	[image: image38.png][image: image39.png]Joint Collaborative Team on Video Coding (JCT-VC)

of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11

1st Meeting: Dresden, DE, 15-23 April, 2010
	Document: JCTVC-A112

	Title:
	Description of video coding technology proposal by RWTH Aachen University

	Status:
	Input Document to JCT-VC

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Steffen Kamp, Mathias Wien
Institut für Nachrichtentechnik
RWTH Aachen University
D-52056 Aachen, Germany
	
Tel:
Email:
	
+49 241 80-27671
{kamp,wien}@ient.rwth-aachen.de

	Source:
	RWTH Aachen University

Abstract

This contribution describes RWTH Aachen University’s response to the Joint Call for Proposals on Video Compression Technology issued by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG). The proposal is based on the KTA software and uses some of the KTA tools, such as large macroblocks, adaptive interpolation filter, adaptive loop filter, motion vector competition, and directional intra transform. In addition to these existing tools, decoder-side motion vector derivation is proposed has been implemented to the KTA and is proposed as a coding tool for future standard development.
Contents

1Abstract

Contents
2
1
Introduction
3
2
Algorithm description
3
2.1
Motion representation
3
2.1.1
Decoder-side Motion Vector Derivation (DMVD)
3
2.1.2
DMVD syntax and semantics
5
2.1.3
DMVD Processes
8
2.2
Intra-frame prediction
10
2.3
Spatial transforms
10
2.4
Quantization
10
2.5
In-loop filtering
10
2.6
Entropy coding
10
3
Compression performance discussion
10
3.1
Objective versus subjective compression performance
11
3.2
Constraint set 1 configuration relative to Alpha anchor
11
3.2.1
Class A
11
3.2.2
Class B
11
3.2.3
Class C
13
3.2.4
Class D
13
3.2.5
Overall
14
3.3
Constraint set 2 configuration relative to Beta and Gamma anchors
15
3.3.1
Class B
15
3.3.2
Class C
16
3.3.3
Class D
16
3.3.4
Class E
17
3.3.5
Overall
18
4
Complexity analysis
19
4.1
Encoding time and measurement methodology
19
4.2
Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
19
4.3
Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
19
4.4
Expected memory usage of encoder
20
4.5
Expected memory usage of decoder
20
4.6
Complexity characteristics of encoder motion estimation and motion segmentation selection
20
4.7
Complexity characteristics of decoder motion compensation
20
4.8
Complexity characteristics of encoder intra-frame prediction type selection
20
4.9
Complexity characteristics of decoder intra-frame prediction operation
20
4.10
Complexity characteristics of encoder transforms and transform type selection
20
4.11
Complexity characteristics of decoder inverse transform operation
21
4.12
Complexity characteristics of encoder quantization and quantization type selection
21
4.13
Complexity characteristics of decoder inverse quantization
21
4.14
Complexity characteristics of encoder in-loop filtering type selection
21
4.15
Complexity characteristics of decoder in-loop filtering operation
21
4.16
Complexity characteristics of encoder entropy coding type selection
21
4.17
Complexity characteristics of decoder entropy decoding operation
21
4.18
Degree of capability for encoder parallel processing
21
4.19
Degree of capability for decoder parallel processing
21
5
Algorithmic characteristics
21
5.1
Random access characteristics
21
5.2
Delay characteristics
22
6
Software implementation description
22
7
Highlighted aspects discussion / Closing remarks
22
8
References
22
8.1
References relevant to DMVD
22
9
Patent rights declaration(s)
23

1 Introduction

This document is RWTH Aachen University’s response to the Joint Call for Proposals on Video Compression Technology (CfP) [1] issued jointly by ITU-T SG16 Q.6 (VCEG) and ISO/IEC JTC1/SC29/WG11 (MPEG). This proposal is based on the KTA software version 2.6r1 with the addition of a Decoder-Side Motion Vector Derivation (DMVD) algorithm. Besides the implementation of the DMVD algorithm, a few modifications to the KTA software have been made (see Section 6) in order to allow the generation of bitstreams conforming to the constraints defined by the CfP.

2 Algorithm description

This proposal is based on the KTA software version 2.6r1. Unless otherwise noted, the algorithm details of the proposal are identical to the tools found in the original KTA software.
2.1 Motion representation
The motion representation is based on the H.264/AVC motion representation found in the KTA software with the addition of 32x32 macroblocks introduced using the UseExtMB=1 encoder parameter setting. Inter-frame pictures may either be P or B pictures (i.e. allowing unidirectional prediction only or bidirectional prediction) and are coded in 32x32 macroblocks processed in line scan order. Each macroblock may be coded using either one 32x32 partition, two 32x16 partitions, two 16x32 partitions, or four 16x16 partitions coded in zig-zag scan order. In the latter case, all H.264/AVC macroblock subdivisions down to 4x4 blocks are possible for each of the four 16x16 partitions.

Motion vectors may either be coded explicitly or implicitly. Boolean flags in the bitstream signal whether explicit or implicit coding is used. One such flag is present for each 32x32, 16x16, 16x8, 8x16, or 8x8 partition. Other partitions (32x16, 16x32, 8x4, 4x8, 4x4) always use explicit coding. The explicit coding is done according to the original KTA software when UseExtMB=1 and MVCompetition=1 (i.e. quarter pel accuracy, differential coding relative to a motion vector predictor, coding of reference picture indices). When using implicit motion vector coding (further denoted as Decoder-side Motion Vector Derivation, DMVD), the motion vector differences, MV Competition flags, and reference picture index(es) are not present in the bitstream for that particular partition.

