	[image: image106.png][image: image107.png][image: image108.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
2nd Meeting: Geneva, CH, 21-28 July, 2010
	Document: JCTVC-B204

	Title:
	Encoder-side description of Test Model under Consideration

	Status:
	Output Document (draft000)

	Source:
	JCT-VC

Table OF CONTENTS

21
Introduction

22
Description of encoding methods

22.1
Decision of Slice-level coding parameters

22.1.1
ALF parameters

22.1.2
MC interpolation filter type

22.1.3
Reference picture re-ordering

22.1.4
Rounding control decision

22.1.5
QP setting

22.2
Decision of CU-level prediction parameters

22.2.1
Decision of Intra prediction mode and parameters

22.2.1.1
Angular prediction

22.2.1.2
Planar prediction

22.2.1.3
Combined intra prediction

22.2.1.3.1
Derivation of local mean predictor

22.2.1.3.2
Derivation process of DC prediction value

22.2.1.3.3
Derivation process of local mean prediction for top-left sample position

22.2.1.3.4
Derivation process of local mean prediction for top-side sample position

22.2.1.3.5
Derivation process of local mean prediction for left-side sample position

22.2.1.3.6
Derivation process of local mean prediction for inner sample position

22.2.1.3.7
Derivation of CIP

22.2.1.3.8
Entropy coding of CIP side information

22.2.1.4
Edge-based prediction

22.2.1.5
Adaptive reference smoothing

22.2.1.6
Finding the best intra mode

22.2.2
Decision of inter prediction mode and parameters

22.2.2.1
Motion merging

22.2.2.2
Adaptive motion vector prediction

22.2.2.3
Motion estimation

22.2.2.3.1
Motion estimation cost

22.2.2.3.2
Integer-sample search

22.2.2.3.3
Sub-sample search

22.2.2.4
Finding the best motion parameters

22.2.2.4.1
Rectangular partitions

22.2.2.4.2
Asymmetric partitions

22.2.2.4.3
Geometry partitions

22.2.2.4.4
Block-based illumination compensation

22.2.2.5
Adaptive motion vector resolution

22.2.2.6
Finding the best PU partitioning mode

22.3
Transform and quantization

22.3.1
2-D transforms

22.3.2
MDDT

22.3.3
Rotational transform

22.3.4
Rate-Distortion Optimized Quantization [RIM]

22.3.5
Decision of quad-tree transform sizes

22.4
CU encoding

22.4.1
Coding cost

22.4.2
Intra/inter Decision

22.4.3
Early SKIP mode decision in inter-coded slices

22.4.4
Decision on alf_flag

22.4.5
High Efficiency Entropy coding

22.4.5.1
Probability Interval Partitioning for Entropy coding (PIPE)

22.4.5.2
V2V codes

22.4.5.3
Interleaved V2V encoding

22.4.5.4
Parallel V2V Encoding

22.4.5.5
Load balancing in parallel V2V

22.5
Rate Control

list of figures
list of TAbles

1 Introduction
This document is to provide encoder-side description of software implementation of Test Model under Consideration (TMuC) [1], which serves as tutorial information of the TMuC software. The purpose of this text is to start preparation of formal test model/reference software description including reference encoding methods to be shared among JCT-VC participants, in order to make fair assessments of technical impact of upcoming new proposed technologies during HEVC standardization process.
2 Description of encoding methods

2.1 Decision of Slice-level coding parameters
2.1.1 ALF parameters
Derivation of filter coefficients
2.1.2 MC interpolation filter type
2.1.3 Reference picture re-ordering
Reordering for Hierarchical B case?
2.1.4 Rounding control decision
2.1.5 QP setting
QP setting depending on temporal layer for Hierarchical B case
2.2 Decision of CU-level prediction parameters
2.2.1 Decision of Intra prediction mode and parameters
2.2.1.1 Angular prediction
2.2.1.2 Planar prediction
2.2.1.3 Combined intra prediction
The Combined Intra Prediction (CIP) is a tool for providing improved intra prediction. CIP predictions comprise a weighted combination of an Angular intra prediction together with a pixel-by-pixel local mean prediction. Its conceptual diagram is illustrated in Figure 1. The local mean prediction is the average of pixel values to the left, top-left and above the current pixel. These values are original values in the reference encoder (except where reconstructed pixels are available), whereas they are the reconstructed values after inverse quantization and transform in the local decoder of the encoder and the decoder. Angular intra predictions provide an overall prediction direction and local mean predictions provide local adaptation. The CIP thus provides pixel-by-pixel adaptation and improves intra prediction, especially in large blocks where a directional intra prediction may not work well.

