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Abstract

This contribution discusses some methods commonly used to estimate the complexity of software applications and proposes a methodology for the complexity assessment of video coding software systems based on the Valgrind tool suite.

1. Introduction

This document focuses on the complexity assessment of video coding software systems, a subject that is recently drawing increased attention in view of the development of the new “High-Performance Video Coding”, for which some complexity goals have been proposed [1]
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As a first step towards the definition of a methodology for complexity assessment of video coding systems, it is important to remember that the result of a measure is not simply a number, but rather a stochastic variable characterized by an uncertainty that is due to systematic errors and random errors. Two factors define the quality of a measure, called accuracy and precision: the accuracy defines the closeness of a measured quantity to its true value whereas the precision defines the degree to which further measurements show the same or similar results (also called repeatability).

Of course we wish a measure of complexity having good accuracy and precision, and furthermore we want to define a test method having good properties of reproducibility and simplicity.

The reproducibility refers to the ability of a test or experiment to be accurately reproduced or replicated by someone else working independently. As we will see later, the complexity estimation of a software system depends not only on the application itself, but also on the environment in which the application is running, therefore the reproducibility is a key point when several people are working on the design of a software system using different machines equipped with different CPUs, different Operating Systems, different compilers and so on, otherwise the measures obtained by different people could not be directly compared.

By simplicity we intend the capability to execute complexity measures in an automated way, with very limited participation of the system designer. This property is important because it is known that the complexity of a video coding system heavily depends on how the system is configured (especially for encoders) and on the input signals (especially for decoders). Since the complexity assessment is likely going to be performed on large sets of configurations and inputs, a viable complexity assessment should be performed by shell scripting without requiring human interaction.

To conclude this introduction, we must finally give a clear definition for the complexity of a video coding system. As observed in [6], complexity is actually a multi-dimensional quantity, including different aspects such as computation, memory size, memory bandwidth and others. 

In order to limit the difficulty of our analysis we would like to consider very few complexity dimensions, restricting our investigations to those factors that have the most relevant impact on the final implementation cost, which in case of a hardware system is essentially determined by silicon area, clock frequency and power consumption. 

Under those assumptions, our complexity assessments will be practically performed by the measurement of the computational complexity and the memory bandwidth, which express respectively the number of operations and the amount of data read from/written to the memory per time unit or per size of the input data, e.g. per second, per picture or per Macroblock.

2. Time measures

The computational complexity of an application is often estimated by its overall execution time, which is very easy to be measured by the C function gettimeoftheday(), part of the standard library sys/time.h. The function returns the current “wall clock” time with microsecond precision, so it is sufficient to invoke it at the beginning and at the end of the main() function of the application to obtain the total elapsed time.

For our purposes this kind of measure is definitely coarse and unreliable for several reasons. First of all, the total elapsed time from the beginning of a process to its conclusion accounts for the time spent by the CPU in the process of interest and also in all the other processes running in the system, on behalf of other users or the Operating System. Even in the ideal case of a single process running (which is anyway practically impossible), it must be remembered that the OS can put the CPU in one of the following four states:

· Executing in User Mode: the CPU is executing the machine code of a process that accesses its own data space in memory. 

· Executing in System Mode (also known as Kernel Mode): the CPU is executing a system call made by the process to require the services of the Kernel.

· Idle waiting for I/O: processes are sleeping while waiting for the completion of I/O to disk or other block devices. 

· Idle: no processes are ready-to-run on the CPU or are sleeping waiting for block I/O or keyboard input or network I/O.

Given the above definitions, the Elapsed Time is defined as the total time elapsed from process start to process end, the User Time is the total number of CPU time that the process used directly (in User Mode) and the System Time is the total number of CPU-seconds used by the OS on behalf of the process (in System Mode). The CPU load, defined in the following formula, expresses the fraction of the total time that the CPU spent in execution mode. 
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Obviously we are not interested in measuring the performance of the hard disk or the time spent by the CPU in executing Kernel routines, because these factors are not related to the intrinsic complexity of the video coding system. To improve the accuracy of the measure, the evaluation of the Elapsed Time shall be rather replaced by the evaluation of the User Time of the process of interest.

Under the Linux OS the User Time can be measured by the C function getrusage(), which is part of the sys/resource.h library. This function returns a structure containing several data about the resource usage of the current process (or a child process), including the User Time. 

