	[image: image113.png][image: image114.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11
1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A121

	Title:
	Video coding technology proposal by Qualcomm Inc.

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Marta Karczewicz, Peisong Chen, Rajan Joshi, Xianglin Wang, Wei-Jung Chien, Rahul Panchal
Qualcomm Inc.
5775 Morehouse Dr
San Diego, CA 92121
USA
	
Tel:
Email:
	
+1-858-658-5673
martak@qualcomm.com

	Source:
	Qualcomm Inc.

Abstract

This contribution describes Qualcomm’s proposal in response to the call for proposal (CFP) issued jointly by MPEG and ITU-T. The proposal is based on JMKTA software with several enhancements and additions. The proposal contains many tools that have been adopted into the JMKTA software, namely, block sizes bigger than 16×16, mode dependent directional transform (MDDT) for intra-coding, luma high precision filtering, single pass switch interpolation filters with offsets (single pass SIFO), quadtree based adaptive loop filtering (QALF) and Internal bit-depth increase (IBDI). Several additional tools such as geometry motion partitioning, adaptive motion vector resolution, simplified bigger transforms, chroma high precision filtering and motion vector scaling have been added. For constraint set 1, compared to alpha anchor the average BD-rate reduction is 30.88 and for constraint set 2, compared to beta and gamma anchors, the average BD-rate reductions are 32.96 and 48.57, respectively. Results are also presented for a low complexity version using VLCs instead of CABAC and disabling IBDI. Compared with JM16.2 High IPPP configuration, the low complexity version achieves average BD-rate reduction of 22.37.
1 Introduction
This document describes the video encoder and decoder proposed by Qualcomm Inc. in response to the call for proposals (CFP) [1, 2] issued jointly by ISO/IEC JTC 1/SC 29/WG 11 (MPEG) and ITU-T SG 16 Question 6. Our proposal is based on JMKTA software with several enhancements and additions. The proposal contains the following tools (with modifications) that have been adopted into the JMKTA software [3]:

· Block sizes larger than 16×16
· Transforms of size 16×16, 16×8, and 8×16

· Mode dependent directional transform (MDDT) for intra-coding
· Luma high precision filtering

· Single pass switch interpolation filters with offsets (single pass SIFO)

· Quadtree based adaptive loop filtering (QALF)

· Internal bit-depth increase (IBDI).

The main additional coding tools are:

· Geometry motion partitioning

· Adaptive motion vector resolution
· VLCs for a lower complexity version.
Our proposal also contains several smaller tools such as chroma high precision filtering, direct mode for P slices, motion vector scaling, and changes to H.264 mode syntax for B slices. One important aspect of our proposal is that except for QALF, the rest of the algorithm is single-pass.
Throughout the document, H.264 refers to H.264/AVC High Profile [4, 5]. If any other H.264 profile is being referred to, the profile name will be explicitly specified. The rectangular block sizes will be specified as width × height. It will be assumed that CABAC is being used unless VLCs are mentioned specifically.
2 Algorithm Description
2.1 Motion Representation
2.1.1 Rectangular Motion Partitions
For higher resolution sequence such as 720P and 1080P, it is much more likely that spatial areas larger than 16×16 have homogeneous motion. Thus, it is advantageous to allow for motion partition sizes larger than 16×16. In our proposal, the largest motion partition size is 64×64. At the 64×64 block size, motion partitions of 64×64, 64×32, 32×64, and 32×32 are permitted. If the motion partition of 32×32 is chosen, each 32×32 block can have motion partitions of 32×32, 32×16, 16×32, and 16×16. If a 16×16 partition is chosen at the 32×32 level, each 16×16 block can be further partitioned in accordance with the existing motion partition sizes in H.264 (16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4). In addition, at the 64×64 and 32×32 blocks, skip and direct modes are also used as in the case of 16×16 macroblocks for H.264. This tool will be referred to as BigBlocks throughout the document. This tool was first proposed in [6] and has been adopted by JMKTA.
The best motion partition is determined by performing a bottom-up search. First the minimum rate-distortion (RD) cost for each 16×16 macroblock is determined. Then, the combined RD cost for 4 16×16 blocks is compared with the RD costs for 32×32, 32×16, and 16×32 partitions. By choosing the minimum RD cost, we obtain the optimal partition for the 32×32 block. Then, this process is repeated for 4 neighboring 32×32 blocks, to obtain the optimal motion partition for the 64×64 block. It should be noted that if the best motion partition contains 16×16 blocks, then each 16×16 block may be intra-coded.
2.1.2 Geometry motion partitions
In addition to the motion partitions described in the previous section, another kind of motion partition is introduced at block sizes of 64×64, 32×32 and 16×16. This motion partition divides the block into 2 regions. The boundary separating the 2 regions is defined by a straight line. One motion vector is sent for each region. This type of motion partition will be referred to as a Geometry motion partition. Now we will describe how the various geometry partitions are created. The origin is assumed to be at the center of the block. Then, each geometry partition is defined by a line passing through the origin that is perpendicular to the line defining the partition boundary. This is shown in Fig. 1. The geometry partition is defined by the angle subtended by the perpendicular line with the X axis [image: image2.png] and the distance of the partition line from the origin [image: image4.png]. The equation of the line defining the partition boundary can be specified as
[image: image5.png]
We use two 32 bit lookup tables, one to store the slope, [image: image7.png], and the other to store the Y-intercept, [image: image9.png]. The region to which each pixel belongs is calculated on the fly.

At each block size, 32 different values of [image: image11.png] are permitted (from 0 to [image: image13.png] in steps of [image: image15.png]). The number of values [image: image17.png] can take depends on the block size. For block size of 16×16, [image: image19.png] can take 8 possible values (from 0 to 7 in steps of 1). For block sizes of 32×32 and 64×64, [image: image21.png] can take 16 and 32 possible values, respectively. Thus for block sizes of 16×16, 32×32, and 64×64, there are 256, 512, and 1024 possible geometry partitions, respectively.

[image: image22.emf]θ

ρ

MV

1

MV

2

Figure 1: Parameters defining a geometry motion partition
Overlapped motion compensation for geometry partitions

Since two different motion vectors are used for motion compensation inside a block with geometry partition, the pixels at the partition boundary may have large discontinuities that can produce visual artifacts similar to blockiness. To alleviate this, we use the concept of overlapped block motion compensation (OBMC). Let the two regions created by a geometry partition be denoted by region 1 and region 2. Let the corresponding motion vectors be denoted by [image: image24.png] and [image: image26.png], respectively. A pixel from region 1 (2) is defined to be a boundary pixel if any of its four connected neighbors (left, top, right, and bottom) belongs to region 2 (1). Fig. 2 shows an example where light blue pixels belong to the boundary of region 1 and white pixels belong to the boundary of region2. If a pixel is not a boundary pixel, normal motion compensation is performed using the appropriate motion vector. But if a pixel is a boundary pixel, the motion compensation is performed using a weighted sum of the motion predictions from the two motion vectors, [image: image28.png] and [image: image30.png]. The weights are [image: image32.png] for the region containing the boundary pixel and [image: image34.png] for the other region. The overlapping boundaries improve the visual quality of the reconstructed video while also providing small BD-rate gain.
[image: image35.emf]pred_1pred_24-point connectivity used to determine edge pixel

pred_2pred_1

3

2

3

1

pred_2pred_1

3

1

3

2

Figure 2: Overlapped motion compensation for geometry partitions
Motion search for geometry partitions

Since there are so many possible geometry partitions, it is prohibitively expensive for the encoder to do motion estimation for each region of each geometry partition and then, perform rate-distortion optimization. The encoder is structured such that the motion estimation for all the rectangular motion partitions is performed before motion search for geometry partitions. Whenever possible, motion vectors from rectangular partitions at all block sizes are used to speed-up the motion vector search for geometry partition. For each partition region, we find the largest rectangular block that lies entirely inside the region and for which motion vector is available. The estimated motion vector for that block is used as the motion vector for the partition region. If there are multiple blocks of the same size that lie entirely inside the region, the first block in the scan order is chosen. Fig. 3 shows an example of this process. If a geometry partition at block size of 16×16 is being considered, all blocks of sizes 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 are tested to see whether they lie entirely inside the partition region.