[image: image1.emf]Local mean prediction

Angular prediction

Reconstructed pixel

Weighted combination of

two predictions

Figure 1
 Example of Combined Intra Prediction using weighted combination of local mean prediction and Angular intra prediction with (Intra_Vertical, +6) for 8x8 PU partition

Given an intra PU partition associated with a sample array of Angular intra prediction predYANG, this process derives a combined intra prediction sample array predYCIP. predYCIP is constructed by taking the weighted average of predYANG and a sample array of local mean prediction predYLC. predYLC is constructed using sample arrays of the original picture and reconstructed picture, orgY and recY. The derivation processes of predYLC and predYCIP are described in 2.1 and 2.2, respectively.
The residual between predYCIP and orgY is subjected to transform and quantization processes described in XXX. The results are entropy-coded in the same way as for an Intra PU partition without CIP. Side information for CIP is entropy-coded as described in 2.3.
In order to encode the subsequent Intra PU partitions, the reconstruction values of the current intra PU partition with CIP are derived pixel-by-pixel by using a sample array of the reconstructed residual resY, recY, and predYANG, as described in 2.4.
2.2.1.3.1 Derivation of local mean predictor
Inputs to this process are:

· Location of the top-left corner of current Intra PU partition (xO, yO)

· Sample array of the original picture orgY

· Sample array of the reconstructed picture recY

The output of this process is a sample array of local mean prediction predYLC.

Given an Intra PU partition, this process derives a DC prediction value, iDC, as described in 2.1.1 and then derives the values of the predYLC in order of top-left sample position, top-side sample positions, left-side sample positions, and inner sample positions as described in 2.1.2, 2,1.3, 2.1.4,and 2.1.5, respectively.

2.2.1.3.2 Derivation process of DC prediction value
A DC prediction value iDC is derived as follows:

· If the reconstructed picture samples recY(xO-1, yO) and recY(xO, yO – 1) are marked as "available for intra prediction.”

[image: image2.wmf])

PuPartSize

(

PuPartSize

+

j)

+

yO

recY(xO

+

)

yO

i,

+

recY(xO

=

iDC

PuPartSize

=

j

PuPartSize

=

i

*

ú

û

ù

ê

ë

é

-

-

å

å

-

-

2

/

1,

1

1

0

1

0

· Otherwise if the reconstructed picture sample recY(xO, yO - 1) is marked as "available for intra prediction.”

[image: image3.wmf]PuPartSize

PuPartSize

+

)

yO

i,

+

recY(xO

=

iDC

PuPartSize

=

i

/

2

/

1

1

0

ú

û

ù

ê

ë

é

-

å

-

· Otherwise if the reconstructed picture sample recY(xO - 1, yO) is marked as "available for intra prediction.”

[image: image4.emf]iDC=

[

∑

j=0

PuPartSize−1

recYxO−1,yOjPuPartSize/2

]

/PuPartSize

· Otherwise

[image: image5.emf]iDC=128<<increased_bit_depth_luma

.

2.2.1.3.3 Derivation process of local mean prediction for top-left sample position
Local mean prediction value predYLC(xO, yO) for a top-left sample position as depicted in Figure 2 is derived as follows:

· If the reconstructed picture samples recY(xO-1, yO) and recY(xO, yO – 1) are marked as "available for intra prediction.”

predYLC(xO, yO) = (3* recY(xO - 1, yO) + 3* recY(xO, yO - 1) + 2* recY(xO - 1, yO - 1) + 4) / 8

· Otherwise if the reconstructed picture sample recY(xO, yO - 1) is marked as "available for intra prediction.”

predYLC(xO, yO) = (3* recY (xO, yO – 1) + 5* iDC + 4) / 8

· Otherwise if the reconstructed picture sample recY(xO - 1, yO) is marked as "available for intra prediction.”

predYLC(xO, yO) = (3* recY(xO - 1, yO) + 5* iDC + 4) / 8

· Otherwise

predYLC(xO, yO) = iDC.

[image: image6.emf]Reconstructed pixel

Local mean prediction

Top-left sample position

(xO, yO)

PuPartWidth

PuPartWidth

Figure 2
Example of local mean prediction for top-left sample position for 8x8 PU partition

2.2.1.3.4 Derivation process of local mean prediction for top-side sample position
Local mean prediction value predYLC(x, yO) with x = xO + 1, .. xO + PuPartSize – 1 for top-side sample positions as depicted in Figure 3 is derived, from left to right, as follows:

· If the reconstructed picture sample recY (x, yO – 1) is marked as "available for intra prediction.”

predYLC(x, yO) = (3* orgY(x - 1, yO) + 3* recY(x, yO – 1) + 2* recY(x - 1, yO – 1) + 4) / 8

· Otherwise

predYLC(x, yO) = (3* orgY(x - 1, yO) + 5 * iDC + 4) / 8

[image: image7.emf]Reconstructed pixel

Local mean prediction

Top-side sample positions

PuPartWidth

PuPartWidth

Figure 3
 Example of local mean prediction for top-side sample positions for 8x8 PU partition. Local mean prediction values are derived, from left to right.