2.1.1 Decoder-side Motion Vector Derivation (DMVD)

Implicit motion vector coding with DMVD may introduce additional motion granularity. Therefore we introduce the concept of a prediction “target” which is defined as a rectangular set of pixels in the decoded picture for which a set of motion parameters is valid. For the case of explicit motion coding, the target is always equal to a full partition. With DMVD, motion parameters for multiple targets within one partition may be derived. While the subdivision of partitions into targets is conceptually configurable for our proposal, the setting listed in Table 1 was used for all simulations.

Table 1 DMVD target counts and target sizes for different prediction partition sizes.

	Partition size
	32x32
	16x16
	16x8
	8x16
	8x8

	Number of targets
	4
	1
	2
	2
	4

	Target size
	16x16
	16x16
	8x8
	8x8
	4x4

The basic principle for DMVD is a template matching algorithm on a set of motion candidates. A motion candidate is composed of a 2D motion vector and the associated reference picture index. The template matching cost of a candidate is obtained by calculating the sum of absolute differences (SAD) between the template region in the current picture and the identically shaped template region referenced by the motion candidate. The template region in the current picture is defined as the four pixel wide, rotated L-shaped region adjacent to the prediction target (see Figure 1). The template region in the reference picture is of identical shape, its position is offset by the displacement given by the 2D motion vector of the candidate. If the template region referenced by a motion candidate is located at a sub-pixel position, the spatial interpolation method associated with the respective reference picture is used to obtain the signal for cost calculation. For our proposal the template matching cost is calculated on the luma signal component only.

[image: image1.png]
Figure 1 DMVD prediction target and template region on a pixel grid. While the template size is dependent on the block partition size, the template region always extends four pixels to the top and left edges of the target.

For each partition using DMVD (i.e. dmvd_flag[mbPartIdx] is equal to 1), the DMVD prediction process as described in Section 2.1.3 is performed successively for all targets inside the partition in zig-zag scan order.

Usage of the derived motion parameters
During the decoding process, the motion parameters derived using DMVD (motion vector and reference picture index) are utilized for regular motion vector prediction (MVP) calculation. For this purpose, if the MVP derivation process references a DMVD partition it accesses the parameters of the motion candidate with lowest cost as determined in the DMVD prediction process.

During the bitstream parsing process, the motion vector differences and reference picture indices of DMVD blocks are assumed to be equal to zero for purposes of CABAC context derivation. As the DMVD prediction process may yield different motion parameters in the case of transmission errors (e.g. if a reference picture used for the DMVD search is unavailable to the decoder) this ensures that the correct context is selected in any event.

Note: When using motion vector competition the presence of motion vector competition syntax elements in the bitstream depends on decoded motion vectors. I.e. if all candidate vectors competing to be the motion vector predictor are equal, the motion vector competition syntax element is not present in the bitstream. If DMVD yields a different decoded motion vector due to transmission errors, the decoder may erroneously assume the presence or non-presence of the motion vector competition syntax element, which would prevent further parsing of the bitstream. Further study would be required for resolving issues due to the combination of the two tools.

Handling of template regions within the currently decoded macroblock
The template matching calculation of DMVD relies on the availability of a template signal within the currently decoded picture. Consequently, template matching is performed prior to any deblocking operations in the current KTA implementation. Another issue arises if some part of the template region lies within the currently decoded macroblock: While at the decoder the residual signal (after inverse quantization and transform) for the currently decoded block could be obtained and used for template matching, this is not always easily possible at the encoder. In order to perform rate-distortion optimized mode decision, the encoder needs to obtain the prediction signal covering the full support of the spatial transform. Therefore, if the DMVD target region and parts of the template region lie within the support of the spatial transform, the prediction signal (without residual) for the affected template region should be used in the template matching calculation.

For the purpose of this proposal, the following rules apply:

DMVD in 32x32 partitions: As the DMVD target size is 16x16 and the maximum spatial transform support is also 16x16 the residual can be obtained for the target directly after DMVD prediction. Therefore, the template matching calculation in 32x32 blocks always uses the fully reconstructed signal (prediction plus residual), even if the template region lies partially within the current 32x32 partition.

DMVD in 16x16 partitions: For blocks coded in 16x16 mode a DMVD target size of 16x16 is used. Consequently, the template region always lies outside of the current block in fully reconstructed blocks.

DMVD in 16x8, 8x16, or 8x8 partitions: At least for some targets the template region will lie within the currently decoded block. In these cases, the prediction signal (without residual) obtained for this area – either using regular motion compensation or DMVD prediction – is used for template matching calculation.
2.1.2 DMVD syntax and semantics

The following syntax tables detail the changes required for DMVD relative to H.264/MPEG-4 Part 10 (AVC). For better clarity, the tables do not include the full changes required for other KTA tools that have been used for this proposal. Only in the specification of macroblock_layer() the larger macroblock partition sizes are included.

	macroblock_layer() {
	C
	Descriptor

	
mb_type
	2
	ue(v) | ae(v)

	
if(dmvdAllowedInMB) {
	
	

	

if(mb_type = = P_L0_16x16 | |

mb_type = = B_X_16x16 | |

mb_type = = P_L0_32x32 | |

mb_type = = B_X_32x32) {
	
	

	

dmvd_flag[0]
	2
	ae(v)

	