[image: image36.emf]16x16 Block4x88x8

Figure 3: Reusing rectangular partition motion vectors for geometry partition motion search

A hierarchical search strategy is used to reduce the amount of computation. After choosing a motion vector for each region of the geometry partition and performing overlapping motion compensation as described above, the motion cost is evaluated using SAD. For a 16×16 block, a motion cost is calculated for each possible geometry partition. Then, 16 geometry partitions with best motion costs are selected. Full EPZS search is performed on each partition region of each of the 16 partitions. This is followed by calculation of the true RD cost. The geometry partition with the lowest RD cost is chosen. This is compared against the RD cost for optimal rectangular partitioning of the 16×16 block to determine whether geometry partitioning should be used for that block.
For 32×32 and 64×64 blocks a similar strategy is followed with a slight variation. For these block sizes, instead of evaluating SAD motion cost for each partition, [image: image38.png] are subsampled by 2. Thus, SAD motion cost is evaluated for 128 geometry partitions for a 32×32 block and 256 geometry partitions for a 64×64 block. Then, 2 geometry partitions having the best SAD motion costs are chosen. Let one of the geometry partitions chosen have parameters [image: image40.png]. Then, true RD costs for geometry-based partitions with [image: image42.png] and [image: image44.png] are evaluated using EPZS search. Similar process is repeated for the other geometry partition chosen in the first stage. The geometry partition with the lowest RD cost is chosen and compared against the RD cost for optimal rectangular partitioning of the corresponding block size.
2.1.3 Motion accuracy
For each region in a motion partition, the motion accuracy can be adaptively chosen to be 1/4th pixel or 1/8th pixel. We will refer to this as adaptive motion vector resolution. The choice of motion vector resolution is signaled to the decoder. The details of how to encode the motion vector resolution flag as well as motion vector differences will be provided in Section 2.6.4.
The motion search at the encoder is modified as follows. For every block in a motion partition, first a 1/4th pixel accuracy motion vector is found using EPZS (or any other preferred) motion search. Then, as shown in Fig. 4, eight surrounding 1/8th pixel positions are searched to find the best 1/8th pixel accuracy motion vector. The motion vector (1/4th or 1/8th pixel accuracy) with the lowest RD cost is selected. Thus, the added complexity is mainly due to interpolation and RD cost calculations corresponding to the eight 1/8th pixel positions. The details of interpolation will be discussed in Section 2.1.4.
[image: image45.emf]1/4

th

pixel position1/8

th

pixel positionoptimal 1/4

th

pixel accuracy motion vector

Figure 4: Motion search for 1/8th pixel accuracy

2.1.4 Interpolation

2.1.4.1 Luma interpolation
In our proposal, single pass switched interpolation filters with offsets (single pass SIFO) are used to interpolate the reference frame to 1/4th pixel accuracy for luma component. The single pass SIFO filters were first proposed in [7]. We will first review the interpolation methods used in the H.264/AVC standard. Then, we will describe proposed interpolation method in greater detail.

H.264/AVC interpolation

The H.264/AVC standard uses 1/4th pixel accuracy for the luma motion vectors. Fig. 5 shows the integer-pixel samples (also called full pixel, shown in gray blocks with upper-case letters) from the reference frame, which are used to interpolate the fractional pixel (shown in white blocks with lower-case letters) samples. There are altogether 15 fractional pixel positions, labeled “a” through “o” in Fig. 5. To obtain luma component at 1/2 pixel positions (b, h, and j), the 6-tap Wiener filter with coefficients [1, -5, 20, 20, -5, 1]/32 is used. For position j, the interpolation filter is applied first in the horizontal direction and then, in the vertical direction. To obtain luma component at 1/4th pixel locations, bilinear interpolation is used. To perform bilinear interpolation, the neighboring 1/2 pixel positions are calculated and intermediate rounding and clipping is performed. After that, upward rounding is always used for averaging. The combination of intermediate rounding and clipping of the 1/2 pixel positions and the biased upward rounding during bilinear interpolation effectively reduces the precision of the interpolation filters for the 1/4th pixel positions.

[image: image46.png]
Figure 5: Fractional pixel positions for 1/4th pixel accuracy motion interpolation

Single pass switched Interpolation Filters with offsets (single pass SIFO)

In our proposal, 4 different filter sets are defined. Each filter set consists of 15 filters, one for each fractional pixel position.
1. Filter set 0: This uses high precision filtering with the same filters as in H.264 with the exception of position ‘g’, where a non-separable filter is used. Although the same filters as H.264 are used, the intermediate data is kept in higher precision, eliminating intermediate rounding and clipping of the 1/2 pixel positions and the biased upward rounding during bilinear interpolation. For position ‘g’, the following filter is used (followed by right shift by 7 bits):
	0
	 5
	 5
	0

	5
	22
	22
	5

	5
	22
	22
	5

	0
	 5
	 5
	0

2. Filter set 1 and 2: These filter sets are derived by using a set of training video sequences. For each set, positions a, b, and c use a six-tap horizontal filters. Positions d, h, and l use six-tap vertical filters. For the remaining fractional pixel positions, 4×4 non-separable filters are used. Each of the non-separable filters has horizontal, vertical or diagonal symmetry.
3. Filter set 3: This filter set uses an 8-tap separable filter in both horizontal and vertical directions for all the fractional pixel positions. Separate 8-tap filters are used for 1/4th pixel, 1/2 pixel, and 3/4th pixel positions. The 3 8-tap filters are as follows:
	1/4th pixel position
	[-3

12

-37

229

71

-21

6

-1]

[-3

12

-39

158

158

-39

12

-3]

[-1

6

-21

71

229

-37

12

-3].

	1/2 pixel position
	

	3/4th pixel position
	

After filtering, the result is normalized by adding 128 and shifting the result down by 8 bits and then clipped to the pixel range.
Direct filtering for 1/8th pixel accuracy motion vectors
To perform interpolation with 1/8th pixel accuracy, our proposal uses direct filters. For any 1/8th pixel position, these filters are derived from the filters used for the 1/4th pixel positions. For determining the 1/8th pixel filters, it is assumed that filter set 3 is used for all the 1/4th pixel positions. Thus, interpolation for any 1/8th pixel position requires filtering with at most 2 8-tap filters (horizontal and vertical). There is no offset associated with the 1/8th pixel positions.
Choice of filter set and offsets

Before encoding a frame, the encoder selects a filter for each fractional pixel position based on statistics gathered from previously encoded frames. In our proposal, the filter that minimizes prediction error for the previously encoded frames is selected. For each fractional pixel position, the minimization is performed only on blocks whose motion vector points to that fractional pixel location. The choice of filter remains the same irrespective of the reference frame in which the motion search is being performed.
For reference frame 0 from each list, offsets are sent to the decoder for each of the 15 fractional pixel positions as well as the full pixel position For other reference frames only one frame offset is sent.
2.1.4.2 Chroma interpolation

Instead of bilinear interpolation for chroma used by H.264, we use chroma high precision filtering. The interpolation is performed using 3 filters for 1/4th, 1/2, and 3/4th pixel position. The filters are 6-tap filters that sum up to 32. As in case of luma, to perform interpolation with 1/8th pixel accuracy, our proposal uses direct filters which are derived from the 1/4th pixel position filters. The highest accuracy for the chroma motion vectors is 1/8th pixel. The 1/4th pixel accuracy filters used for chroma are as follows:
	1/4th pixel position
	[2

-5

28

9

-3

1]

[2

-6

20

20

-6

2]

[1

-3

9

28

-5

2].

	1/2 pixel position
	

	3/4th pixel position
	

2.1.5 Scaled motion vector prediction
A new method to form motion vector prediction is introduced. Unlike in H.264, this method takes the temporal distance of the reference frames into account for motion vector prediction. In H.264, motion vector prediction, [image: image48.png], is formed based on previously calculated motion vectors. The method of forming the prediction [image: image50.png] depends on the motion compensation partition size and on the availability of nearby vectors. The “basic” predictor is the median of the motion vectors of blocks A, B and C, as shown in Fig. 6. Thus,
[image: image51.png]
[image: image52.emf]CBDAX

Figure 6: Neighboring blocks used for motion vector prediction
But the motion vectors of neighboring blocks A, B, and C may point to different reference frames in the buffer. Hence, our proposal normalizes the motion vectors based on their temporal distance from the current frame, before taking the median. This is accomplished as follows. Consider an IPPP configuration with reference frames as shown in Fig. 7. In the figure, blue colored frames are the reference frames stored in the buffer. Let [image: image54.png] refer to the reference frames corresponding to blocks A, B, C, and X, respectively. Let their temporal distances from the current frame be denoted by [image: image56.png], respectively. Then, each of the neighboring motion vectors, [image: image58.png] is scaled as follows:
[image: image59.png]
The motion vector prediction is set to the median of the scaled motion vectors. This scheme is applied to both P and B frames
[image: image60.emf]Ref 3Ref 2Ref 1Ref 0Current frame

d2d3d4d

Figure 7: Reference frames and their temporal distances from the current frame

2.2 Intra-frame prediction

In our proposal, intra-frame prediction is identical to that used in H.264/AVC. The proposal uses 9 prediction modes at 4×4 and 8×8 block sizes and 4 prediction modes at 16×16 block size for intra-frame prediction. But, to encode intra-prediction residuals, instead of the transforms used by H.264/AVC, our proposal uses mode dependent directional transforms (MDDT), as discussed in the following subsection.
2.3 Spatial transforms

2.3.1 Transforms for inter-prediction residuals
We will first discuss transforms for encoding inter-prediction residuals for non-geometry motion partitions. For motion partitions of size 8×8 and lower, the transform choices are identical to H.264/AVC. We reuse the 4×4 and 8×8 transforms from H.264/AVC. As in H.264/AVC, these transforms can not be applied across motion boundaries. For motion partition of sizes 16×16, 16×8, and 8×16, in addition 4×4 and 8×8 transforms, it is possible to apply a larger transform that is matched to the size of the motion partition. As an example, for an 8×16 motion partition, the transform choices are 4×4, 8×8, and 8×16. The choice of the transform is signaled to the decoder. For motion partitions of size 64×64, 64×32, and 32×32, only 16×16 transform can be used. Here we have adopted a variation of the encoder simplification suggested in [8] to disallow 4×4 and 8×8 transforms in motion partitions larger than 16×16. This speeds up the encoder substantially with very little effect on compression efficiency. We now will describe the design of the 16×16, 16×8, and 8×16 transforms, hereafter referred to as Big Transforms, in greater detail.
Our proposal uses separable two-dimensional (2-D) transforms discussed in [9]. The transforms are integer scaled transforms that approximate Type II DCT [10]. Each transform coefficient needs to be multiplied by a scale factor to make the resulting transform orthogonal. The design of the proposed transforms is fully recursive and based on LLM factorization for 4 point and 8 point transforms [11].