Alternatively, and especially when the source files of the application can not be modified, the User Time can be measured by the time built-in command of the Shell or by the GNU time command which is usually installed as /usr/bin/time. Both commands work by forking a child process for the target application and then using the getrusage() function to measure the resource usage of the child process.

To evaluate the reliability of this kind of measure, we performed a test experiment using the GNU time command to measure the User Time of the JM H.264/AVC encoder and decoder version 16.0 [7]
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 \* MERGEFORMAT [8]. In this test we wanted to compare the computational complexity of both encoding and decoding in two different configurations: in the first we enabled the Inter MB coding modes from 16x16 to 8x8 whereas in the second only the 16x16 mode is enabled. We have used 4 standard test sequences in 1080p24 format (Kimono1, Park Scene, Rolling Tomatoes and Tennis) and 4 different base quantization parameters (22, 27, 32, 37). For each configuration the encoder has been run 5 times and the decoder 9 times. The measured user times are reported in tables 1 and 2.

To evaluate the precision of the measures we used the Index of Dispersion (D), also known as Variance to Mean Ratio (VMR), defined as D = (2 / μ, where (2 is the variance of the distribution and μ is the mean value. The VMR is a normalized measure of the dispersion of a probability distribution: in an ideal situation it would be zero, corresponding to an infinite precision of the measure (i.e. all the measured values are identical); any value greater than zero proportionally indicates a loss of accuracy.

Tables 1 and 2 show that it could be unwise to trust the result of a single measurement of the User Time, rather it may be preferrable to execute the application several times and then take the statistical Expected Value as the result of the measurement. In case of several consecutive experiments the Index of Dispersion is most often acceptable, but sometimes it can be significant, as we measured a worst-case VMR equal to 0.65 for encoding.
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Table 1: encoding user time [s].
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Table 2: decoding user time [s].
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Figure 1: encoding user time for the sequence Kimono1.

Besides precision, estimating the computational complexity as the User Time has obvious reproducibility problems, because the same application running on different PC systems can easily result in greatly different complexity values, making almost impossible to compare the results.

In conclusion of this brief analysis we can state that the computational complexity estimation through measurement of the execution time – either Elapsed or User one – can not offer good properties of precision, accuracy and/or reproducibility, and alternative solutions should be explored.

3. New complexity metrics

Until now we have identified the computational complexity of an application as the time spent by the CPU to execute it. By definition, it is given by:
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Therefore the computational complexity depends on three factors: the Instruction Count (IC), the average Clock cycles Per Instruction (CPI) and the Clock Rate (CR) [9].

The CR depends entirely on the hardware technology of the CPU which executes the application, not on the application itself. Since we are not interested in an evaluation of the CPU performance, we can conveniently exclude the CR from our analysis and adopt a new definition of complexity as follows:
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The CPI is the average number of clock cycles required by the CPU to execute an instruction of the specified program. It depends partially on the application, partially on the compiler technology and partially on the CPU hardware architecture. 

To increase execution performance, modern CPU’s adopt pipelined, superscalar out-of-order execution, so that a precise measurement of the CPI is most difficult, unless employing a cycle-accurate Instruction Set Simulator (ISS). 

ISS tools are typically commercial and/or proprietary and may be available only for certain specific CPU’s. If certain target architecture has been defined and if an ISS tool is available and able to run the selected application, then it is surely opportune to adopt the complexity definition (2) and measure it through the ISS.

Since is not in the scope of the standardization to target a definite architecture, it is proposed to estimate the complexity by assuming as reference a generic 32-bit x86 architecture (also called IA-32, see [10]), so that we should leave CPI measurement and adopt instead the following, simplified definition:
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The IC is the number of machine code instructions executed for the target application. It depends mostly on the application itself, but also on the compiler used to translate the high-level instructions to machine-level and lastly it depends on the CPU Instruction Set Architecture (ISA). The following section will explain how to measure the IC by using a tool called Valgrind [11].

It should be clear now that measuring the computational complexity of an application is not possible without referring to a specific architecture and a specific compiler technology. Even if a “generic” x86 CPU architecture is used for computational complexity evaluations, it is still important to agree on a specific compiler for the sake of reproducibility of experiments.