} else if(mb_type = = P_L0_L0_16x8 | |

mb_type = = P_L0_L0_8x16 | |

mb_type = = B_X_X_16x8 | |

mb_type = = B_X_X_8x16) {
	
	

	

dmvd_flag[0]
	2
	ae(v)

	

dmvd_flag[1]
	2
	ae(v)

	

}
	
	

	
}
	
	

	
if(mb_type = = I_PCM) {
	
	

	…
	
	

	mb_pred(mb_type) {
	C
	Descriptor

	
if(MbPartPredMode(mb_type, 0) = = Intra_4x4 | |

MbPartPredMode(mb_type, 0) = = Intra_8x8 | |

MbPartPredMode(mb_type, 0) = = Intra_16x16) {
	
	

	

if(MbPartPredMode(mb_type, 0) = = Intra_4x4)
	
	

	

for(luma4x4BlkIdx=0; luma4x4BlkIdx<16; luma4x4BlkIdx++) {
	
	

	

prev_intra4x4_pred_mode_flag[luma4x4BlkIdx]
	2
	u(1) | ae(v)

	

if(!prev_intra4x4_pred_mode_flag[luma4x4BlkIdx])
	
	

	

rem_intra4x4_pred_mode[luma4x4BlkIdx]
	2
	u(3) | ae(v)

	

}
	
	

	

if(MbPartPredMode(mb_type, 0) = = Intra_8x8)
	
	

	

for(luma8x8BlkIdx=0; luma8x8BlkIdx<4; luma8x8BlkIdx++) {
	
	

	

prev_intra8x8_pred_mode_flag[luma8x8BlkIdx]
	2
	u(1) | ae(v)

	

if(!prev_intra8x8_pred_mode_flag[luma8x8BlkIdx])
	
	

	

rem_intra8x8_pred_mode[luma8x8BlkIdx]
	2
	u(3) | ae(v)

	

}
	
	

	

if(ChromaArrayType = = 1 | | ChromaArrayType = = 2)
	
	

	

intra_chroma_pred_mode
	2
	ue(v) | ae(v)

	
} else if(MbPartPredMode(mb_type, 0) != Direct) {
	
	

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if((num_ref_idx_l0_active_minus1 > 0 | |

mb_field_decoding_flag != field_pic_flag) &&

MbPartPredMode(mb_type, mbPartIdx) != Pred_L1 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

ref_idx_l0[mbPartIdx]
	2
	te(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if((num_ref_idx_l1_active_minus1 > 0 | |

mb_field_decoding_flag != field_pic_flag) &&

MbPartPredMode(mb_type, mbPartIdx) != Pred_L0 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

ref_idx_l1[mbPartIdx]
	2
	te(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if(MbPartPredMode (mb_type, mbPartIdx) != Pred_L1 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l0[mbPartIdx][0][compIdx]
	2
	se(v) | ae(v)

	

for(mbPartIdx = 0; mbPartIdx < NumMbPart(mb_type); mbPartIdx++)
	
	

	

if(MbPartPredMode(mb_type, mbPartIdx) != Pred_L0 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l1[mbPartIdx][0][compIdx]
	2
	se(v) | ae(v)

	
}
	
	

	}
	
	

	sub_mb_pred(mb_type) {
	C
	Descriptor

	
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

sub_mb_type[mbPartIdx]
	2
	ue(v) | ae(v)

	
if(dmvdAllowedInMB &&

mb_type = = P_8x8) {
	
	

	

for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if(sub_mb_type[mbPartIdx] = = P_L0_8x8)
	
	

	

dmvd_flag[mbPartIdx]
	2
	ae(v)

	
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if((num_ref_idx_l0_active_minus1 > 0 | |

mb_field_decoding_flag != field_pic_flag) &&

mb_type != P_8x8ref0 &&

sub_mb_type[mbPartIdx] != B_Direct_8x8 &&

SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

ref_idx_l0[mbPartIdx]
	2
	te(v) | ae(v)

	
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if((num_ref_idx_l1_active_minus1 > 0 | |

mb_field_decoding_flag != field_pic_flag) &&

 sub_mb_type[mbPartIdx] != B_Direct_8x8 &&

 SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

ref_idx_l1[mbPartIdx]
	2
	te(v) | ae(v)

	
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&

SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L1 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

for(subMbPartIdx = 0;

 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);

 subMbPartIdx++)
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l0[mbPartIdx][subMbPartIdx][compIdx]
	2
	se(v) | ae(v)

	
for(mbPartIdx = 0; mbPartIdx < 4; mbPartIdx++)
	
	

	

if(sub_mb_type[mbPartIdx] != B_Direct_8x8 &&

SubMbPredMode(sub_mb_type[mbPartIdx]) != Pred_L0 &&

dmvd_flag[mbPartIdx] = = 0)
	
	

	

for(subMbPartIdx = 0;

 subMbPartIdx < NumSubMbPart(sub_mb_type[mbPartIdx]);

 subMbPartIdx++)
	
	

	

for(compIdx = 0; compIdx < 2; compIdx++)
	
	

	

mvd_l1[mbPartIdx][subMbPartIdx][compIdx]
	2
	se(v) | ae(v)

	}
	
	

The variable dmvdAllowedInMB is derived to be equal to 0 if the current macroblock shares an edge with either the left or top edge of the current slice and equal to 1 otherwise. This ensures that the template region (see below) is not outside of the currently decoded slice.

When dmvd_flag[mbPartIdx] is equal to 1 the DMVD prediction process (see Section 2.1.3) is invoked for obtaining the prediction signal of the corresponding partition. When dmvd_flag[mbPartIdx] is not present it shall be inferred to be equal to 0.