Proposed 16-point transform

Fig. 8 shows detailed flow-graph of the proposed one dimensional (1-D) 16 point transform. The upper (even) part of the transform uses a scaled 8-point transform (shown with a bounding box with solid lines), which in turn uses a scaled 4-point transform (shown with a bounding box with dotted lines). Similarly, the lower (odd) part of the transform uses two scaled 4-point transforms. The scaling factors for the 16-point transform are shown on the right hand side. The factors A, B, … , N satisfy the following relations:

[image: image62.png], [image: image64.png], and

[image: image66.png].

[image: image67.emf]EC

0

x

1

x

2

x

3

x

4

x

5

x

6

x

7

x

ABCDEFFA8x9x10x11x12x13x14x15xABA

0

4

2

6

7

3

5

1

GGHIIJJKKLLMMNNABA

0

2

1

3

0

2

1

3

4

6

5

74

6

7

5

0

4

1

2

3

5

6

7

104X184X1422X11222X1144X1622X11022X124X1122X194X1522X11322X11522X1322X11122X174X

Figure 8: Detailed flow graph for the proposed 1-D 16-point transform
This factorization involves [image: image69.png] additions and [image: image71.png]multiplications, which matches the complexity of best known rotation-based factorizations [10, 11], and has the advantage of a fully recursive structure, reusing scaled 4-point transforms. It should be noted that the above matrix only specifies a scaled 16-point transform, and that in order to map its output into full transform coefficients, we will need to multiply them by the following diagonal matrix:

[image: image72.wmf]1111111111111111

diag,,,,,,,,,,,,,,,;

444444

22222222222222222222

S

zhhz

hxhxxhzzxhxxhh

æö

=

ç÷

ç÷

èø

where
[image: image73.wmf],,

xzh

 are normalization factors associated with 3 groups of factors inside the transforms. These scaling factors are shown on the right hand side in Fig. 8.

2.3.1.1 Transform Matrix
For the 1-D 16-point transform we choose the following butterfly factors:
	A
	B
	C
	D
	E
	F
	N
	L
	J
	H
	G
	I
	K
	M

	2/4
	5/4
	19/32
	4/32
	16/32
	11/32
	6/64
	11/64
	21/64
	27/64
	34/64
	38/64
	42/64
	43/64

Here, in order to balance the dynamic range across the transform, we have introduced right shifts after multiplies. The transform coefficients now fit in the range [-1.25, 1.25], which is tight enough for practical purposes. The values of the diagonal matrix of scale factors are:

[image: image74.png]
[image: image75.png]
After multiplication by 4 and conversion to floating point, the scale factors are:

[image: image76.png]
[image: image77.png]
Since constants A..N are integers (or dyadic rational numbers), we can replace multiplications by them with simple series of additions and shift operations. Moreover, we can do it for each pair of multiplies performed for each input variable in butterflies. Table 1 summarizes such multiplier less algorithms that can be employed in our designs:
	Factors
	Algorithms: y=x*[A,C,E,G,I,K,M]; z=x*[B,D,F,H,J,L,N]
	Complexity
	Times used

	A=2/4
	B=5/4
	y = x >> 1; z = x + (x >> 2);
	1 add + 2 shifts
	6

	C=19/32
	D=4/32
	z = x >> 3; y = (x >> 1) + z- (z >> 2);
	2 adds + 3 shifts
	2

	E=16/32
	F=11/32
	y = x >> 1; z = ((x + y) >> 2) - (y >> 4);
	2 adds + 3 shifts
	2

	G=34/64
	H=27/64
	x1 = x >> 5; z = x1 + (x >> 1); x2 = x1 + z;
y = x2 - (x2 >> 2);
	3 adds + 3 shifts
	2

	I=38/64
	J=21/64
	x1 = x >> 4; x2 = x + x1; y = x1 + (x2 >> 1);
z = y - (x2 >> 2);
	3 adds + 3 shifts
	2

	K=42/64
	L=11/64
	x1 = x - (x >> 3); y = x1 - (x1 >> 2); z = (x – y) >> 1;
	3 adds + 3 shifts
	2

	M=43/64
	N=6/64
	x1 = x - (x >> 2); z = x1 >> 3; x2 = x1 – z;
y = x - (x2 >> 1);
	3 adds + 3 shifts
	2

	Total:
	
	38 adds +48 shifts
	

Table 1: Replacing multiplications by additions and shifts
As illustrated by this table, each pair of multiplications is computable with at most 3 additions and 3 shifts, making the maximum cost of each individual multiplication being half that much (i.e. 1.5 additions and 1.5 shifts). The complexity of the entire multiplier-less 16-point transform with such factors becomes 110 additions and 48 shifts. Indeed, on platforms with fast multiplications one can also implement it by using 72 additions and 32 multiplications by simply following the flowgraph.

Proposed 1-D 8-point transform

We reuse the scaled 8-point transform from the upper (even) part of the 16-point transform. The butterfly factors are:

	A
	B
	C
	D
	E
	F

	2/4
	5/4
	19/32
	4/32
	16/32
	11/32

The resultant transform matrix is:

	1
	1
	1
	1
	1
	1
	1
	1

	27/32
	23/32
	15/32
	5/32
	-5/32
	-15/32
	-23/32
	-27/32

	5/4
	1/2
	-1/2
	-5/4
	-5/4
	-1/2
	1/2
	5/4

	1/2
	-1/8
	-19/32
	-11/32
	11/32
	19/32
	1/8
	-1/2

	1
	-1
	-1
	1
	1
	-1
	-1
	1

	11/32
	-19/32
	1/8
	1/2
	-1/2
	-1/8
	19/32
	-11/32

	1/2
	-5/4
	5/4
	-1/2
	-1/2
	5/4
	-5/4
	1/2

	5/32
	-15/32
	23/32
	-27/32
	27/32
	-23/32
	15/32
	-5/32

The 1-D 8-point transform needs 26 additions and 12 multiplications. If desired, the multiplication can be replaced by additions and shifts as in case of 16-point transform.

When implementing the transform to avoid rounding accumulation errors, we pre-shift the 2-D input matrix to the left by 8 bits. After the transform, the transform coefficients are shifted to the right by the same amount after appropriate rounding. All the bigger transforms, namely, 16×16, 16×8, and 8×16 can be performed with 32 bits of precision.

2.3.2 Mode dependent directional transforms for intra-prediction residuals
H.264 allows a total of nine intra prediction modes for 4×4 and 8×8 blocks (INTRA4x4 and INTRA8x8), and a total of four intra prediction modes for 16×16 blocks (INTRA16x16). After prediction, the residual block is transformed using an integer transform. These transforms depend only on the INTRA mode, not on the actual prediction mode chosen. But for each prediction mode, the prediction residual exhibits a different directionality. In addition, the magnitude of the error increases for predicted pixels farther away from the boundary pixels used for prediction. To take advantage of this, mode dependent directional transforms (MDDT) were proposed in [12, 13]. The type of MDDT is coupled with the selected intra prediction mode, so is not explicitly signaled. We briefly describe design and implementation of the MDDT.
For each mode, Karhunen-Loève transform (KLT) derived from the statistics of the intra prediction residuals for that mode, would be the optimal choice from a rate-distortion perspective. However, KLT is a non-separable transform. For a residual block of size [image: image79.png], the size of the KLT matrix is [image: image81.png]. Thus, KLT is prohibitively expensive in term of storage and computational requirement. Our proposal uses a separable directional transform, which can be described as
[image: image83.png],

where [image: image85.png] are all of size [image: image87.png] and i is the prediction mode. Singular Value Decomposition (SVD) is applied to the training set of residuals first in the row direction and then, in the column direction. Our proposal uses fixed-point approximations of the transform matrices to reduce computational cost.

Adaptive coefficient scanning
After applying separable directional transform, the 2-D transform coefficient matrix is converted to 1-D. In H.264, zigzag scanning order is used for this purpose. In the case of MDDT, even after separable directional transforms are applied, the resulting 2-D transform coefficient matrix still carries some directionality. For example, consider vertical prediction (mode 0). After prediction, transform and quantization, the nonzero coefficients tend to exist along the horizontal direction. By using coefficient scanning oriented in the horizontal direction instead of the zigzag scanning, the non-zero coefficients in the 2D matrix can be further compacted toward the beginning of the 1-D vector. This in turn improves entropy coding efficiency. Quantized transform coefficients of different prediction modes carry different statistics. Therefore, for each mode, adaptive coefficient scanning is used. This is accomplished as follows:

1. At the beginning of each video slice, initialize the coefficient scanning order for each prediction mode;
2. When a block is entropy-coded, for each non-zero coefficient coded, increment the count at the corresponding position by one;
3. After each macroblock is coded, update the coefficient scanning order according to the statistics collected;
4. Normalize the collected statistics if needed;
5. Use the updated order for coding of future blocks. Go back to 2 until slice is finished.
2.4 Quantization

Quantization methods are unchanged from H.264. On the encoder side, our proposal uses RD based quantization (RDO_Q) first proposed in [14] and discussed in greater detail in [15]. The R-D based quantization mainly consists of 2 parts:
1. Trellis-based optimization of the quantization operation for transform coefficients: In trellis-based optimization, the quantizer index is chosen based on the rate-distortion cost of coding that index in a Lagrangian framework. In most cases, 3 candidate quantizer indices are considered. These are 0, round-up, and round-down. For CABAC, the optimization is performed in 2 steps. In the first step, the last non-zero coefficient is chosen. Then in the 2nd step, the quantizer indices for individual coefficients are chosen.
2. Quantizing and coding a block with multiple quantizer step-sizes: Each block is encoded using a range of QP values. Then the QP value with the best rate-distortion cost is chosen and signaled to the decoder. In our proposal, for I and P slices, only a single QP value was used. For B slices, 3 QP values were used [image: image89.png].
2.5 In-loop filtering