Under Linux OS, it is suggested to use the GCC compiler, adopting a recent version that already reached a “stage 3” maturity level [11]. Furthermore, it is necessary to consider the level of optimization applied by the compiler. GCC allows to control the optimization level by several options, the most important being the  –On flag, which can assume the following values:

· -O0 reduces compilation time and makes debugging produce the expected results. This is the default.

· -O1 or -O tries to reduce both code size and execution time, without performing any optimizations that take a great deal of compilation time.

· -O2 performs nearly all supported optimizations that do not involve a space-speed trade-off. Compared to -O, this option increases both compilation time and the performance of the generated code.

· -O3 turns on all optimizations specified by -O2 and also turns on other optimizations that increase speed but may also increase the size, like function inlining.

· -Os optimizes for size.

Additionally, the GCC compiler can perform some platform-specific optimization specified by the –mtune and      –march flags, and use SIMD instruction sets such as MMX or SSE. For the sake of efficiency and reproducibility of the measures, it is suggested to agree at least on the use of the typical speed optimization –O3 and to avoid any further platform-specific optimizations.

For the simulations presented in this document the JM 16.0 code has been compiled with GCC version 4.1.2 (a rather old 2007 release) using the default Makefile included in the JM package, which specifies –O3 optimization level.

4. Complexity measures with Valgrind
Valgrind [12] is a tool suite for debugging and profiling, which possesses several key features that make it very suitable for our purposes:

· it is freeware and open source (with GPL 2 license);
· it is available for many Linux distributions as precompiled package;
· it is maintained (latest release now is 3.5.0, dated 19 August 2009);
· it is reliable and easy to use.
Valgrind includes a cache simulator that can accurately trace the access to both Instruction Cache and Data Cache. Each access to Instruction Cache corresponds to a single instruction fetched and executed, hence allowing to easily measure the Instruction Count of the application, and therefore its computational complexity as defined in (3). For what concerns the Data Cache, Valgrind reports the number of accesses, but unfortunately it tells nothing about the data size so that it is not really possible to obtain the total number of bytes exchanged between the D-cache and the CPU.

To launch Valgrind with cache simulation, one of the following two syntaxes can be used:

1) valgrind --tool=cachegrind <command>

2) valgrind --tool=callgrind --simulate-cache=yes <command>

At the end of the simulation, Valgrind will report the results in the following form:

Events    : Ir Dr Dw I1mr D1mr D1mw I2mr D2mr D2mw

Collected : 42583376 14494735 8421576 20494 28180 13073 7944 5856 11085

I   refs:      42,583,376

I1  misses:        20,494

L2i misses:         7,944

I1  miss rate:        0.4%

L2i miss rate:        0.1%

D   refs:      22,916,311  (14,494,735 rd + 8,421,576 wr)

D1  misses:        41,253  (    28,180 rd +    13,073 wr)

L2d misses:        16,941  (     5,856 rd +    11,085 wr)

D1  miss rate:        0.1% (       0.1%   +       0.1%  )

L2d miss rate:        0.0% (       0.0%   +       0.1%  )

L2 refs:           61,747  (    48,674 rd +    13,073 wr)

L2 misses:         24,885  (    13,800 rd +    11,085 wr)

L2 miss rate:         0.0% (       0.0%   +       0.1%  )


In this example, the execution of a target application implied a total of 42,583,376 accesses to the I-cache, meaning that the same number of machine instructions has been executed. It also generated 22,916,311 total references to the D-cache, of which 14,494,735 are read accesses and 8,421,576 are write accesses.

Valgrind also simulates a further memory hierarchy level, an L2 cache shared for both data and instructions, and it also reports the hit-rate and miss-rate for each cache memory. For our purposes, however, it is sufficient to count the accesses to I-cache and D-cache, so that the actual cache configuration and performance is not really relevant.

It is worth noting that cache simulation results are available with function-by-function granularity, and they can be easily examined by using Kcachegrind, a graphical front-end interface [13]. If the cache simulation is executed through the Callgrind tool, a call graph of the application is also built, allowing an easy profiling of the application, as shown in Fig.2.
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Figure 2: Kcachegrind.

To evaluate the quality of the results provided by Valgrind (version 3.2.1), we repeated the experiment presented in section 3, i.e. the evaluation of encoding and decoding complexity of the JM software for two different configurations: one in which the Inter Macroblock coding modes are enabled from 16x16 to 8x8 and another which only allows the 16x16 Inter mode.