2.1.3 DMVD Processes

DMVD Prediction Process
Inputs: The currently decoded picture and the location and size of the current prediction target region. The prediction direction for the current prediction target region. The current reference pictures list(s).

Output: The prediction signal for the current prediction target region.

The following reference pictures are used in the DMVD process:

For P pictures: All pictures from the List_0 reference picture list.

For B pictures: A modified reference picture list is derived, such that a reference picture can only occur in one of the two lists. If a reference picture is contained in both reference picture lists, it is removed from the list where the reference picture index is higher. If the reference picture index is the same into both lists, the picture is removed from List_1. The reason for having a reference picture appear in only one of the two lists is that the template cost does not depend on the reference picture index. If e.g. both lists contained the same set of reference pictures in a different order, the DMVD process would yield the same prediction signal independent of whether List_0 or List_1 prediction was used and the coding of the prediction direction would be redundant. Hence, using two lists with disjoint sets of reference pictures gives the encoder more choices for a suitable mode.

For each reference picture from the (modified) lists relevant for the prediction direction (coded using the macroblock type, either as List_0, List_1, or bidirectional prediction) a motion candidate set and the DMVD cost associated with each candidate in the set is obtained by invoking the DMVD Search Process (see below) for the reference picture. The union set of these motion candidate sets is used for the further steps.

The prediction signal for the target is obtained depending of the prediction direction:

· For unidirectional prediction:

· Luma: The two motion candidates of the union set with lowest cost are used to obtain two prediction signals (with spatial interpolation and weighted prediction applied). These signals are pixel wise added and divided by two.

· Chroma: The motion candidate of the union set with lowest cost is used to obtain one prediction signal (with spatial interpolation and weighted prediction applied).

· For bidirectional prediction: The motion candidate of the union set with lowest cost from List_0 and the motion candidate of the union set with lowest cost from List_1 are used to obtain two prediction signals (with spatial interpolation and weighted prediction applied). These signals are pixel wise added and divided by two. (This applies to luma and chroma.)

In other words: For all partitions using DMVD the luma prediction signal for each target is obtained as an average of two prediction signals (hypotheses), even if unidirectional prediction is used. As the motion parameters are derived, the coding cost is generally independent of the number of motion hypotheses used for generating the prediction signal.

DMVD Search Process
Inputs: The currently decoded picture and the location and size of the current prediction target region. Decoded motion parameters of the adjacent left, top-right and top-left block partitions or targets. A reference picture.

Output: A set containing one or two motion candidates

An initial motion candidate set is constructed from the motion parameters taken from neighboring blocks to the left and top-right of the current target. If motion is unavailable for the top-right block (it is either outside of the picture region or has not yet been decoded due to the block coding order) the top-left block is used instead (see Figure 2). Depending on whether the neighboring block is coded as intra, inter with unidirectional prediction, or inter with bidirectional prediction, zero, one, or two motion vectors with corresponding reference picture index are associated with it. Accordingly, the motion parameters from the two neighboring blocks form a candidate set of up to two candidates in P pictures and up to four candidates in B pictures. Should the candidate set be empty (i.e. the neighboring blocks are unavailable or coded as intra), a zero-motion vector is added so the initial set contains at least one candidate.

[image: image2.png]
Figure 2 Motion parameters from blocks A and C adjacent to the current DMVD target are used as motion candidates. If motion for block C is unavailable, block C' is used instead.

In order to adjust the candidates to the current reference picture, each candidate motion vector is linearly scaled by multiplying its spatial components with the quotient of the temporal distances between a) current picture and current reference picture (the input to the DMVD search process) and b) current picture and candidate reference picture (the reference picture associated with the motion candidate). The picture order count (POC) values are used for determining temporal distances. Finally each candidate’s reference picture index is set to the current reference picture index and the template matching cost is calculated for the candidate by invoking the DMVD Cost Derivation Process (see below). See Figure 3 for an illustration of the candidate adjustment.
[image: image3.png]
Figure 3 Adjusting candidates to reference pictures. Grey areas are decoded picture regions, the white area has not yet been decoded. Given that the original candidate was one of
[image: image4.wmf]

v

-

2

,
[image: image5.wmf]

v

-

1

,
[image: image6.wmf]

v

+

1

, the other two would result as the scaled candidates for the respective reference picture.

In the layout of this proposal, for each reference picture the final motion candidate set contains two candidates at most. It is constructed from refined motion candidates obtained by invoking the DMVD Candidate Refinement Process (see below) one by one on the initial candidates in order of ascending template cost. The repeated invocation of the candidate refinement process is performed until the final set contains two refined candidates or all initial candidates have been refined. (As it is possible that the refinement of the different candidates yields the same vector for all candidates it may happen that the final set contains only one candidate, even if the initial set contains more than one candidate.)

DMVD Candidate Refinement Process
Inputs: The currently decoded picture and the location and size of the current prediction target region. A motion candidate and its corresponding reference picture.

Output: The refined motion candidate.

Note: The candidate refinement process is similar to a motion vector sub-pel refinement often performed as part of the motion estimation at the encoder. However, the original candidate may already reference a sub-pixel position. Half-pel or quarter-pel offsets as discussed in the next paragraph are always relative to this original candidate.