2.5.1 Deblocking filter

Our proposal uses the same deblocking filter as H.264 with suitable modification for BigBlocks. Recall that for block sizes greater than 16×16, only 16×16 transform is used. Thus, for 32×32 and 64×64 blocks, deblocking filter is applied only along the 16×16 block edges. This reduces the computational complexity for the deblocking operation if the bigger blocks are chosen frequently.
2.5.2 Adaptive loop filtering
We used a modified form of the quadtree-based adaptive loop filter (QALF) proposed in [16]. Instead of a single filter used in QALF, our proposal uses a set of M filters. The set of M filters is transmitted to the decoder for each frame or a group of frames (GOP). Whenever the QALF segmentation map indicates that a block should be filtered, for each pixel, a specific filter from the set is chosen based on a measure of local characteristic of an image, called activity measure. Our proposal uses the sum-modified Laplacian measure as described in [17]. The sum-modified Laplacian for pixel [image: image91.png] is calculated as follows:

[image: image92.wmf](

)

(

)

(

)

)

,

(

)

,

(

,

)

,

(

)

,

(

,

,

var

1

1

2

1

1

2

+

+

+

-

-

+

+

-

+

+

+

+

+

+

-

+

-

+

-

+

+

=

å

å

-

=

-

=

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

l

j

k

i

R

j

i

K

K

k

L

L

l

.
A 7×7 [image: image94.png] neighborhood is used for calculation of the sum-modified Laplacian. The ranges of sum-modified Laplacian measure have to be sent to the decoder. Filter coefficients are coded using prediction from coefficients transmitted for previous frames. Our proposal uses 5×5, 7×7, and 9×9 filters with diamond shape support and symmetry as shown in Fig. 9. Adaptive loop filtering for chroma is the same as that in the original QALF.
[image: image95.emf]
Figure 9: 5×5 symmetric filter with diamond support

2.6 Entropy coding

2.6.1 Changes to the existing H.264 syntax

Direct mode for P slice macroblocks

The proposal uses an additional mb_type, P_DIRECT, for P slices. This mb_type is analogous to its B slice counterpart. If the mb_type for a macroblock is P_DIRECT, the motion information for that macroblock is derived from previously encoded motion information as in a SKIP macroblock, but the residual information can be non-zero.
Decoupling of mb_type for B slices
Another change is for encoding mb_type for B slices. The existing CABAC syntax combines prediction direction information and motion partition information to produce a binarization of mb_type for B slices. Similar observation holds for the sub_mb_type syntax. For a macroblock in a B slice, there are only four possible partition sizes: 16×16, 16×8, 8×16, and 8×8, and only four possible sub-macroblock partition sizes: 8×8, 8×4, 4×8, and 4×4. There are three possible prediction directions: L0, L1, and Bi.

In our proposal, the partition size and prediction direction is decoupled and signaled individually according to Table 2. Thus, the mb_type for macroblocks from B slices can be generated by combining columns 1 and 2, whereas the sub_mb_type for the same can be generated by combining columns 1 and 3.
	Macroblock partition
	Sub-macroblock partition
	Prediction direction

	Direct
	Direct_8×8
	L0

	16×16
	8×8
	L1

	16×8
	8×4
	Bi

	8×16
	4×8
	

	8×8
	4×4
	

Table 2: Decoupling of motion partition size and prediction direction for mb_type of B slices
Another syntax change is related to the size of transforms. If the size of a block in a motion partition is greater than 16×16, only 16×16 transform is used. In that case, it is not signaled to the decoder. When the block size is 16×16, 16×8 or 8×16, there are three possible transform choices, namely, 4×4, 8×8, and transform matched to the block size. In that case, this information is encoded using two bits. The first bit indicates whether the transform size is 4×4 or greater. If the first bit is 1, another bit is sent to indicate whether the block size is 8×8 or greater. The same contexts used for CABAC encoding of the luma_transform_size_8x8_flag in H.264 are used.
2.6.2 BigBlocks

Context adaptive arithmetic coding is used to encode information such as coded block pattern, motion vector and transform coefficients. The context is based on neighboring macroblocks in a similar way as in H.264.
Macroblock type

For a 64×64 block, a new syntax element, mb64_type, is introduced to indicate the motion partition for the block. This can be SKIP, DIRECT, 64×64, 64×32, 32×64 or P8×8. A mb64_type of P8×8 for a 64×64 block indicates that the block is split into four 32×32 blocks. Then, for each 32×32 block, a new syntax element, mb32_type, is sent indicating the motion partition for the block. An mb32_type of P8×8 for a 32×32 block indicates that the block is split into four 16×16 blocks. In that case, for each 16×16 block, the macroblock type, mb_type, is sent to the decoder.
Coded block pattern (cbp64 and cbp32)

For a 64×64 block, a new one bit syntax element, cbp64, is introduced to indicate whether the whole 64×64 block has any nonzero coefficients. A non-zero cbp64 value indicates that there is at least one nonzero transform coefficient. If cbp64 is 1, for each 32×32 block, cbp32 is encoded to indicate whether the whole 32×32 block has any nonzero coefficients. If cbp32 is 1, for each 16×16 block, the current H.264 cbp is encoded to indicate its status.

Change in luminance quantizer step-size (mb64_delta_qp and mb32_delta_qp)
Our proposal permits the luminance quantizer step-size to change as follows. If a 64×64 block is partitioned into 4 separate 32×32 blocks, each 32×32 block can have its own QP. If a 32×32 is further partitioned into four 16×16 blocks, each 16×16 block can also have its own QP. This information is signaled to the decoder using delta_qp syntax. For a 64x64 block, if the mb64_type is not P8×8, mb64_delta_qp is encoded to signal the relative change in luminance quantizer step-size with respect to the block on the top-left side of the current block. This block can be of size 64×64, 32×32 or 16×16. The decoded value of mb64_qp_delta is restricted to be in the range [image: image97.png]. The mb64_qp_delta value is inferred to be equal to 0 when it is not present for any macroblock (including P_Skip and B_Skip macroblock types). The value of luminance quantization for the current block, [image: image99.png], is derived as

[image: image100.png]
where [image: image102.png] is the luminance quantization parameter of the previous 64x64 block in the decoding order in the current slice. For the first 64×64 block in the slice, [image: image104.png] is set equal to the slice [image: image106.png] sent in the slice header.

If mb64_type is P8×8, for each 32×32 block, the same process is repeated. That is, if mb32_type is not P8×8, mb32_delta_qp is encoded. Otherwise, delta_qp for each 16×16 macroblock is sent to the decoder as in H.264. It should be noted that when delta_qp is signaled at the 64×64 or 32×32 block size, it is applicable to all the blocks in the motion partition.
2.6.3 Geometry motion partitions

The geometry partition is indicated by signaling an 8×16, 16×32, and 32×64 mode for block sizes of 16×16, 32×32, and 64×64, respectively. If the specific mode associated with geometry partition is signaled, one additional bit is sent to indicate whether the block has a geometry partition. If a geometry partition is present, the specific choice of the partition is signaled using a fixed number of bits depending on the block size. For block sizes of 16×16, 32×32, and 64×64, the partition is signaled using 8, 9, or 10 bits, respectively.

The process of forming motion vector prediction is also modified in case of a geometry partition. Fig. 10 shows the neighboring blocks that may be used to form the motion vector prediction. Depending on the geometry partition, a subset of blocks from [image: image108.png] may be used to form motion vector prediction. The choice of block for motion vector prediction depends upon whether they lie on the same side or opposite side of the geometry partition boundary.
[image: image109.emf]ABECF

Figure 10: Motion vector prediction for a block having geometry partition

2.6.4 Adaptive Motion Vector Resolution

For each block in a motion partition, a motion vector resolution flag is encoded. A value of 1 (0) implies 1/8th pixel (1/4th pixel) motion vector resolution. We will describe the contexts used for CABAC encoding of motion vector resolution flag and motion vector differences (MVD).

For CABAC encoding of the motion vector resolution flag, four contexts are used. The contexts are defined based on the motion resolution of neighboring partitions. Let A be the left neighboring partition and let B be the upper neighboring partition. The precise definition of neighboring partitions is the same as that used in H.264 for MVD encoding. The four contexts used to encode the motion vector resolution flag for the current block are:

1. Both A and B have 1/8th pixel motion accuracy.

2. A has 1/4th pixel motion accuracy and B has 1/8th pixel motion accuracy.
3. A has 1/8th pixel motion accuracy and B has 1/4th pixel motion accuracy.

