-byte sequence in the byte stream (which is a start_code_prefix_one_3bytes) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this three byte sequence.

3.
NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte stream up to and including the last byte that precedes the location of any of the following conditions:


– A subsequent byte-aligned three-byte sequence equal to 0x000000,


– A subsequent byte-aligned three-byte sequence equal to 0x000001,


– The end of the byte stream, as determined by unspecified means.

4.
NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit( NumBytesInNALunit ) and is decoded using the NAL unit decoding process.

5.
When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified means).
Decoder byte-alignment recovery (informative)
Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder's byte stream, the decoder may examine the incoming bitstream for the binary pattern ‘00000000 00000000 00000000 00000001’ (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be discarded as specified in subclause XX.

When an error in the bitstream syntax is detected (e.g., a non-zero value of the forbidden_zero_bit or one of the three byte or four-byte sequences that are prohibited in subclause XX), the decoder may consider the detected condition as an indication that byte alignment may have been lost and may discard all bitstream data until the detection of byte alignment at a later position in the bitstream as described in this subclause.

A Annex C
Hypothetical reference decoder

[Ed: Text describing the HRD and the bumping process to be taken from MPEG-4 AVC/H.264 as a starting point for this test model under consideration ]
This annex specifies the hypothetical reference decoder (HRD) and its use to check bitstream and decoder conformance.

A.1 Operation of coded picture buffer (CPB)

A.2 Operation of the decoded picture buffer (DPB)

A.3 Bitstream conformance

A.4 Decoder conformance
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