In a first step the template matching costs for the motion candidate and all eight horizontal and/or vertical half-pixel offsets relative to the input motion candidate are obtained by invoking the DMVD Cost Derivation Process. From these nine positions (eight offsets plus the original candidate), the one with lowest template matching cost is selected and in a second step the costs for the eight surrounding horizontal and/or vertical quarter-pixel offsets are calculated. The position with absolute lowest cost among all tested positions is used as motion vector of the final refined motion candidate.

DMVD Cost Derivation Process
Inputs: The currently decoded picture and the location and size of the current prediction target region. A motion candidate and its associated reference picture.

Output: The template matching cost.

The template matching cost is obtained by calculating the sum of absolute differences between the luma signal defined by a rotated, L-shaped, four pixel wide region adjacent to the top-left of the current prediction target and the luma signal (with weighted prediction applied) of the identically shaped region, offset by the spatial displacement given by the motion candidate in the reference picture. If the candidate references a sub-pixel position, the spatial interpolation filter associated with the reference picture is used to obtain the signal of the referenced region.

2.2 Intra-frame prediction

No changes relative to KTA 2.6r1.
2.3 Spatial transforms

No changes relative to KTA 2.6r1. The following transforms are allowed:

H.264/AVC 4x4 and 8x8 transforms.

16x16, 16x8, and 8x16 transforms enabled by UseExtMb=1.

Mode Dependent Directional Transform enabled by UseMDDT=1.
2.4 Quantization

No changes relative to KTA 2.6r1.
2.5 In-loop filtering

No changes relative to KTA 2.6r1. Quality Adaptive Loop Filtering as enabled by UseAdaptiveLoopFilter=1
2.6 Entropy coding

No changes relative to KTA 2.6r1. CABAC entropy coding has been used. The dmvd_flag[mbPartIdx] syntax elements used in the syntax tables in Section specify whether explicit (regular) or implicit (derived using DMVD) motion coding is used are coded using CABAC contexts initialized with equal probability. Nine CABAC contexts have been introduced for dmvd_flag[mbPartIdx]: one for 32x32 and 16x16 blocks, two for 16x8 blocks (one for each partition index), two for 8x16 blocks (one for each partition index), and four for 8x8 blocks (one for each partition index).
3 Compression performance discussion

Unless otherwise noted, the coding configuration used for our proposal is identical to the Alpha and Beta anchors for the respective constraint set. As our proposal is based on KTA 2.6r1 we have included our encoder configuration files for detailing the coding configuration. Section 6 contains a brief description of encoder parameters that have been added to KTA 2.6r1.

The main configuration file from VCEG-AJ10r1 was used for simulations and is included with this document along with two additional configuration files detailing the configuration changes for the two constraint sets. Additionally, sequence specific configuration files are included with this document. Finally, the following KTA tool encoder parameters were set for all simulations:

UseExtMB=1

AdaptiveRounding=0

UseAdaptiveFilter=5

UseHPFilter=1

UseAdaptiveLoopFilter=1

UseIntraMDDT=1

MVCompetition=1

UseAdaptiveQuantMatrix=0

Reported quantizer values are always the intra QP (QPISlice or ChangeQPI encoder parameter), with QPPSlice = QPISlice + 1 and QPBSlice = QPISlice + 2. If the base QP setting is changed within a stream (a single change is allowed by the CfP), the changed QP settings follow the same scheme: ChangeQPP = ChangeQPI + 1 and ChangeQPB = ChangeQPI + 2. For hierarchical B pictures in Constraint Set 1 cascaded QP values are used as set by the default KTA implementation.

An example encoder command line is given as:

lencod.exe -d encoder_VCEG-AJ10r1_high_profile_kta0.cfg -f constraint-specific.cfg -f sequence-specific.cfg -p DMVDPreset=1 -p UseExtMB=1 -p AdaptiveRounding=0 -p UseAdaptiveFilter=5 -p UseHPFilter=1 -p UseAdaptiveLoopFilter=1 -p UseIntraMDDT=1 -p MVCompetition=1 -p UseAdaptiveQuantMatrix=0 -p ChangeQPStart=20 -p ChangeQPI=35 -p ChangeQPP=36 -p ChangeQPB=37 -p QPISlice=36 -p QPPSlice=37 -p QPBSlice=38

The companion Excel file “JCTVC-A112_stream_details.xls” reports (amongst other things) bitrate, PSNR, initial QP, mid-sequence QP, and frame index where the modified QP applies, number of hierarchical B pictures between I/P pictures, maximum intra period and random access interval for all bitstreams.

The Rate-Distortion (RD) plots in this section use the “traditional” linear bitrate scale. RD plots with logarithmic bitrate scale as proposed in [3] can be found in the companion documents “JCTVC-A112_rd_logbitrate_cs1.pdf” and “JCTVC-A112_rd_logbitrate_cs2.pdf”.
3.1 Objective versus subjective compression performance

A subjective assessment showed that the DMVD motion coding can result in smoother motion or less visible jitter, especially in homogenously moving areas. With DMVD performing an averaged prediction using two prediction signals even in unidirectionally predicted pictures or partitions, the temporal consistency increases, leading to smoother motion especially for Constraint Set 2.
3.2 Constraint set 1 configuration relative to Alpha anchor

See Section 3 for the general configuration description.
The bitstreams provided for our proposal follow the Alpha configuration with exception of the GOP size, which is 4 for classes B2, C, and D for our proposal. Classes A and B1 use a GOP size of 8 as used for the Alpha anchor.
3.2.1 Class A

[image: image7.emf]02000400060008000100001200014000

34

35

36

37

38

39

40

41

42

Bitrate [kbit/s]

PSNR [dB]

Traffic 2kcrop

Alpha anchor

RWTH Proposal

[image: image8.emf]02000400060008000100001200014000

26

27

28

29

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

PeopleOnStreet 2kcrop

Alpha anchor

RWTH Proposal

3.2.2 Class B

A GOP size of 4 has been used for Class B2 bitstreams in this proposal, a GOP size of 8 for Class B1.