2.2.1.3.5 Derivation process of local mean prediction for left-side sample position
Local mean prediction value predYLC(xO, y) with y = yO + 1, .. yO + PuPartSize – 1 for left-side sample positions as depicted in Figure 4 is derived, from top to bottom, as follows:

· If the reconstructed picture sample recY (xO-1, y) is marked as "available for intra prediction.”

predYLC(xO, y) = (3* recY(xO - 1, y) + 3* orgY(xO, y - 1) + 2* recY(xO - 1, y - 1) + 4) / 8

· Otherwise

predYLC(xO, y) = (3* orgY(xO, y - 1) + 5* iDC + 4) / 8.

[image: image8.emf]Reconstructed pixel

Local mean prediction

Left-side sample positions

PuPartWidth

PuPartWidth

Figure 4
 Example of local mean prediction for left-side sample positions for 8x8 PU partition. Local mean prediction values are derived, from top to bottom.

2.2.1.3.6 Derivation process of local mean prediction for inner sample position
Local mean prediction value predYLC(x, y) with x = xO + 1, .. xO + PuPartSize – 1 and y = yO + 1, .. yO + PuPartSize – 1 for inner sample positions as depicted in Figure 5 is derived, in the raster scanning order, by:

predYLC(x, y) = (3* orgY(x - 1, y) + 3* orgY(x, y - 1) + 2* orgY(x - 1, y - 1) + 4) / 8.

[image: image9.emf]Reconstructed pixel

Local mean prediction

Inner sample positions

PuPartWidth

PuPartWidth

Figure 5 Example of local mean prediction for inner sample positions for 8x8 PU partition. Local mean prediction values are derived in the raster scanning order within the inner sample positions.

2.2.1.3.7 Derivation of CIP
Inputs to this process are:

· Sample array of Angular intra prediction predYANG

· Sample array of local mean prediction predYLC

Output of this process is a sample array of combined intra prediction predYCIP.

The predYCIP (x, y)with x = xO, .. xO + PuPartSize – 1 and y = yO, .. yO + PuPartSize – 1 is derived by:

predYCIP(x, y) = (16*predYANG(x, y) + 16*predYLC(x, y)+16) / 32.
2.2.1.3.8 Entropy coding of CIP side information
The use of CIP is signalled in the SPS. If signalled, a single CIP flag is sent in each of the Intra PUs associated with Angular intra prediction. If set, the CIP flag indicates that CIP prediction is used, otherwise Angular intra prediction is used.

In the PIPE encoding, three contexts are used for entropy encoding the CIP flag. Given an Intra PU associated with Angular intra prediction, its context index, ctxIdx, is derived by

ctxIdxInc = condTermFlagLeft + condTermFlagAbove

where the variable condTermFlagN (with N being either Left or Above) be derived as follows.

If all of the following conditions are true, condTermFlagN is set equal to 1:

puIdxN is available,

the PU puIdxN is MODE_INTRA.

the CIP flag of the PU puIdxN is 1

Otherwise, condTermFlagN is set equal to 0.
Given the ctxIdx, the single CIP flag is entropy encoded in the way described in YYY.
In the variable length encoding, one bit is sent without context modeling in a way described in ZZZ.
2.2.1.4 Edge-based prediction
2.2.1.5 Adaptive reference smoothing
2.2.1.6 Finding the best intra mode

How to find the best intra mode from multiple candidates
Consideration on chroma components
2.2.2 Decision of inter prediction mode and parameters
2.2.2.1 Motion merging

2.2.2.2 Adaptive motion vector prediction
2.2.2.3 Motion estimation
2.2.2.3.1 Motion estimation cost
Consideration on chroma components
2.2.2.3.2 Integer-sample search
2.2.2.3.3 Sub-sample search
2.2.2.4 Finding the best motion parameters
2.2.2.4.1 Rectangular partitions
Reference index
2.2.2.4.2 Asymmetric partitions
Reference index, partitioning shape
2.2.2.4.3 Geometry partitions
Reference index, partitioning shape parameters
2.2.2.4.4 Block-based illumination compensation
Weight and offset
2.2.2.5 Adaptive motion vector resolution
2.2.2.6 Finding the best PU partitioning mode
Chroma consideration
2.3 Transform and quantization
2.3.1 2-D transforms
forward transform/quantization process
2.3.2 MDDT

forward transform/quantization process

2.3.3 Rotational transform
forward transform/quantization process

2.3.4 Rate-Distortion Optimized Quantization [RIM]
Editor’s note: This section described RDOQ applied to PIPE. Additional description for RDOQ applied to VLC may be considered. Similarly this section does not describe RDOQ applied to chroma.
The basic idea behind trellis-based rate distortion optimized quantization (RDOQ) is to perform a soft decision quantization for a given coefficient given both its impact on the bitrate and quality. In TMuC, RDOQ is applied to PIPE in a similar manner than it was applied to CABAC in H264/AVC.
To estimate the number of bits required to code a coefficients, we use the tabularized values of entropy of the probabilities corresponding to states in PIPE coding engine. But, the PIPE algorithm uses the context modeling (PIPE context model is currently the same as in CABAC). That is, the coding of current coefficient in a block is related to the state of previous coded coefficients.