4. Both A and B have 1/4th pixel motion accuracy.
The encoder always maintains the motion vector (MV) and MVD information at 1/8th pixel resolution (by left-shift if necessary). Then, the MV prediction for the current block is formed with 1/8th pixel accuracy. If the current block has only 1/4th pixel motion accuracy, the MV prediction is converted to 1/4th pixel accuracy be right-shifting and then the MVD is formed. On the other hand if the current block has 1/8th pixel motion accuracy, the MVD is formed directly by subtracting the MV prediction from the motion vector for the current block. Once MVD is formed, if the current block has 1/4th pixel accuracy, for all the neighboring blocks used for determining the MVD contexts, the MVDs are converted to 1/4th pixel accuracy. Similar procedure is followed for 1/8th pixel accuracy. The encoding of MVD is performed as specified in H.264.
2.6.5 VLCs

2.6.5.1 VLCs for transform coefficients

For transform coefficients, run, level and EOB information are jointly coded using variable length codes. For each non-zero coefficient, a variable length codeword is used to represent all the following information:

a) Run: the number of contiguous zeros preceding the coefficient

b) Greater-than-one: indicates if the level of the non-zero coefficient is greater than 1

c) EOB: indicates if the non-zero coefficient being coded is the last non-zero coefficient in the one-dimensional coefficient array

In addition to the information above, for those coefficients whose level is greater than 1, the value of (level-1) is further coded. The sign of each non-zero coefficient is also coded using one bit.

Linear growth tree code, a structured variable length code, is used for coding the run, level and EOB information of coefficients. For each different transform block size, 4 VLC tables are designed to accommodate different sequence characteristics and coding conditions. The index of the best VLC table for each transform block size is signalled in slice header.

VLC selection is context adaptive, which is based on the position index of the first zero coefficient of the run associated with the symbol to be coded. The coding starts from the first coefficient in the coefficient array. To code a symbol, the position index of the first zero coefficient of the run associated with the symbol is checked. Then based on the position index value in the scanning order, a VLC table is selected to code the current symbol.

Additionally, symbol occurrence probability under each context is accumulated and updated while symbols are being coded. Based on updated symbol distribution property, codewords in the VLC tables can be re-mapped to different symbols for each context.

2.6.5.2 VLCs for ref_idx and motion vector resolution
For 1/8th pixel accuracy motion vector, if a motion vector points to reference frame with ref_idx=0, the resolution of the motion vector could be either 1/4th or 1/8th pixel. It is necessary to convey this information to the decoder for proper decoding. If a motion vector points to any other reference frame, it uses 1/4th pixel accuracy. Rather than signaling reference index and motion vector accuracy separately, we group them together into one syntax element ‘mv_mode’.
For a block with multiple partitions, each partition may have its own mv_mode. To reduce the number of bits used to signal mv_mode, we introduce another syntax element mv_mode_uniform_flag. If all partitions have 1/4th pixel accuracy motion vectors and ref_idx equal to 0, mv_mode_uniform_flag is set 1. Otherwise, mv_mode_uniform_flag is set 0.

If mv_mode_uniform_flag is 0, we send mv_mode for each partition. Table 3 shows the variable length code for mv_mode when the number of reference (num_ref) is equal to 2, 3 and 4. When num_ref is small, Exp-Golomb code is not efficient. Since we know the number of reference frames for each slice, we design different variable length code based on num_ref as shown in the following table.

	mv_mode
	num_ref

	codeNum
	ref_idx
	Motion vector accuracy
	2
	3
	4

	0
	0
	1/4
	1
	1
	1

	1
	0
	1/8
	01
	01
	01

	2
	1
	1/4
	00
	001
	001

	3
	2
	1/4
	
	000
	0001

	4
	3
	1/4
	
	
	0000

Table 3: VLCs for mv_mode based on num_ref
If num_ref is greater than or equal to 5, we use exp-Golomb code and the codeNum of ref_idx > 0 is equal to ref_idx+1 and codeNum 0 and 1 still represent ref_idx 0 with motion vector accuracy 1/4 and 1/8.
2.6.5.3 VLC for Macroblock partition signaling

If the macroblock size is 64×64, we will use run length code to encode the run of skipped 64×64 blocks. If a 64×64 block is not skipped, we will signal its partition mode. If it is partitioned into four 32×32 blocks, for each 32×32 block we send a flag ‘skip_flag_32’. If skip_flag_32 is equal to 1, the corresponding 32×32 block is skipped. Otherwise it is not skipped. Similarly, if a 32×32 block is partitioned into four 16×16 blocks, for each 16×16 we send a flag ‘skip_flag_16’. If skip_flag_16 is equal to 1, the corresponding 16×16 is skipped. Otherwise it is not skipped. For non-skipped 64×64, 32×32 and 16×16 blocks, we design variable length code to signal their partition modes as shown in Table 4.

	64×64 block partition
	Codeword
	32×32 block partition
	Codeword
	16×16 block partition
	Codeword

	64x64
	01
	32x32
	01
	16x16
	1

	64x32
	001
	32x16
	001
	16x8
	000

	32x64
	000
	16x32
	000
	8x16
	001

	32x32
	1
	16x16
	1
	8x8
	010

	
	
	
	
	Intra mode
	011

Table 4: VLC for signaling partition modes in non-skipped blocks
For a 16×16 block, if the mode is 8×8, we send a 1 bit flag to indicate whether there is further partitioning for any 8×8 subblock. If the flag is 1, there is no further partitioning in any of the 8x8 subblocks. If it is 0, at least one 8x8 subblock is partitioned further.

2.6.5.4 VLCs for CBP coding

In H.264, there are 4 luma CBP bits corresponding to 4 8×8 blocks. Let the luma CBP bits corresponding to 8×8 blocks in raster scan be L0, L1, L2, and L3. First a new syntax element ‘PartialLuma_Chroma_CBP’ is introduced.
[image: image110.png]
PartialLuma_Chroma_CBP is encoded using VLC shown in Table 5. Then, if at least one 8×8 block is non-zero a further syntax element is encoded. If the transform size is 16×16, 16×8 or 8×16, ‘Luma_CBP_2_Partitions’ is encoded. Otherwise, ‘Luma_CBP_4_Partitions’ is encoded. These syntax elements are defined as

[image: image111.png]
[image: image112.png]
Each one of PartialLuma_Chroma_CBP, Luma_CBP_4_Partitions, and Luma_CBP_2_Partitions is always encoded using a VLC that is dependent on the context. The context is defined using the CBPs of the upper block and left block of the current MB. A total of 3 contexts are defined as follows:

1. Both the CBP of the upper and left block are zero.

2. Only one of the CBP of the upper or left block is zero.

3. Both the CBP of the upper and left block are non-zero.

	PartialLuma_Chroma_CBP
	0
	1
	2
	3
	4
	5

	Context 1
	0
	01
	001
	0001
	00001
	00000

	Context 2
	01
	0
	0001
	001
	00001
	00000

	Context 3
	01
	0
	00001
	001
	00000
	0001

	Luma_CBP_2_Partitions
	1
	2
	3

	Context 1
	01
	1
	00

	Context 2
	01
	00
	1

	Context 3
	01
	00
	1

	Luma_CBP_4_Partitions
	1
	2
	3
	4
	5

	Context 1
	000
	0010
	0011
	0100
	0101

	Context 2
	000
	0010
	0011
	0100
	0101

	Context 3
	0010
	0011
	0100
	0101
	0110

	Luma_CBP_4_Partitions
	6
	7
	8
	9
	10

	Context 1
	0110
	0111
	1000
	1001
	1010

	Context 2
	0110
	0111
	1000
	1001
	1010

	Context 3
	0111
	1000
	1001
	1010
	1011

	Luma_CBP_4_Partitions
	11
	12
	13
	14
	15

	Context 1
	1011
	1100
	1101
	1110
	1111

	Context 2
	1011
	1100
	1101
	1110
	1111

	Context 3
	1100
	1101
	1110
	1111
	000

Table 5: VLC tables for encoding CBP information

2.7 Other tools
Our proposal performs internal bit depth increase (IBDI) [18] on the input samples. The precision of the input video samples is increased to 12 bits and the bit precision is maintained throughout the processing chain. Our proposal also uses the motion vector competition (MVC) tool described in [19] and adopted into JMKTA. We have extended MVC to BigBlocks and scaled motion vector coding has been modified to work with MVC.
2.8 Improvements to the submitted proposal

During the time between proposal submission and this meeting, the performance of the proposed encoder was improved by eliminating rounding error accumulation for 1/8th pixel accuracy and fixing some bugs on the encoder side. We will refer to this version as “CFP updated”.
3 Compression Performance

3.1.1 CFP submission results

In this section, the quantitative results from our submission in response to CFP are presented for HierP and HierB configurations. For constraint set 1, HierB results from our proposal are compared with the alpha anchor. For constraint set 2, HierP results from our proposal are compared with the beta anchor and gamma anchor. In each case, reference is the corresponding JM anchor bit-stream. There are five RD points generated for each sequence. In Tables 6-8, the results are reported in terms of high BD-rate and low BD-rate. For calculation of high BD-rate, rates R5-R4-R3-R2 are used and for calculation of low BD-rate, rates R4-R3-R2-R1 are used.
	
