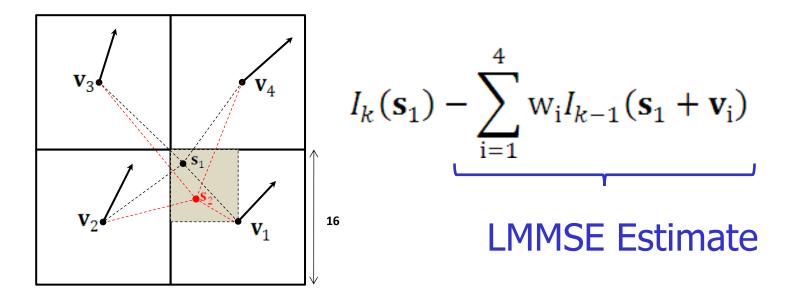
JCTVC-A123 Video Coding Technology Proposal by NCTU Parametric Overlapped Block Motion Compensation (POBMC)

Yi-Wen Chen, Tse-Wei Wang, Wen-Hsiao Peng, et al.

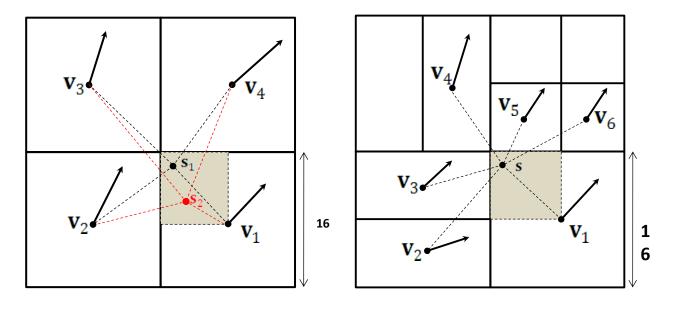
Summary


Block-based Hybrid Codec based on KTA 2.4r1

- Incorporate POBMC, TMP-Skip
- Enable EAIF, RDOQ, QALF, EMB, MDDT
- Compression Performance
 - 22.04% saving, 0.90dB gain over Alpha
 - 21.93% saving, 0.91dB gain over Beta
 - 41.46% saving, 1.98dB gain over Gamma
- Highlighted Aspects
 - Alleviate blocking artifacts, enhance error resilience

Overlapped Block Motion Comp.

Prediction based on MVs of neighboring blocks



Weight vector varies with relative pixel position

Weight vector depends on absolute pixel pos.
 Different pixels, different weight vectors
 How to obtain? How to keep?

Parametric Solution

To give a closed-form formula for weight vector

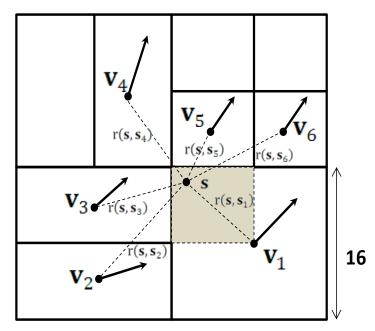
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} \mathbb{E}\left\{ \left(I_k(\mathbf{s}) - \sum_{i=1}^{L} w_i I_{k-1}(\mathbf{s} + \mathbf{v}(\mathbf{s}_i)) \right)^2 \right\} \quad \text{s.t.} \quad \sum_{i=1}^{L} w_i = 1$$

Signal Model & Assumption

① Block MV approximates motion at block center

② Motion difference follows normal distribution

 $v_x(s_1) - v_x(s_2), v_y(s_1) - v_y(s_2) \sim N(0, \alpha r^2(s_1, s_2))$


Parametric Solution

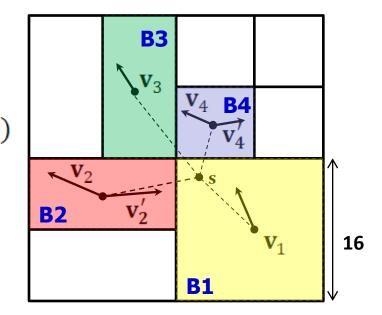
Under mild conditions

$$w_i^* = \frac{\frac{1}{r^2(\mathbf{s}, \mathbf{s}_i)}}{\sum_{i=1}^{L} \frac{1}{r^2(\mathbf{s}, \mathbf{s}_i)}}, 1 \le i \le L$$

Interpretation

The optimal weight associated with a block MV is inversely proportional to the squared distance from its block center to the predicted pixel