The RDO-Q is closely related to the context modeling for residual coding. Residual coding by PIPE includes two parts, i.e., coding a so-called significance map and coding non-zero coefficients. Given a zigzag ordered sequence of transform coefficients, its significance map is a binary sequence which indicates the occurrence and location of the non-zero coefficients. The context modeling for coding the significance map is associated with the zig-zag order, and is easy to be included in RDO-Q. The context modeling for coding non-zero coefficients, however, is complicated. For a given sequence, there are in total 10 contexts for coding non-zero coefficients, with 5 of them for coding the first bit of a binary representation and the other 5 dedicated to coding the second to 14th bits. Briefly, contexts are selected as follows,

1. Scan the sequence in the inverse order to initiate two parameters as NumLg1 and NumEq1. NumLg1 is the number of coefficients that are greater than 1 while NumEq1 accords to those equal to one.

2. The context for the first bit is determined by

[image: image10.png] (12)

3. The context for the 2-14th bits is selected by

[image: image11.png] (13)

There is also a bypass mode with a fixed distribution. Other bits in the binary representation use the bypass mode.

[image: image12.png]
Figure X. The graph structure for RDO quantization based on CABAC in H.264/AVC

In order to solve the minimization problem, a graph-based algorithm is used to address the computation of the rate function R(.) of PIPE. As shown in Figure X, the graph is constructed based on coding features of PIPE. Basically, states are defined based on the context model selection. Thus, states are named by values of NumEq1and NumLg1, as of NumEq1_NumLg1 , e.g., 2_0 accords to NumEq1 = 2 and NumLg1 = 0. When NumLg1 > 0, the context is irrelevant to NumEq1. Thus, there are three states as X_1, X_2, and X_3. The context is fixed for allNumLg1 ≥4. Accordingly, one state X_X is defined. For a 4×4 luma block, there are 16 columns, each of them corresponding to one coefficient. In each column there are up to 8 states. Transitions are established between states according to the increase of NumEq1 and NumLg1 , e.g., the state 1_0 is connected to 1_0, 2_0 and X_1according to a quantization output of 0, 1, or greater than 1, respectively. In case that the quantization output is greater than 1, parallel transitions are established so that each accords to a unique value. In practice, because the distortion is a quadratic function with respect to the quantization output, it is sufficient to investigate only a few parallel transitions. Thus the complexity is greatly reduced without sacrificing the optimality. Finally, a graph structure as shown in Figure X is obtained.

The optimal RDO quantization design now becomes a problem to search for a path in the graph for the minimal RD cost. It is not hard to see that the above graph design allows an element-wise additive computation of the RD cost. The Viterbi algorithm is then used to do the search, which leads to the solution of the minimization problem.

To avoid searching within a full graph, a simplified RD optimized quantization (RDO-Q) scheme is applied:
In RDO-Q, assuming the transform coefficients before quantization are
[image: image13.wmf]i

c

, (i=0,…,M-1), then the quantized coefficients/levels
[image: image14.wmf]i

l

 (i=0,…,M-1) are calculated as follows:
1. For a given coefficient position k, k=M-1,…,0, assume that coefficient
[image: image15.wmf]k

c

 is the last significant coefficient in the block:

a. For each coefficient
[image: image16.wmf]i

c

, i=k-1,…,0, calculate its Lagrangian cost when the quantized value
[image: image17.wmf]i

l

 is equal to 0,
[image: image18.wmf]floor

l

 and
[image: image19.wmf]ceil

l

. The Lagrangian cost
[image: image20.wmf](

)

i

i

k

l

J

,

,

l

 when coefficient
[image: image21.wmf]i

c

 is quantized to
[image: image22.wmf]i

l

 is calculated as:

[image: image23.wmf](

)

(

)

(

)

i

i

i

i

i

k

l

bits

l

c

err

l

J

×

+

=

l

l

,

,

,

where
[image: image24.wmf](

)

i

i

l

c

err

,

 is the quantization error if the coefficient
[image: image25.wmf]i

c

 is quantized to value
[image: image26.wmf]i

l

 and
[image: image27.wmf](

)

i

l

bits

 is the number of bits needed to code
[image: image28.wmf]i

l

. The value of
[image: image29.wmf]floor

l

 and
[image: image30.wmf]ceil

l

are defined as (4x4 block as an example):

[image: image31.wmf](

)

)

2

/

,

6

%

|

(|

6

/

15

QP

i

floor

i

QP

Q

c

floor

l

+

×

=

[image: image32.wmf].