	
	
	Coding Gain relative to Alpha anchor (Constraint set 1)

	Resolution
	Class
	Seq. No.
	Seq. Name
	BD Low (%)
	BD High (%)

	4kx2k
	Class A
	S01
	Traffic
	-33.23
	-31.15

	
	
	S02
	PeopleOnStreet
	-19.55
	-20.33

	
	
	
	Avg_1080p
	-26.39
	-25.74

	1080p
	Class B
	S03
	Kimono
	-39.38
	-39.79

	
	
	S04
	ParkScene
	-29.00
	-26.58

	
	
	S05
	Cactus
	-31.24
	-30.62

	
	
	S06
	Basketball
	-35.67
	-34.90

	
	
	S07
	BQSquare
	-34.45
	-45.36

	
	
	
	Avg_1080p
	-33.95
	-35.45

	WVGA
	Class C
	S08
	Basketball
	-30.60
	-30.69

	
	
	S09
	BQSquare
	-33.46
	-31.84

	
	
	S10
	PartyScene
	-33.16
	-32.10

	
	
	S11
	RaceHorses
	-29.69
	-26.81

	
	
	
	Avg_WVGA
	-31.73
	-30.36

	WQVGA
	Class D
	S12
	Basketball
	-22.81
	-21.73

	
	
	S13
	BQSquare
	-43.55
	-44.41

	
	
	S14
	PartyScene
	-26.32
	-27.08

	
	
	S15
	RaceHorses
	-21.05
	-19.83

	
	
	
	Avg_720p
	-28.43
	-28.26

	
	
	
	Overall Avg
	-30.88
	-30.88

Table 6: Coding gain with respect to alpha anchor (constraint set 1)
	
	
	
	Coding Gain relative to Beta anchor (Constraint set 2)

	Resolution
	Class
	Seq. No.
	Seq. Name
	BD Low (%)
	BD High (%)

	1080p
	Class B
	S03
	Kimono
	-40.42
	-44.78

	
	
	S04
	ParkScene
	-29.48
	-26.28

	
	
	S05
	Cactus
	-31.71
	-31.57

	
	
	S06
	Basketball
	-41.39
	-40.69

	
	
	S07
	BQSquare
	-45.58
	-50.43

	
	
	
	Avg_1080p
	-37.72
	-38.75

	WVGA
	Class C
	S08
	Basketball
	-28.92
	-28.35

	
	
	S09
	BQSquare
	-31.92
	-30.87

	
	
	S10
	PartyScene
	-28.54
	-24.10

	
	
	S11
	RaceHorses
	-27.96
	-26.76

	
	
	
	Avg_WVGA
	-29.34
	-27.52

	WQVGA
	Class D
	S12
	Basketball
	-23.29
	-22.70

	
	
	S13
	BQSquare
	-34.85
	-32.96

	
	
	S14
	PartyScene
	-15.42
	-16.66

	
	
	S15
	RaceHorses
	-20.44
	-20.27

	
	
	
	Avg_WQVGA
	-23.50
	-23.15

	720p
	Class E
	S16
	Vidyo1
	-46.57
	-46.24

	
	
	S17
	Vidyo3
	-40.15
	-42.55

	
	
	S18
	Vidyo4
	-37.30
	-45.31

	
	
	
	Avg_720p
	-41.34
	-44.70

	
	
	
	Overall Avg
	-32.75
	-33.16

Table 7: Coding gain with respect to beta anchor (constraint set 2)
	
	
	
	Coding Gain relative to Gamma anchor (Constraint set 2)

	Resolution
	Class
	Seq. No.
	Seq. Name
	BD Low (%)
	BD High (%)

	1080p
	Class B
	S03
	Kimono
	-53.79
	-61.11

	
	
	S04
	ParkScene
	-48.97
	-42.88

	
	
	S05
	Cactus
	-50.90
	-48.65

	
	
	S06
	Basketball
	-55.00
	-56.21

	
	
	S07
	BQSquare
	-47.57
	-68.66

	
	
	
	Avg_1080p
	-51.25
	-55.50

	WVGA
	Class C
	S08
	Basketball
	-47.25
	-47.02

	
	
	S09
	BQSquare
	-45.36
	-46.30

	
	
	S10
	PartyScene
	-49.30
	-47.60

	
	
	S11
	RaceHorses
	-36.65
	-35.47

	
	
	
	Avg_WVGA
	-44.64
	-44.10

	WQVGA
	Class D
	S12
	Basketball
	-34.36
	-33.77

	
	
	S13
	BQSquare
	-63.71
	-59.53

	
	
	S14
	PartyScene
	-40.44
	-39.69

	
	
	S15
	RaceHorses
	-28.24
	-26.65

	
	
	
	Avg_WQVGA
	-41.69
	-39.91

	720p
	Class E
	S16
	Vidyo1
	-60.05
	-60.38

	
	
	S17
	Vidyo3
	-54.25
	-56.85

	
	
	S18
	Vidyo4
	-46.24
	-61.24

	
	
	
	Avg_720p
	-53.51
	-59.49

	
	
	
	Overall Avg
	-47.63
	-49.50

Table 8: Coding gain with respect to gamma anchor (constraint set 2)
3.1.2 Lower complexity version with VLCs and no IBDI for IPPP configuration
In this section, the BD-rate results for “CFP submitted” and “CFP updated” are presented for IPPP configuration. We also present results for lower complexity version of the encoders obtained by dropping certain tools (e.g. IBDI) and replacing CABAC with VLCs. The motivation behind dropping IBDI is that it doubles the required memory bandwidth for hardware implementations. The results are reported in terms of BD-rate. The BD-rate calculations are performed based on 4 QP values (22, 27, 32, and 37). In each case, the reference is JM16.2 high IPPP configuration.
	
	
	
	Coding Gain relative to JM16.2 High IPPP configuration

	Resolution
	Class
	Seq. No.
	Seq. Name
	CFP submitted CABAC (%)
	CFP updated CABAC (%)
	CFP updated CABAC, No IBDI (%)
	CFP updated VLC, No IBDI (%)

	1080p
	Class B
	S03
	Kimono
	-36.11
	-36.13
	-34.91
	-29.52

	
	
	S04
	ParkScene
	-24.76
	-25.06
	-22.52
	-19.56

	
	
	S05
	Cactus
	-26.40
	-27.41
	-25.39
	-20.29

	
	
	S06
	Basketball
	-32.96
	-33.59
	-31.69
	-26.05

	
	
	S07
	BQSquare
	-36.52
	-36.75
	-35.04
	-31.23

	
	
	
	Avg_1080p
	-31.35
	-31.79
	-29.91
	-25.33

	WVGA
	Class C
	S08
	Basketball
	-27.21
	-28.36
	-27.11
	-22.51

	
	
	S09
	BQSquare
	-25.76
	-26.47
	-24.48
	-21.18

	
	
	S10
	PartyScene
	-25.15
	-25.47
	-24.26
	-20.07

	
	
	S11
	RaceHorses
	-19.41
	-19.79
	-18.74
	-16.10

	
	
	
	Avg_WVGA
	-24.38
	-25.02
	-23.65
	-19.97

	WQVGA
	Class D
	S12
	Basketball
	-17.80
	-17.99
	-17.02
	-12.87

	
	
	S13
	BQSquare
	-38.26
	-38.55
	-37.69
	-30.11

	
	
	S14
	PartyScene
	-19.35
	-19.72
	-18.32
	-15.66

	
	
	S15
	RaceHorses
	-14.93
	-15.20
	-13.98
	-10.49

	
	
	
	Avg_WQVGA
	-22.59
	-22.87
	-21.75
	-17.28

	720p
	Class E
	S16
	Vidyo1
	-36.08
	-37.72
	-33.38
	-28.51

	
	
	S17
	Vidyo3
	-32.96
	-34.72
	-31.03
	-27.02

	
	
	S18
	Vidyo4
	-36.05
	-37.26
	-32.90
	-26.82

	
	
	
	Avg_720p
	-35.03
	-36.57
	-32.44
	-27.45

	
	
	
	Overall Avg
	-28.11
	-28.76
	-26.78
	-22.37

4 Complexity analysis

4.1 Encoding time and measurement methodology
The encoding was performed on a linux cluster. The cluster had a mix of 32 bit and 64 bit machines. The encoder was compiled in 32 bits. The encoder software was single-threaded with no assembly code. The encoding times were collected from log files generated by the encoder. The encoding times written to the log files were obtained using the same process as used by JM16.2 software.
Tables 9 and 10 provide encoding times for our proposal for constraint set 1 (HierB configuration) and constraint set 2 (HierP configuration).
	
	Encoding Time (Constraint Set 1)
	
	

	
	R5
	R4
	R3
	R2
	R1
	Avg (sec)
	Avg (days)

	S01
	178323.863
	158123.258
	122322.234
	128758.924
	105629.794
	138631.61
	1.60

	S02
	231624.715
	211709.353
	190795.554
	196088.969
	166477.286
	199339.18
	2.31

	S03
	101231.227
	93349.142
	80909.248
	73982.578
	64526.737
	82799.79
	0.96

	S04
	79319.824
	71679.31
	64663.129
	57385.395
	46126.841
	63834.90
	0.74

	S05
	175903.816
	162501.48
	148592.407
	135169.178
	124341.269
	149301.63
	1.73

	S06
	176704.742
	165744.099
	151621.222
	140852.608
	151100.147
	157204.56
	1.82

	S07
	168655.219
	154441.415
	138508.002
	154263.154
	100879.822
	143349.52
	1.66

	S08
	51686.772
	45398.666
	40997.397
	37357.743
	33079.165
	41703.95
	0.48

	S09
	62398.088
	56509.893
	52804.111
	47859.537
	45414.828
	52997.29
	0.61

	S10
	45542.706
	40649.167
	31761.737
	32028.695
	28951.074
	35786.68
	0.41

	S11
	47742.008
	43445.986
	40038.742
	35389.491
	33770.729
	40077.39
	0.46

	S12
	17510.092
	14030.118
	13141.077
	14544.706
	13464.464
	14538.09
	0.17

	S13
	13786.601
	11640.227
	9963.427
	9319.281
	9617.027
	10865.31
	0.13

	S14
	14210.55
	10725.637
	10770.495
	10202.043
	9179.093
	11017.56
	0.13

	S15
	12195.618
	11379.853
	12479.684
	10226.911
	9519.259
	11160.27
	0.13

	S16
	n/a
	n/a
	n/a
	n/a
	n/a
	
	