Extension to Bi-Prediction

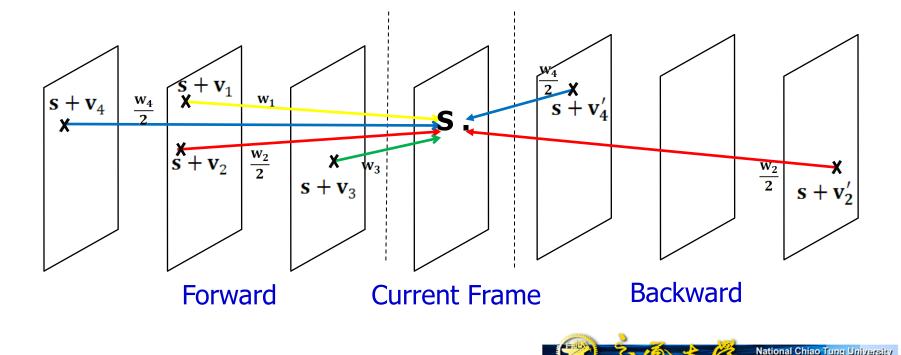

 Generate predictors using prediction modes of neighboring partitions

$$p_{1}(\mathbf{s}) = I_{k-2}(\mathbf{s} + \mathbf{v}_{1})$$

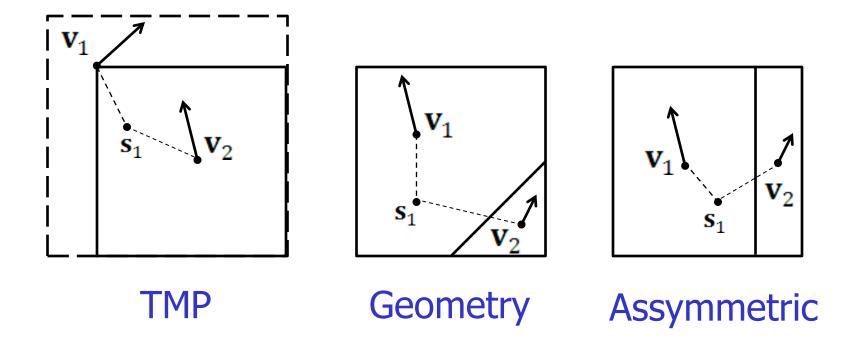
$$p_{2}(\mathbf{s}) = \frac{1}{2}I_{k-2}(\mathbf{s} + \mathbf{v}_{2}) + \frac{1}{2}I_{k+3}(\mathbf{s} + \mathbf{v}_{2}')$$

$$p_{3}(\mathbf{s}) = I_{k-1}(\mathbf{s} + \mathbf{v}_{3})$$

$$p_{4}(\mathbf{s}) = \frac{1}{2}I_{k-3}(\mathbf{s} + \mathbf{v}_{4}) + \frac{1}{2}I_{k+1}(\mathbf{s} + \mathbf{v}_{4}')$$


7

Extension to Bi-Prediction


Combine resulting predictors using POBMC

 $w_1p_1(s) + w_2p_2(s) + w_3p_3(s) + w_4p_4(s)$

Application to Various Partitions

Block MV as motion at block centroid

Compression Performance

Constrain1	Y BD-rate(%)	Y BD-SNR(dB)
Class A	19	0.86
Class B	25	0.78
Class C	23	1.08
Class D	19	0.87
Overall	22	0.89

Constrain2	Vs. I	Beta	Vs. G	amma
	Y BD-rate(%)	Y BD-SNR(dB)	Y BD-rate(%)	Y BD-SNR(dB)
Class B	28	0.96	46	1.95
Class C	18	0.82	37	1.82
Class D	11	0.52	34	1.67
Class E	32	1.46	49	2.64
Overall	22	0.91	41	1.98

Complexity Characteristics

- Multi-hypothesis Motion Compensation
 - Incur moderate increase in memory access
 - (~6 hypotheses used on average)
 - Require to buffer motion information
- Spatially Varying OBMC Filter
 - Increase computational complexity
 - (# of filter taps ~6)

Complexity Analysis

Decoding	Decoding w/ Output			Decoding w/o Output				
Time Ratio	Constr	aint set 1	Const	traint set 2	Cons	straint set 1	Constrain	t set 2
Class A	59.9		N/A		120.4		N/A	
Class B	36.6		68.2		64.0		121.3	
Class C	46.2		66.7		87.9			145.5
Class D		91.2		142.0		94.1		144.2
Class E	N/A			24.8		N/A		107.3
Avg.		58.5		75.4		86.2		L28.2
Decoding T	'ime	\mathbf{V}^{1}		VO				
Ratio w/Ou	tput	V1 (Cf	P) V2					
Class A S01	R5 C1		93		39			
Class B S03	R5 C2		98		41			
Class B S05	R5 C1		47		20			
Class C S09	R5 C1		53		27			
Class D S14	R5 C2		123		28			
Class E S18	R5 C2		138		46			

Conclusion

- POBMC offers a reconstruction framework allowing MVs associated with any motion partitions to be utilized for OBMC
- It opens up new design possibilities for more efficient motion sampling and partition
- Preliminary results show that it has a comparable gain to EAIF and, when combined with EAIF, shows little loss in coding gain
- Many issues are yet to be further investigated