1

+

=

floor

ceil

l

l

b. Let the final quantized level
[image: image33.wmf](

)

i

i

k

l

opt

i

l

J

l

i

,

min

arg

,

,

l

=

 and update Lagrangian cost
[image: image34.wmf](

)

l

k

J

 using
[image: image35.wmf](

)

opt

i

i

k

l

J

,

,

,

l

.
2. The final quantized vector of quantized coefficients
[image: image36.wmf])

(

min

arg

l

k

k

opt

J

=

l

.
[image: image37.png]
Figure X. Possible quantized values in RDO-Q

To speed up the algorithm the following simplifications are made:

For each coefficient
[image: image38.wmf]ij

c

 at most 3 possible values of level
[image: image39.wmf]ij

l

 are tested: 0,
[image: image40.wmf]floor

ij

l

 and
[image: image41.wmf]ceil

ij

l

. For 4x4 block values
[image: image42.wmf]floor

ij

l

and
[image: image43.wmf]ceil

ij

l

 are calculated as follows:

[image: image44.wmf](

)

,

2

/

,

,

6

%

|

|

6

/

15

QP

ij

float

ij

j

i

QP

c

l

+

×

=

Q

[image: image45.wmf](

)

,

float

ij

floor

ij

l

floor

l

=

[image: image46.wmf].

1

+

=

floor

ij

ceil

ij

l

l

To reduce complexity if coefficient
[image: image47.wmf]ij

c

 is closer (as measured by for example absolute distance between
[image: image48.wmf]float

ij

l

 and
[image: image49.wmf]floor

ij

l

or
[image: image50.wmf]ceil

ij

l

) to
[image: image51.wmf]floor

ij

l

 than to
[image: image52.wmf]ceil

ij

l

 only value
[image: image53.wmf]floor

ij

l

 is considered. If
[image: image54.wmf]ij

c

 is closer to level 0 than 1 it is assigned level 0 without any further analysis.

Let us assume that the coefficients in a given block are ordered using zigzag scanning, resulting in a one-dimensional ordered coefficient vector. We will denote the ordered coefficients as
[image: image55.wmf]i

c

, where i=0,...,M .

The quantized coefficients
[image: image56.wmf]i

l

are obtained in two passes. In the first pass it is determined which coefficient should be the last non-zero coefficient; this coefficient will be denoted as
[image: image57.wmf]k

c

. In the second pass we find final values of quantized coefficients assuming that coefficient
[image: image58.wmf]k

c

 is the last nonzero coefficient in the block.
Only coefficients
[image: image59.wmf]0

i

c

,…,
[image: image60.wmf]1

i

c

 are considered in the first pass, where
·
[image: image61.wmf]1

i

 is the largest value of i for which
[image: image62.wmf]5

.

0

>

float

i

l

.

·
[image: image63.wmf]0

i

 is the largest value of i for which
[image: image64.wmf]1

>

float

i

l

. If such index does not exist
[image: image65.wmf].

0

0

=

i

To reduce complexity value of
[image: image66.wmf]sum

J

 is pre-calculated as sum of quantization errors
[image: image67.wmf](

)

i

i

l

c

err

,

 when coefficients
[image: image68.wmf]i

c

,
[image: image69.wmf]1

0

,...,

i

i

i

=

, are quantized to
[image: image70.wmf]0

=

i

l

:

[image: image71.wmf](

)

å

=

=

1

0

0

,

i

i

i

i

sum

c

err

J

.

The first pass consists of following steps:

1. If for coefficient
[image: image72.wmf]0

i

c

,
[image: image73.wmf]5

.

1

0

>

float

i

l

:
a) Update value of
[image: image74.wmf]sum

J

:

[image: image75.wmf](

)

0

,

0

i

sum

sum

c

err

J

J

-

=

.

b) The approximation of RD Cost
[image: image76.wmf](

)

l

0

i

J

 of the block when
[image: image77.wmf]0

i

c

is the last nonzero coefficient is calculated as:

[image: image78.wmf](

)

(

)

0

1

0

=

=

-

×

+

=

last

last

sum

i

bits

bits

J

J

l

l

.

[image: image79.wmf]1

=

last

bits

 is the approximate number of bits required to indicate that
[image: image80.wmf]0

i

c

 is the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 1).
[image: image81.wmf]0

=

last

bits

 is approximate the number of bits required to indicate that
[image: image82.wmf]0

i

c

 is not the last non-zero coefficient (i.e., number of bits to encode last_significant_coeff_flag equal to 0).

c) The starting index
[image: image83.wmf]0

i

 is updated to
[image: image84.wmf]1

0

0

+

=

i

i

.

2. For coefficients
[image: image85.wmf]i

c

where
[image: image86.wmf]1

0

,...,

i

i

i

=

:

a) Update value of
[image: image87.wmf]sum

J

:

[image: image88.wmf](

)

0

,

i

sum

sum

c

err

J

J

-

=

.

b) Find RD Cost
[image: image89.wmf](

)

0

,

,

i

c

J

l

 when
[image: image90.wmf]i

c

 is quantized to 0.

c) If coefficients
[image: image91.wmf]i

c

is closer to 1 than to 0 calculate two additional values of RD Cost:

i)
[image: image92.wmf](

)

1

,

,

0

i

last

c

J

l

=

 -
[image: image93.wmf]i

c

 is quantized to 1 and is not the last nonzero coefficient,

ii)
[image: image94.wmf](

)

1

,

,

1

i

last

c

J

l

=

 -
[image: image95.wmf]i

c

is quantized to 1 and is the last nonzero coefficient.