	S17
	n/a
	n/a
	n/a
	n/a
	n/a
	
	

	S18
	n/a
	n/a
	n/a
	n/a
	n/a
	
	

Table 9: Encoding time for constraint set 1 (HierB configuration)
	
	Encoding Time (Constraint Set 2)
	
	

	
	R5
	R4
	R3
	R2
	R1
	Avg (sec)
	Avg (days)

	S01
	n/a
	n/a
	n/a
	n/a
	n/a
	
	

	S02
	n/a
	n/a
	n/a
	n/a
	n/a
	
	

	S03
	101996.41
	97440.85
	84725.42
	66763.12
	66408.42
	83466.84
	0.97

	S04
	94761.27
	86872.85
	78347.37
	59239.85
	60255.08
	75895.28
	0.88

	S05
	163750.01
	157161.11
	142121.69
	129584.04
	117819.98
	142087.37
	1.64

	S06
	194871.15
	181895.66
	159565.67
	146788.60
	109767.15
	158577.64
	1.84

	S07
	205815.89
	186377.36
	169445.56
	157789.53
	142801.82
	172446.03
	2.00

	S08
	37974.25
	29448.97
	30123.54
	26829.87
	24574.72
	29790.27
	0.34

	S09
	44560.21
	40592.08
	35316.50
	32031.11
	29374.23
	36374.83
	0.42

	S10
	42239.75
	39107.95
	28050.91
	27739.50
	23882.57
	32204.13
	0.37

	S11
	33960.62
	30620.66
	28318.35
	23623.49
	21896.37
	27683.90
	0.32

	S12
	11860.93
	10777.61
	9916.50
	9895.65
	9067.43
	10303.62
	0.12

	S13
	13752.85
	12857.19
	11754.74
	15597.96
	10364.38
	12865.42
	0.15

	S14
	11705.46
	9543.24
	10059.18
	9251.09
	8553.34
	9822.46
	0.11

	S15
	9248.86
	8635.08
	8112.85
	7649.67
	7498.35
	8228.96
	0.10

	S16
	52034.15
	47519.16
	43245.42
	42223.09
	32616.01
	43527.57
	0.50

	S17
	54235.39
	52003.85
	47331.00
	44484.68
	34338.58
	46478.70
	0.54

	S18
	52772.06
	42653.93
	43814.82
	41879.74
	38749.25
	43973.96
	0.51

Table 10: Encoding time for constraint set 2 (HierP configuration)
4.2 Decoding time and measurement methodology
The decoding was performed on a Windows PC running 32-bit Windows XP. The CPU was Intel® Xeon® E5440 CPU running at 2.83 GHz with 3.25 GB of RAM. The decoder software was single-threaded with no assembly code and compiled using Microsoft® Visual Studio® 2005 Professional Edition. The JM16.2 software was compiled with IMGTYPE = 0. The decoding times were collected from log files generated by the encoder. The decoding times written to the log files were obtained using the same process as used by JM16.2 software. The I/O times (for output YUV file generation) are included in the reported decoding times.
Tables 11 and 12 provide the decoding times for anchor bit-streams (alpha and beta anchors, respectively) and CFP bit-streams.
	
	Decoding Time (Constraint Set 1) Alpha Anchor
	
	Decoding Time (Constraint Set 1) Qualcomm Proposal
	

	
	R5
	R4
	R3
	R2
	R1
	Avg(sec)
	R5
	R4
	R3
	R2
	R1
	Avg(sec)

	S01
	55.93
	52.68
	51.35
	50.44
	51.27
	52.33
	150.06
	145.28
	139.00
	137.61
	128.30
	140.05

	S02
	57.38
	53.32
	52.74
	52.51
	52.38
	53.67
	161.77
	187.22
	153.53
	149.56
	146.99
	159.81

	S03
	49.11
	46.92
	44.85
	42.11
	43.67
	45.33
	142.84
	139.99
	133.83
	131.10
	124.78
	134.51

	S04
	47.90
	46.40
	45.49
	46.47
	41.46
	45.54
	135.53
	135.92
	127.44
	123.11
	112.74
	126.95

	S05
	93.12
	85.82
	83.22
	84.91
	84.93
	86.40
	236.85
	217.42
	212.97
	192.94
	185.72
	209.18

	S06
	97.09
	93.01
	91.21
	88.65
	88.06
	91.60
	285.14
	277.31
	273.27
	271.66
	260.08
	273.49

	S07
	116.67
	117.83
	109.59
	108.89
	108.75
	112.34
	322.69
	308.24
	304.82
	346.93
	335.75
	323.68

	S08
	14.19
	13.81
	13.14
	13.09
	12.55
	13.35
	41.03
	37.00
	34.24
	32.06
	29.91
	34.85

	S09
	17.71
	17.29
	16.37
	15.85
	15.66
	16.58
	92.73
	54.81
	51.36
	44.98
	44.75
	57.73

	S10
	15.86
	14.79
	14.18
	13.84
	13.43
	14.42
	54.14
	49.81
	45.59
	39.89
	38.25
	45.54

	S11
	10.67
	9.71
	9.43
	9.13
	8.63
	9.51
	34.67
	32.53
	28.66
	26.41
	25.77
	29.61

	S12
	4.09
	3.60
	3.66
	3.53
	3.55
	3.69
	13.70
	11.41
	10.49
	9.64
	8.61
	10.77

	S13
	4.88
	4.60
	4.05
	4.05
	3.91
	4.30
	19.74
	18.36
	17.39
	16.45
	15.94
	17.58

	S14
	4.19
	3.64
	3.42
	4.60
	3.19
	3.81
	14.84
	12.95
	10.19
	9.21
	8.20
	11.08

	S15
	3.12
	2.85
	2.44
	2.50
	2.18
	2.62
	10.34
	8.88
	7.92
	7.33
	7.03
	8.30

	S16
	n/a
	n/a
	n/a
	n/a
	n/a
	
	n/a
	n/a
	n/a
	n/a
	n/a
	

	S17
	n/a
	n/a
	n/a
	n/a
	n/a
	
	n/a
	n/a
	n/a
	n/a
	n/a
	

	S18
	n/a
	n/a
	n/a
	n/a
	n/a
	
	
	
	
	
	
	

Table 11: Decoding time comparison between alpha anchor and Qualcomm proposal for constraint set 1

	
	Decoding Time (Constraint Set 2) Beta Anchor
	
	Decoding Time (Constraint Set 2) Qualcomm Proposal
	

	
	R5
	R4
	R3
	R2
	R1
	Avg(sec)
	R5
	R4
	R3
	R2
	R1
	Avg(sec)

	S01
	n/a
	n/a
	n/a
	n/a
	n/a
	
	n/a
	n/a
	n/a
	n/a
	n/a
	

	S02
	n/a
	n/a
	n/a
	n/a
	n/a
	
	n/a
	n/a
	n/a
	n/a
	n/a
	

	S03
	38.68
	37.30
	34.37
	32.02
	30.98
	34.67
	128.83
	124.94
	117.49
	111.91
	99.74
	116.58

	S04
	37.50
	35.64
	33.36
	31.61
	30.29
	33.68
	117.99
	115.06
	106.94
	98.47
	90.75
	105.84

	S05
	71.48
	65.97
	61.55
	61.13
	59.31
	63.89
	191.46
	175.71
	167.24
	162.41
	156.20
	170.60

	S06
	76.82
	73.49
	72.59
	64.29
	63.55
	70.15
	250.13
	247.39
	232.75
	221.67
	205.67
	231.52

	S07
	88.82
	82.43
	79.76
	76.57
	79.32
	81.38
	277.66
	265.41
	247.06
	238.33
	236.39
	252.97

	S08
	12.34
	14.51
	10.18
	9.88
	9.79
	11.34
	41.31
	37.06
	34.53
	29.67
	28.55
	34.23

	S09
	14.57
	14.96
	12.65
	12.29
	11.57
	13.21
	46.80
	42.02
	37.53
	33.73
	30.53
	38.12

	S10
	17.59
	14.24
	11.31
	11.58
	9.75
	12.89
	43.38
	39.00
	32.95
	26.64
	24.86
	33.37

	S11
	9.17
	8.57
	7.66
	8.77
	6.73
	8.18
	33.59
	30.97
	28.19
	25.39
	22.95
	28.22

	S12
	3.80
	3.33
	2.95
	2.81
	2.60
	3.10
	12.47
	10.81
	9.25
	8.47
	7.16
	9.63

	S13
	4.57
	4.06
	3.86
	3.10
	3.03
	3.72
	15.78
	13.95
	12.72
	12.23
	11.69
	13.28

	S14
	4.14
	3.37
	3.90
	2.71
	2.93
	3.41
	12.60
	10.58
	8.94
	7.61
	6.63
	9.27

	S15
	3.05
	2.55
	2.20
	1.96
	1.92
	2.34
	10.55
	9.41
	8.05
	8.20
	6.52
	8.54

	S16
	37.55
	37.11
	36.69
	36.80
	36.27
	36.88
	79.25
	71.94
	64.34
	60.05
	56.28
	66.37

	S17
	37.94
	36.92
	35.97
	34.82
	36.64
	36.46
	82.39
	75.52
	69.67
	65.81
	62.25
	71.13

	S18
	38.02
	37.34
	37.60
	35.99
	32.98
	36.38
	79.41
	75.97
	68.50
	66.89
	62.16
	70.58

Table 12: Decoding time comparison between beta anchor and Qualcomm proposal for constraint set 2

4.3 Expected memory usage of encoder and decoder
The most significant factor impacting the memory usage for our proposal is the number of reference frames. Since we use the same number of reference frames as anchor, the memory usage of encoder and decoder in our proposal is expected to be similar to H.264.

