

Description of video coding technology proposal by Renesas (JCTVC-A126)

1st Meeting: Dresden, DE, 15-23 April, 2010

Renesas Electronics Corporation Kenichi Iwata and Seiji Mochizuki

© 2010 Renesas Electronics Corporation. All rights reserved.

Summary

Coding tools

- Intra repetitive pixel replenishment (Intra RPR) using block matching
- 2D adaptive interpolation filter (2D-AIF)
- Motion vector competition
- Extended block sizes (ExtMB): 32x32, 32x16, 16x32

Experimental results

- Set 1: BD-Bitrate -20.67 %, BD-PSNR 0.85 dB
- Set 2: BD-Bitrate -11.79 %, BD-PSNR 0.49 dB

Improvement of intra coding efficiency

Motivation

- 26% of total bits is derived from Intra picture, which is the average of alpha anchor. (53% at the maximum case of alpha anchor)
- Improvement of Intra picture quality effects coding efficiency of following inter predicted picture.
- On the other hand,
 - AVC intra predicted image does NOT have enough quality.
 - AVC intra prediction uses only neighboring pixels of target MB.

Basic idea

- Intra vector prediction by block matching
- Prediction from more pixels improves predicted image quality.

Examples fit for block matching and unfit for AVC intra prediction

Intra vector prediction

Problem of intra vector prediction

 Prediction from closer pixels must derive better quality, but neighboring area is not coded yet.

Proposal

• Pixel replenishment based on repetitive characteristics of objects

Intra repetitive pixel replenishment (Intra RPR)

If reference block includes a not-coded area, intra vector is multiplied as (2Vx, 2Vy), and adaptively padding such region by using new reference pixel as shown in Fig. (b).

This scheme is especially effective to predict the cyclic patterns.

Effect of Intra RPR

Predicted image quality was improved significantly.

Anchor

Proposal

Anchor

Proposal

RENESAS

Representation on Syntax

Additional 1-bit flag "rpr_flag"

Complexity study for Intra RPR

- Block matching for intra vector prediction is quite low complexity compared to the inter prediction.
- Hardware implements ALUs for required maximum performance, i.e. inter-frame prediction.

Comparison with inter-frame prediction

	Search area	Block size	No. of points
This method	544 (16x33+16)	8x8	2,176
Inter-frame prediction (P-frame)	16,384 (128x128)	16x16, 16x8, 8x16, 8x8	147,456

RENESAS

Coding tools

Intra RPR

2D-AIF, MV competition, ExtMB are also introduced.

Experimental results - Performance

Constraint set 1

Tost Class	BD-Value	
1651 61855	BD-Bitrate (%)	BD-PSNR (dB)
Class A	-16.92	0.77
Class B	-21.77	0.70
Class C	-23.07	1.06
Class D	-18.76	0.88
Total	-20.67	0.85

Constraint set 2

Test Class	BD-Value	
	BD-Bitrate (%)	BD-PSNR (dB)
Class B	-18.96	0.67
Class C	-10.10	0.45
Class D	1.06	0.05
Class E	-19.24	0.82
Total	-11.79	0.49

Experimental results - Complexity

Condition

- Including YUV output, reference input
- Linux SLES9 64bit, Xeon quad-core CPU 3.0 GHz, 8GB RAM

Encoding time

Decoding time

Class	Encoding time (hour)		
	Set 1	Set 2	
Class A	41.52	-	
Class B	60.88	51.35	
Class C	13.96	12.47	
Class D	4.99	4.52	
Class E	-	39.30	

Constraint set 1

Class	Decoding time (sec)		Ratio
Class	Alpha anchor	Proposal	(proposal/anch
Class A	31.17	250.94	8.05
Class B	43.36	393.84	9.08
Class C	8.83	60.03	6.80
Class D	2.61	19.87	7.60
			Ave. 7.88

Constraint set 2

Class	Decoding time (sec)		Ratio
Class	Beta anchor	Proposal	(proposal/anch
Class B	32.91	385.65	11.72
Class C	7.32	70.31	9.61
Class D	2.27	19.76	8.72
Class E	15.81	123.56	7.81
			Ave. 9.47

RENESAS

Conclusion

Renesas presented a response to the CfP featuring a novel intra-frame prediction based on repetitive pixel replenishment (Intra RPR).

Experimental results

- Set 1: BD-Bitrate -20.67 %, BD-PSNR 0.85 dB
- Set 2: BD-Bitrate -11.79 %, BD-PSNR 0.49 dB

Further examination in core experiments

- Half/Quarter pixel vector with AIF
- Apply to P/B frames
- Further reduction in vector representation

Renesas Electronics Corporation

© 2010 Renesas Electronics Corporation. All rights reserved.