The approximation of RD Cost
[image: image96.wmf](

)

l

i

J

 when
[image: image97.wmf]i

c

 is the last nonzero coefficient is:

[image: image98.wmf](

)

(

)

1

,

,

1

i

last

sum

i

c

J

J

J

l

l

=

+

=

When calculating bits needed to code value of equal to 1 we fix context for greater_than_1 symbol to be one of the 5 possible values for all coefficients.
d) Update value of
[image: image99.wmf]sum

J

:

[image: image100.wmf](

)

(

)

(

)

1

,

,

,

0

,

,

min

0

i

last

i

sum

sum

c

J

c

J

J

J

l

l

=

+

=

The coefficient
[image: image101.wmf]k

c

 with the smallest corresponding value of
[image: image102.wmf](

)

l

k

J

 is assumed to be the last nonzero coefficient in the block.

In the second pass we find final values of quantized coefficients assuming that coefficient ck selected in the first pass is the last nonzero coefficient in the block. For each coefficient ci, i=k,…,0 we find value of level li for which RD Cost J(λ, ci, li) is minimized. As described previously at most 3 different values of level li are considered: 0,
[image: image103.wmf]floor

i

l

 and
[image: image104.wmf]ceil

i

l

. To calculate context when encoding value of level li , already selected values for levels lj, j=k,…,i-1 are used.

References:

[1]. T Wedi, S Wittmann, “Quantization offsets for video coding”, IEEE International Symposium on Circuits and Systems, 2005.

[2]. Gary J. Sullivan, “Adaptive quantization encoding technique using an equal expected-value rule”, Hong Kong JVT meeting contribution JVT-N011, January 2005.

[3]. E.-h. Yang and X. Yang, “Rate distortion optimization of H.264 with main profile compatibility,” pp282 – 286, ISIT, July 2006

[4]. M. Karczewicz, Y. Ye and I. Chong, Rate distortion optimized quantization, VCEG-AH21, Qualcomm,Jan. 2008
2.3.5 Decision of quad-tree transform sizes
How to derive the best TU size for both luma and chroma
2.4 CU encoding
[Ed.Note: This section contains encoding techniques those cannot be categorized into previous sections. Better categorization could further be considered.]
2.4.1 Coding cost
Lambda derivation
2.4.2 Intra/inter Decision

2.4.3 Early SKIP mode decision in inter-coded slices
FEN mode
2.4.4 Decision on alf_flag
2.4.5 High Efficiency Entropy coding

For entropy coding, a variation of CABAC (as found in AVC) is employed. The binarization and context modeling are basically the same as in CABAC of AVC, except from a few modifications and additions as further explained below. However, the actual coding of the bins is based on a novel concept that has been introduced in order to support both serial and parallelized & load balanced implementations of entropy encoding.

2.4.5.1 Probability Interval Partitioning for Entropy coding (PIPE)
If a syntax element does not already represent a binary syntax element, it is first binarized, i.e., it is mapped onto a sequence of binary decisions (bins). For each bin a context is selected. A context represents a (binary) probability model for a class of bins; it is characterized by the probability and the value of the less probable bin (LPB). As in AVC, the LPB probability is represented by one out of 64 states. At the beginning of the encoding/decoding of a slice, the probability models are initialized using fixed values (as in CABAC of AVC). And after encoding/decoding a bin with a particular model, the model (i.e., the corresponding probability and value of the LPB) is updated. The probability model update, i.e., the probability estimation process is the same as in CABAC of AVC. The association of a bin with a context model is also similar as in CABAC of AVC. It depends on the syntax element, the bin number, and, for some bins, the values of neighbouring syntax elements.

The main difference is the next step. Instead of arithmetically coding the bins with the associated probability models using a single arithmetic coding engine as in CABAC of AVC, the estimated LPB probabilities are quantized, i.e., they are mapped onto 12 LPB probability intervals and for each of these probability intervals a separate bin encoder is operated. Each bin encoder operates at a fixed LPB probability, which can be considered as the representative probability for an LPB interval. The selection of a bin encoder is implemented via a look-up table that associates a bin encoder with each of the 64 state indices for the LPB probability. Hence, the 64 states that are used for estimating the LPB probability of a context model are mapped onto the 12 probability classes, for each of which a separate bin encoder is operated. The partial bitstreams that are generated by the bin encoders can be written to different partitions of a NAL unit (with the partitioning of the NAL unit being indicated in the slice header) or they can be interleaved into a single bitstream.

2.4.5.2 V2V codes

The bin encoders represent simple variable length bin to variable length (V2V) codes, by which a variable number of bins is mapped onto variable length codewords and vice versa. It should be again noted that each bin encoder operates at a fixed LPB probability. And for a fixed LPB probability, we can simply construct a code that maps a variable number of bins onto a variable length codeword and vice versa. As a particular example, the following table shows an example for such a mapping. In the example the bins "0" represent the more probable bin values and the bins "1" represent the less probable bin values. The example code has been designed for a LPB probability of 0.15 and it yields a redundancy of only 0.25 % relative to the entropy limit for this probability. Generally, it is possible to get closer to the entropy limit when the table size is increased.