4.4 Complexity characteristics of decoder

4.4.1 Interpolation for motion compensation
The complexity of motion compensation varies depending on the filter selected for each fractional pixel position. From complexity point of view, for 1/4th pixel positions, the filters can be grouped into 6-tap, 8-tap and non-separable 4×4 filters. For non-separable 4×4 filters, due to symmetry properties, at most 9 multiplications are required. Also there is no overhead. For separable filters, the overhead depends on the block size and length of the filter. The use of block sizes larger than 16×16 helps in reducing this overhead. For separable filters, the worst case for computational complexity is when filter set 3 is selected, or 1/8th pixel accuracy motion vector is used. For interior fractional pixel positions, this requires filtering by 8 tap filters in the horizontal and vertical directions and the associated overhead.

4.4.2 Inverse transform operation for inter blocks
In our proposal, the additional transforms used are 16×16, 16×8, 8×16. For 1-D 16 point transform, 110 additions and 48 shifts are needed. Similarly for 1-D 8 point transform, requires 56 additions and 16 shifts.
4.4.3 Decoding of intra blocks

The intra frame prediction is identical to H.264. Inverse MDDT (for most modes) requires 2 matrix multiplications with 4×4, 8×8 or 16×16 matrices.
4.4.4 Inverse quantization

Decoder inverse quantization operation is identical to H.264.
4.4.5 In-loop filtering operation
Deblocking

Deblocking operation is identical to H.264. Due to the use of 16×16, 16×8, 8×16, the number of edges to which the filtering operation is applied is reduced.
QALF

For luminance component filtering with a 9×9 diamond shaped symmetric filter may be necessary for some blocks. This requires 21 multiplications and 42 additions. Similarly for each chroma component, filtering with 5x5 diamond shaped symmetric filter may be necessary for some blocks requiring 8 multiplications and 16 additions. In addition, it is necessary to calculate sum-modified Laplacian measure for each pixel and sum it over a 7×7 neighborhood. For each pixel, sum-modified Laplacian calculation costs 2 absolute value operations, 5 additions and 2 shifts. Summing over 7×7 neighborhood can be performed in a sliding window fashion to reduce the number of additions necessary.
4.4.6 Decoder entropy decoding

The complexity of entropy decoding is identical to H.264.

4.4.7 Degree of capability for decoder parallel processing

The decoder parallel processing capabilities for our proposal are similar to those for H.264. For geometry partitions, the interpolation operation for 2 motion vectors can be performed in parallel and the results combined according to the partition mask. Use of IBDI makes 16-bit operations impossible. This results in reduced potential for SIMD optimization.
4.5 Complexity characteristics of encoder

The complexity for certain operations such as motion interpolation, transforms, entropy coding is similar to those operations on the decoder side. Also, a number of encoder tools were adopted into JMKTA. We assume that their complexity characteristics are well known. We discuss the complexity characteristics of 2 additional tools, namely, geometry motion partitioning and adaptive motion vector resolution.

4.5.1 Geometry motion partitions

The full RD cost calculation is performed only on a small subset of possible geometry partitions as discussed in Section 2.1.2. For 16×16, 32×32, and 64×64 blocks, typically, EPZS searches and full RD cost calculation is performed for 16, 18, and 18 partitions respectively. In addition, for each possible geometry partition, it is necessary to perform motion compensation and SAD calculation.

4.5.2 Adaptive motion vector resolution
Whenever EPZS motion search is performed on a block to determine the optimal 1/4th pixel accuracy motion vector, 8 surrounding 1/8th pixel accuracy positions are searched. Each search consists of 1/8th pixel accuracy interpolation and SAD calculation.
4.5.3 Degree of capability for encoder parallel processing
Within a 64×64 block, possible modes at 64×64, 32×32, and 16×16 block sizes can be processed in parallel. In addition, different geometry partitions can be evaluated in parallel.
5 Algorithmic characteristics

5.1 Random access characteristics

For constraint set 1, HierB configuration with GOP size of 8 and 3 level hierarchy of B frames (I b3 b2 b3 b1 b3 b2 b3 P) is used. One Intra frame is sent at least every 1.1 seconds and OpenGOP is supported. For constraint set 2, HierP configuration is used with only 1 I frame at the beginning of the sequence and with 2 levels of hierarchy (I p2 p1 p2 P).
5.2 Delay characteristics

For HierB configuration, the nominal GOP size (8), levels of hierarchy for B frames (3), coding order and number of reference frames are identical to the alpha anchor. For HierP configuration, our coding order is the same as the beta anchor and 4 reference frames are used. In our configuration all past frames (including p2) may be used as reference frames.

6 Software implementation description

Our software is written in C, without any assembly code and is single-threaded. It is based on the JMKTA code base. The software is modular and suitable for research and experimentation work.

7 Closing remarks
We have described Qualcomm’s proposal in response to the call for proposal issued jointly by MPEG and ITU-T. A low complexity version using VLCs instead of CABAC and disabling IBDI is also proposed. For constraint set 1, compared to alpha anchor, the average BD-rate reduction is 30.88 and for constraint set 2, compared to beta and gamma anchors, the average BD-rate reductions are 32.96 and 48.57, respectively. Compared with JM16.2 High IPPP configuration, the low complexity version achieves average BD-rate reduction of 22.37.
8 References
[1] “Joint Call for Proposals on Video Compression Technology”, ISO/IEC JTC1/SC29/WG11/N11113, Jan 2010.
[2] “Joint Call for Proposals on Video Compression Technology”, ITU-T Q6/16 document, VCEG-AM91, Jan 2010.

[3] http://iphome.hhi.de/suehring/tml/download/KTA/

[4] “Advanced video coding for generic audiovisual services”, ITU-T Recommendation H.264, Mar 2009.
[5] “Information technology -- Coding of audio-visual objects -- Part 10: Advanced Video Coding”, ISO/IEC 14496-10:2009.
[6] Peisong Chen, Yan Ye, and Marta Karczewicz, “Video Coding Using Extended Block Sizes,” ITU-T SG16 Contribution, C123, Jan. 2009.
[7] Marta Karczewicz, Yan Ye, Peisong Chen, Giovanni Motta, “Single Pass Encoding using Switched Interpolation Filters with Offset,” -T Q6/16 document, VCEG-AJ29, San Diego, CA, USA, Oct. 2008.
[8] Tomoyuki Yamamoto, Yukinobu Yasugi, Tomohiro Ikai, “Further result on constraining transform candidate in Extended Block Sizes,” VCEG Contribution VCEG-AL19, London, UK / Geneva, CH, July 2009.
[9] R. Joshi, Y. Reznik, and M. Karczewicz, “Simplified Transforms for Extended Block Sizes,” VCEG Contribution VCEG-AL19, London, UK / Geneva, CH, July 2009.

[10] V.Britanak, P.Yip, K.R.Rao, “Discrete Cosine and Sine Transforms: General Properties, Fast Algorithms and Integer Approximations”, Academic Press, 2006.
[11] C. Loeffler, A. Ligtenberg, and G. S. Moschytz. "Algorithm-architecture mapping for custom DCT chips." in Proc. Int. Symp. Circuits Syst. (Helsinki, Finland), June 1988, pp. 1953-1956.
[12] Y. Ye and M. Karczewicz, “Improved Intra Coding,” ITU-T Q.6/SG16, Contribution C257, Geneva, Switzerland, June 2007.

[13] Y. Ye and M. Karczewicz, “Improved Intra Coding,” VCEG Contribution VCEG-AG11, Y. Ye and M. Karczewicz, Shenzhen, China, 20 October, 2007.

[14] M. Karczewicz, Y. Ye and I. Chong, Rate distortion optimized quantization, VCEG Contribution, VCEG-AH21, Jan. 2008
[15] Marta Karczewicz; Peisong Chen; Yan Ye; Rajan Joshi, “R-D based quantization in H.264,”, Applications of Digital Image Processing XXXII, Andrew G. Tescher, Editors, 744314, San Diego, June 2009.
[16] T. Chujoh, N. Wada and G. Yasuda, “Quadtree-based Adaptive Loop Filter,” ITU-T Q.6/SG16 Contribution, C181, Geneva, January 2009.
[17] Wei-Jung Chien, Marta Karczewicz, “Adaptive Filter Based on Combination of Sum-Modified Laplacian Filter Indexing and Quadtree Partitioning,” VCEG Contribution VCEG-AL27r1, London, UK / Geneva, CH, July 2009.
[18] T. Chujoh, R. Noda “Internal bit depth increase for coding efficiency,” VCEG Contribution VCEG-AE13, Marrakech, Morocco, January 2007.
[19] Joel Jung and Guillaume Laroche, “Competition-Based Scheme for Motion Vector Selection and Coding,” VCEG Contribution VCEG-AC06r1, Klagenfurt, Austria, July 2006.
9 Patent rights declaration(s)
Qualcomm may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

24

_1332570933.vsd
1

2

3

5

6

7

0

2

1

3

0

2

1

3

4

6

5

7

4

0

4

2

6

7

3

5

1

6

7

5

0

4

_1332570935.unknown

_1332570936.unknown

_1332570934.unknown

_1332570932.vsd
θ

ρ

MV1

MV2