Tables 3 and 4 report the complexity results as the total number of accesses to I-cache and D-cache for the encoding and the decoding of 1 s (24 pictures) of the sequence “rolling tomatoes”, having 1080p24 format. The encoder has been run 5 times for each configuration and the decoder 9 times. The extremely low values of the VMR demonstrate that Valgrind’s results have so high precision that is not necessary to perform the measurement more than once for each configuration, as each measure will be practically identical to the others.

As shown in Table 5, it is convenient to express the complexity results in the following terms:

· Average number of I/D-cache accesses per second of video: these numbers give an idea of the overall number of operations and bandwidth required for real-time processing.

· Average number of I/D-cache accesses per picture: these numbers are independent from the temporal resolution of the video, but still depend on the spatial resolution.

· Average number of I/D-cache accesses per Macroblock: this measure is independent from the format of the input video.

· Average number of I/D-cache accesses per pixel: this measure is also independent from the concept of Macroblock and from its size.

At the end it is possible to compare the results and finally know the complexity difference between the two tested configurations. As reported in Table 6, enabling all the MB coding modes from 16x16 to 8x8 leads to an encoding complexity increase by a factor 2.70 with respect to the case in which the only mode allowed is 16x16. As it is logical to expect, from a decoding point of view there is no significant difference. Furthermore we can compute the complexity ratio between encoding and decoding, also reported in Table 6, showing that, depending on the configuration, the ratio spans the range from about 18 to 66 for the computation and from about 21 to 82 for the bandwidth.
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Table 3: total number of accesses to I-cache (top) and D-cache (bottom) for encoding.
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Table 4: total number of accesses to I-cache (top) and D-cache (bottom) for decoding.
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Table 5: encoding (top) and decoding (bottom) average complexity results.
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	Table 6: complexity ratio.


We must anyway admit that Valgrind usage has a couple of relevant drawbacks: 

( cache simulation is a very CPU-intensive task that can slow down the application execution by up to two orders of magnitude: for this reason it is advisable to carefully select the test material and relevant configurations to minimize the analysis effort. 
( I-cache accesses do not tell how many clock cycles are spent in executing the instructions and D-cache accesses do not tell how many bytes are actually transferred each time: for these reasons the accuracy of the complexity measures reported by Valgrind can be questionable.

Finally, for the sake of the consistency and reproducibility of the complexity results, it is advisable to follow this set of simple rules:

· Define a specific compiler version and a level of optimization.

· Define a common set of test sequences and s/w configurations.

· Process at least 1 second of video and at least 1 complete Intra period to have sufficient statistical data to analyze.

· Report the measures as average number of I-cache and D-cache references per second of video and per Macroblock processed.
5. Summary

· The complexity measurement method shall have good properties of accuracy, precision, reproducibility and simplicity.

· Complexity is a multi-dimensional concept: we restrict our analysis to computation and memory bandwidth, because these are the factors having the most relevant impact on the implementation cost.

· Estimating the computational complexity by measuring the elapsed time of a process is very inaccurate and shall be avoided. The user time is more accurate and the precision is quite good, but it has very limited reproducibility.

· It is not possible to define the computational complexity of an application “per se”: it depends on the application, on the compiler technology and on the CPU Instruction Set Architecture.

· Exact measure of the computational complexity of a process on a specific CPU architecture requires a cycle-accurate Instruction Set Simulator.

· It is always necessary to specify and agree on the following points: compiler version, optimization level, set of test sequences and configurations.

· We can perform simplified complexity estimation over generic x86 CPU by means of the cache simulator in the Valgrind tool suite for Linux OS.

· Valgrind estimates computational and bandwidth resources as the number of accesses to the I-cache and to the D-cache. It is useful to report the results in terms of cache accesses per second of processed video and per Macroblock or per pixel, as the two latter measures does not depend on the format on the input video signal.

· Valgrind’s accuracy is not perfect.

6. Conclusions

STMicroelectronics would like to submit the following proposals for JCT-VC consideration:

· To consider complexity assessment during the standardization process of the new “High-Performance Video Coding” and to evaluate contributions in terms of both coding efficiency and complexity efficiency.

· To define a clear procedure for complexity assessment considering the present contribution as a starting point for further discussion.
· To finally specify the complexity assessment procedure in a document entitled e.g. “Recommended simulation common conditions for complexity efficiency experiments”.
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