Class B1 sequences have been coded in two independent parts. Class B2 sequences have been coded in three independent parts. The bitstream parts have been concatenated to form the final bitstream. Note that for the streams concatenated from three parts, it is affirmed that only one QP setting change is applied within one sequence, as required by the CfP document [1]. The individual parts start with an IDR picture. QP changes for this class as allowed by the CfP occur at bitstream part boundaries. Starting pictures (encoder parameter “StartFrame”) and number of frames for bitstream parts are given in Table 2.

Table 2 Starting pictures and number of frames of the parts coded individually for Class B sequences.

	Sequence
	StartFrame (Number of frames)
	Note

	
	Part 1
	Part 2
	Part 3
	

	S03 – Kimono
	0 (140)
	140 (100)
	N/A
	Coincident with scene cut

	S04 – ParkScene
	0 (121)
	121 (119)
	N/A
	

	S05 – Cactus
	0 (157)
	157 (157)
	314 (186)
	

	S06 – BasketballDrive
	0 (157)
	157 (157)
	314 (186)
	

	S07 – BQTerrace
	0 (193)
	193 (193)
	386 (214)
	

[image: image9.emf]0100020003000400050006000

34

35

36

37

38

39

40

41

42

Bitrate [kbit/s]

PSNR [dB]

Kimono 1080p

Alpha anchor

RWTH Proposal

[image: image10.emf]0100020003000400050006000

31

32

33

34

35

36

37

38

39

Bitrate [kbit/s]

PSNR [dB]

ParkScene 1080p

Alpha anchor

RWTH Proposal

[image: image11.emf]0200040006000800010000

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

Cactus 1080p

Alpha anchor

RWTH Proposal

[image: image12.emf]0200040006000800010000

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

BasketballDrive 1080p

Alpha anchor

RWTH Proposal

[image: image13.emf]0200040006000800010000

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

BQTerrace 1080p

Alpha anchor

RWTH Proposal

3.2.3 Class C
A GOP size of 4 has been used for Class C bitstreams in this proposal.
[image: image14.emf]0500100015002000

29

30

31

32

33

34

35

36

37

Bitrate [kbit/s]

PSNR [dB]

BasketballDrill wvga

Alpha anchor

RWTH Proposal

[image: image15.emf]0500100015002000

28

29

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

BQMall wvga

Alpha anchor

RWTH Proposal

[image: image16.emf]0500100015002000

25

26

27

28

29

30

31

32

Bitrate [kbit/s]

PSNR [dB]

PartyScene wvga

Alpha anchor

RWTH Proposal

[image: image17.emf]0500100015002000

26

27

28

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

RaceHorses wvga

Alpha anchor

RWTH Proposal

3.2.4 Class D

A GOP size of 4 has been used for Class D bitstreams in this proposal.

[image: image18.emf]0200400600

30

31

32

33

34

35

36

37

38

39

40

Bitrate [kbit/s]

PSNR [dB]

BasketballPass wqvga

Alpha anchor

RWTH Proposal

[image: image19.emf]0200400600

29

30

31

32

33

34

35

36

37

Bitrate [kbit/s]

PSNR [dB]

BQSquare wqvga

Alpha anchor

RWTH Proposal

[image: image20.emf]0200400600

28

29

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

BlowingBubbles wqvga

Alpha anchor

RWTH Proposal

[image: image21.emf]0200400600

30

31

32

33

34

35

36

37

38

39

40

Bitrate [kbit/s]

PSNR [dB]

RaceHorses wqvga

Alpha anchor

RWTH Proposal

3.2.5 Overall
Table 3 Average bitrate and PSNR differences relative to Alpha Anchor (calculations are according to [2], “Low” uses the four lower rate points, “High” uses the four higher rate points, “Overall” uses a 3rd order polynomial fitted to all five rate points).

	Sequence
	BD-PSNR [dB]
	BD-Bitrate [%]