Table 1: Example for a mapping between a variable number of bins and variable length codewords

Sequence of bins

codewords

	(bits order is from left to right)
	

	0000
	1

	01
	001

	10
	010

	001
	011

	0001 00
	0001

	11
	0000 1

	0001 1
	0000 00

	0001 01
	0000 01

At the end of a slice or due to a flush event (e.g. buffer full), it is possible that a bin sequence does not represent any bin sequence that is associated with a codeword, that is the bin sequence sits at an internal node of the V2V tree. In order to terminate the codeword, the shortest codeword for a bin sequence that contains the current bin sequence as prefix is written. At the decoder side, the additionally decoded bins are discarded. As an example, we could use the mapping in the above table and have a bin sequence "00" at the end of a slice. Then we would write the codeword "1" (corresponding to the bin sequence "0000"). At the decoder side, the codeword "1" would be translated into the bin sequence "0000", but the decoder would discard (ignore) the last two decoded bins.

2.4.5.3 Interleaved V2V encoding
It is possible to interleave the codewords from different partial bitstreams. This is in particular beneficial for small slice data NAL units, for which parallelized bin decoding is not required. In order to realize such an interleaving, a first-in-first-out codeword buffer for variable-length codewords can be introduced at the encoder side. When a particular bin encoder starts the encoding of a new bin sequence (i.e., the bin encoder receives the first bin after having written the previous codeword), it reserves the next variable-length codeword entry in the codeword buffer. When the received bins represent a bin sequence that corresponds to a codeword, this codeword is written to the previously reserved codeword entry, that is, output in a first-in-first-out order. Examples for the codeword buffer status are illustrated in Fig. 8. At the decoder side, the codewords can be directly read from the bitstream in decoding order.

 SHAPE * MERGEFORMAT

Figure X: Interleaving codewords by using a first-in-first-out codeword buffer

It is also possible to combine the codeword interleaving with a low-delay buffer control. That means, we can suitably restrict the buffer delay that is introduced by the codeword interleaving. With such a low-delay control, a particular codeword is terminated when the maximum number of bits (this maximum number of bits represents the maximum codeword length for a particular bin encoder and is given by the corresponding mapping table) that are associated with the reserved or completed buffer entries following the buffer entry for the particular codeword is greater than a particular threshold. At the decoder side, the extra decoded bins must be discarded; this can be done by using the same measure of the maximum number of bits as at the encoder side.

2.4.5.4 Parallel V2V Encoding

This section provides the description of the implemented method of parallel V2V entropy coding on the encoder side in the TMuC reference software.

[image: image109.png]
Fig x: Parallel V2V entropy coding

In Figure x, we see that every bin symbol is assigned to one of K=12 bin encoders. As such, on the encoder side K buffers are used in parallel to hold all bins: buffer k holds all bins intended for bin encoder k, k=0, 1, …, K-1. At the end of a slice or a flush event, bin encoder k is called to encode all the bins in buffer k, producing encoded bitstream k. At the multiplexer, these bitstreams are concatenated into a payload together in canonical order from 0 to K-1. The multiplexer also records the starting position of each bitstream in the payload into a header. The header and payload are organized as follows.

1. [Header] C(Lk), k=0, 1, …, K-1
2. [Payload] The encoded sequence for bitstream k (0 <= k < K).
In the above, Lk denotes the length in bits of bitstream k, and C(Lk) is a prefix code defined as follows. For any nonnegative integer n, C(n) is given
If n < 128, then C(n) = n << 1;
Else if n < 16512, then C(n) = ((n - 128) << 2) | 1;
Else if n < 2113664, then C(n) = ((n - 16512) << 3) | 3;
Else C(n) = ((n - 2113664) << 3) | 7;
where "<<" is a right shift, and "|" is a bit-wise OR.

2.4.5.5 Load balancing in parallel V2V

This section provides the description of the implemented method of load balancing in parallel V2V on the encoder side in the TMuC reference software. Note that in this section, all length values are expressed in bits unless stated otherwise.

The load balancing function is enabled when the input parameter balancedCPUs (denoted by b hereafter for brevity) is set to a value greater than 1. In order to provide load balancing capability, the encoder uses a two-part header
· [First part of the Header] C(Lk) for k = 0,…,K-1,

· [Second part of the Header] auxiliary offset information
where the prefix code C(Lk) is defined in Section 2.4.5.

The format and content of the second part of the header depends on the V2V codes used to encode the Sk sequences, and a distributor function. This part is a self-delimiting sequence.