	
	Low
	High
	Overall
	Low
	High
	Overall

	Traffic_2kcrop
	1.08
	0.87
	0.95
	-25.34
	-22.91
	-23.84

	PeopleOnStreet_2kcrop
	1.17
	1.02
	1.07
	-20.26
	-18.32
	-19.12

	Kimono_1080p
	1.40
	1.14
	1.28
	-32.82
	-30.65
	-32.03

	ParkScene_1080p
	0.86
	0.68
	0.78
	-21.06
	-17.36
	-19.45

	Cactus_1080p
	0.72
	0.59
	0.67
	-20.63
	-19.87
	-20.48

	BasketballDrive_1080p
	1.10
	0.87
	1.00
	-28.96
	-27.04
	-28.25

	BQTerrace_1080p
	0.62
	0.54
	0.59
	-28.22
	-30.67
	-29.28

	BasketballDrill_wvga
	1.08
	0.98
	1.01
	-23.75
	-22.14
	-22.58

	BQMall_wvga
	1.22
	1.03
	1.11
	-22.67
	-20.52
	-21.38

	PartyScene_wvga
	0.74
	0.74
	0.74
	-18.71
	-18.13
	-18.42

	RaceHorses_wvga
	1.27
	1.16
	1.21
	-27.46
	-25.40
	-26.08

	BasketballPass_wqvga
	0.94
	0.86
	0.89
	-18.62
	-15.70
	-16.76

	BQSquare_wqvga
	0.94
	0.91
	0.91
	-23.91
	-22.69
	-22.96

	BlowingBubbles_wqvga
	0.46
	0.57
	0.53
	-10.84
	-12.65
	-12.05

	RaceHorses_wqvga
	0.87
	0.83
	0.85
	-16.78
	-14.87
	-15.66

	average
	0.96
	0.85
	0.91
	-22.67
	-21.26
	-21.89

3.3 Constraint set 2 configuration relative to Beta and Gamma anchors
See Section 3 for the general configuration description.
The bitstreams provided for our proposal follow the Beta configuration with exception of the coding structure, which is IPPP coding for our proposal.
3.3.1 Class B

[image: image22.emf]0100020003000400050006000

32

33

34

35

36

37

38

39

40

41

42

Bitrate [kbit/s]

PSNR [dB]

Kimono 1080p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image23.emf]0100020003000400050006000

30

31

32

33

34

35

36

37

38

39

40

Bitrate [kbit/s]

PSNR [dB]

ParkScene 1080p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image24.emf]0200040006000800010000

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

Cactus 1080p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image25.emf]0200040006000800010000

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

BasketballDrive 1080p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image26.emf]0200040006000800010000

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

BQTerrace 1080p

Beta anchor

Gamma anchor

RWTH Proposal

3.3.2 Class C

[image: image27.emf]0500100015002000

26

27

28

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

BasketballDrill wvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image28.emf]0500100015002000

26

27

28

29

30

31

32

33

34

35

36

37

38

Bitrate [kbit/s]

PSNR [dB]

BQMall wvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image29.emf]0500100015002000

23

24

25

26

27

28

29

30

31

Bitrate [kbit/s]

PSNR [dB]

PartyScene wvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image30.emf]0500100015002000

26

27

28

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

RaceHorses wvga

Beta anchor

Gamma anchor

RWTH Proposal

3.3.3 Class D

[image: image31.emf]0200400600

28

29

30

31

32

33

34

35

36

37

38

39

40

Bitrate [kbit/s]

PSNR [dB]

BasketballPass wqvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image32.emf]0200400600

26

27

28

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

BQSquare wqvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image33.emf]0200400600

26

27

28

29

30

31

32

33

34

35

36

Bitrate [kbit/s]

PSNR [dB]

BlowingBubbles wqvga

Beta anchor

Gamma anchor

RWTH Proposal

[image: image34.emf]0200400600

28

29

30

31

32

33

34

35

36

37

38

39

40

Bitrate [kbit/s]

PSNR [dB]

RaceHorses wqvga

Beta anchor

Gamma anchor

RWTH Proposal

3.3.4 Class E
[image: image35.emf]0200400600

32

33

34

35

36

37

38

39

40

41

42

43

44

Bitrate [kbit/s]

PSNR [dB]

Vidyo1 720p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image36.emf]0200400600

30

31

32

33

34

35

36

37

38

39

40

41

42

Bitrate [kbit/s]

PSNR [dB]

Vidyo3 720p

Beta anchor

Gamma anchor

RWTH Proposal

[image: image37.emf]0200400600

32

33

34

35

36

37

38

39

40

41

42

Bitrate [kbit/s]

PSNR [dB]

Vidyo4 720p

Beta anchor

Gamma anchor

RWTH Proposal

3.3.5 Overall

Table 4 Average bitrate and PSNR differences relative to Beta Anchor (calculations are according to [2], “Low” uses the four lower rate points, “High” uses the four higher rate points, “Overall” uses a 3rd order polynomial fitted to all five rate points)

	Sequence
	BD-PSNR [dB]
	BD-Bitrate [%]

	
	Low
	High
	Overall
	Low
	High
	Overall

	Kimono_1080p
	1.63
	1.41
	1.53
	-35.87
	-34.12
	-35.17

	ParkScene_1080p
	0.48
	0.36
	0.44
	-12.51
	-9.72
	-11.60

	Cactus_1080p
	0.55
	0.46
	0.52
	-16.06
	-15.15
	-15.82

	BasketballDrive_1080p
	1.31
	1.07
	1.20
	-32.31
	-30.53
	-31.54

	BQTerrace_1080p
	0.82
	0.72
	0.79
	-33.30
	-34.24
	-34.04

	BasketballDrill_wvga
	0.72
	0.68
	0.70
	-16.93
	-16.61
	-16.70

	BQMall_wvga
	1.14
	0.92
	1.01
	-21.66
	-18.60
	-19.73

	PartyScene_wvga
	0.25
	0.12
	0.18
	-6.59
	-3.22
	-4.54

	RaceHorses_wvga
	0.88
	0.85
	0.88
	-20.84
	-19.55
	-20.26

	BasketballPass_wqvga
	0.65
	0.64
	0.64
	-13.58
	-12.24
	-12.65

	BQSquare_wqvga
	0.09
	-0.01
	0.04
	-2.46
	0.44
	-1.03

	BlowingBubbles_wqvga
	-0.23
	-0.25
	-0.23
	6.16
	6.34
	6.02

	RaceHorses_wqvga
	0.57
	0.60
	0.60
	-11.63
	-10.99
	-11.45

	Vidyo1_720p
	1.43
	1.22
	1.30
	-28.02
	-28.85
	-28.66

	Vidyo3_720p
	0.94
	0.82
	0.86
	-19.02
	-19.78
	-19.49

	Vidyo4_720p
	1.28
	0.97
	1.10
	-26.61
	-25.80
	-26.26

	average
	0.78
	0.66
	0.72
	-18.20
	-17.04
	-17.68

Table 5 Average bitrate and PSNR differences relative to Gamma Anchor (calculations are according to [2], “Low” uses the four lower rate points, “High” uses the four higher rate points, “Overall” uses a 3rd order polynomial fitted to all five rate points).