Let D(a, b) be the set of all (v1,…,vb) vectors, for which vk is a positive integer (k=1,…,b), and v1 + v2 + … + vb = a. Suppose that the length of the concatenated bitstream is L. Then the distributor function is a function of the form F : {0,1}^L -> D(K, b). In other words, the distributor function partitions the concatenated bitstream into b segments such that decoding each segment could start independently and would take approximately the same time. Consequently, we see that one of the K encoded subsequences can be divided into a first part within one of the plurality of segments and a second part within another of the plurality of segments.
The distribution function gives the lengths of the decodable segments. To find the starting positions of these segments, one can use an associated function F’(x), where for F(x)= (v1,…,vb), F’(x)=(0, v1, v1+v2, v1+v2+v3, …, v1+…+vb). Obviously, the functions F and F’ mutually determine each other.

Example: The uniform distributor assumes that the decoding complexity of a bitstream is linearly proportional to its length. Then, for the concatenated encoded bit stream x of length L, F(x) = (L/b, L/b, …, L/b) (the division may be rounded up or down to meet the final sum L).

Example: The weighted distributor assumes that the decoding complexity of bitstream k is uniform within the bitstream, but may vary according to k, k=0, 1, …, K-1. Let wk be the weighting factor for the complexity of decoding bitstream k, and W=w0*L0 + … + wK-1*Lk-1. Then the distributor assigns the values F’(x) = (v1,…,vb) such that for any k < b: the decoding complexity of the segment x[vk,…,vk+1-1] is W/b.

The format of the second part of the header is then as follow:

For all j=1,…,b-1, let Bj be the number of bits, which we have to read ahead from F’(x)[j] to arrive at the start of the next codeword. That is, Bj=0 if a codeword starts right at F’(x)[j], Bj=1 if the next codeword starts at F’(x)[j+1], and so on. Then the second part of the header is the concatenation of the values C(Bj) for k=1,…,b-1 and allows each segment to be decoded independently. As such, the output of the V2V parallel entropy encoder with load balancing consists of the concatenated encoded subsequences containing codewords along with the auxiliary information comprising offset values.

It is possible to achieve load balancing for any specific set of b segments and d bin decoders; however, some sets obviously perform better than others. The best performance among all (b, d) values is reached when b is a multiple of d.

In the case that the encoder has a knowledge of some potential candidates d1, d2, …, dJ for the number of bin decoders, we can select b to a multiple of all of d1, …, dJ (the least common multiple of the numbers d1, …, dJ is adequate).
Example: Suppose that the encoder knows that target decoders may be equipped with any one of 1, 2, 3, 4, 6, 8, 10, 12 or 16 bin decoders. The least common multiple of these numbers is 240, so the encoder should set b=240.

Example: If the encoder sets b=2t, then optimal load balancing is achieved for each of 1, 2, 4, 8, …, 2t bin decoders.
In the reference software, a dynamic array is used to collect the starting positions of codewords from the V2V bin encoders. Such information is then used at the end of a slice or a flush event to produce the second part of the header as described above.

2.5 Rate Control
TBD

Page: 3
Date Saved: 2010-10-03

_1269865975.unknown

_1269866454.unknown

_1269866700.unknown

_1269866712.unknown

_1269866740.unknown

_1269866875.unknown

_1269866913.unknown

_1346921873.unknown

_1346921884.unknown

_1269866876.unknown

_1269866873.unknown

_1269866874.unknown

_1269866743.unknown

_1269866872.unknown

_1269866723.unknown

_1269866735.unknown

_1269866721.unknown

_1269866702.unknown

_1269866709.unknown

_1269866701.unknown

_1269866605.unknown

_1269866696.unknown

_1269866698.unknown

_1269866699.unknown

_1269866697.unknown

_1269866607.unknown

_1269866695.unknown

_1269866691.unknown

_1269866606.unknown

_1269866559.unknown

_1269866603.unknown

_1269866604.unknown

_1269866602.unknown

_1269866601.unknown

_1269866557.unknown

_1269866558.unknown

_1269866556.unknown

_1269866169.unknown

_1269866415.unknown

_1269866437.unknown

_1269866447.unknown

_1269866425.unknown

_1269866431.unknown

_1269866413.unknown

_1269866414.unknown

_1269866411.unknown

_1269866412.unknown

_1269866410.unknown

_1269865978.unknown

_1269865980.unknown

_1269866167.unknown

_1269866168.unknown

_1269866166.unknown

_1269865979.unknown

_1269865976.unknown

_1269865977.unknown

_1261300767.unknown

_1269262896.unknown

_1269428783.unknown

_1269865973.unknown

_1269865974.unknown

_1269865972.unknown

_1269428602.unknown

_1269258605.unknown

_1269258765.unknown

_1269262852.unknown

_1269262841.unknown

_1269258612.unknown

_1269258756.unknown

_1261300777.unknown

_1261301062.unknown

_1261300776.unknown

_1261292781.unknown

_1261295351.unknown

_1261297529.unknown

_1261300660.unknown

_1261297673.unknown

_1261297528.unknown

_1261297432.unknown

_1261295350.unknown

_1261292725.unknown

_1261292745.unknown

_1261292749.unknown

_1261292764.unknown

_1261292732.unknown

_149247032.unknown

_1261123882.unknown

_1261127776.unknown

_1261123759.unknown

_149224856.unknown