	Sequence
	BD-PSNR [dB]
	BD-Bitrate [%]

	
	Low
	High
	Overall
	Low
	High
	Overall

	Kimono_1080p
	2.62
	2.38
	2.50
	-50.93
	-50.03
	-50.59

	ParkScene_1080p
	1.54
	1.33
	1.45
	-34.88
	-30.80
	-33.04

	Cactus_1080p
	1.56
	1.38
	1.47
	-38.87
	-36.96
	-37.98

	BasketballDrive_1080p
	2.25
	1.88
	2.09
	-47.27
	-45.79
	-46.60

	BQTerrace_1080p
	2.08
	1.68
	1.91
	-58.71
	-55.81
	-57.34

	BasketballDrill_wvga
	1.89
	1.86
	1.87
	-38.60
	-39.10
	-38.93

	BQMall_wvga
	2.28
	2.02
	2.12
	-38.77
	-36.05
	-37.08

	PartyScene_wvga
	1.42
	1.42
	1.43
	-36.53
	-33.80
	-34.74

	RaceHorses_wvga
	1.36
	1.34
	1.35
	-30.77
	-28.90
	-29.70

	BasketballPass_wqvga
	1.33
	1.41
	1.37
	-26.32
	-25.43
	-25.69

	BQSquare_wqvga
	2.08
	2.08
	2.08
	-50.55
	-47.26
	-48.47

	BlowingBubbles_wqvga
	1.10
	1.15
	1.12
	-24.97
	-24.53
	-24.66

	RaceHorses_wqvga
	1.04
	1.06
	1.05
	-20.23
	-18.33
	-19.11

	Vidyo1_720p
	2.64
	2.27
	2.44
	-44.69
	-46.11
	-45.52

	Vidyo3_720p
	2.26
	1.97
	2.08
	-39.36
	-39.27
	-39.17

	Vidyo4_720p
	2.55
	2.14
	2.33
	-45.53
	-47.12
	-46.43

	average
	1.87
	1.71
	1.79
	-39.19
	-37.83
	-38.44

4 Complexity analysis

An Excel file “JCTVC-A112_stream_details.xls” is included with this document detailing (amongst other things) time, maximum memory usage, and computing platform for encoding and decoding of the proposal bitstreams and decoding of the anchor bitstreams. Note that the memory usage has been sampled at discrete intervals and may therefore be slightly off the actual value.

For all simulations frame-level multi-pass encoding is unchanged to the original KTA implementation. Multi-pass coding is performed as enabled by the encoder parameters GenerateMultiplePPS=1, RDPictureDecision=1, and UseAdaptiveFilter=5.
4.1 Encoding time and measurement methodology

Our simulations have been distributed to different Linux computing nodes using the Sun Grid Engine (SGE) software. SGE gathers accounting statistics for all computing jobs including time and memory usage measurements. The reported encoding time is the ru_usage as reported by SGE. ru_usage measures the total amount of time spent executing in user mode (in contrast to system mode) and is one of the fields returned by the getrusage() system call. By using ru_usage our measurements should be mostly independent of harddrive/network input/output and should mainly represent actual CPU time.

Due to a bundling of encoder and decoder call in computing jobs, our reported encoder time measurements also include the time for the decoding of the generated bitstream. However, the decoding time is negligible compared to the encoding time for all streams so the combined encoding-decoding time gives an acceptable approximate of the encoding time.

As described in Section 3.2 Class B sequences in Constraint Set 1 have been encoded in 2–3 parts. The reported time for these sequences is the sum of times of the individual parts of the bitstream.

See the companion file “JCTVC-A112_stream_details.xls” for measured values.
4.2 Decoding time and measurement methodology and comparison vs. anchor bitstreams decoded by JM 17.0
Decoding time measurement methodology for proposal and anchor streams follow the scheme described for encoding time. I.e. the ru_usage as reported by SGE accounting are provided.
See the companion file “JCTVC-A112_stream_details.xls” for measured values and decoding time ratios.
4.3 Description of computing platform used to determine encoding and decoding times reported in sections 4.1 and 4.2
With the SGE job system a heterogeneous set of computing platforms has been used for our simulations. This mainly affects the encoding measurements. For better comparability, we have used only platform type A machines for decoding of the proposal and anchor streams.

The Excel file included with this document states the platform type used for the simulation. The platform types have the following characteristics:

Platform Type A

Processor type: Quad-Core AMD Opteron

Clock speeds: 2.3 – 2.7 GHz

Operating system: 64-bit Ubuntu Linux 8.04.4

Compiler: GCC 4.2.4

Platform Type B

Processor types: Intel Xeon Tigerton/Harpertown/Nehalem

Clock speeds: 2.9 – 3.0 GHz

Operating system: 64-bit CentOS Linux 5.3

Compiler: GCC 4.1.2

Platform Type C

Processor types: Dual-Core AMD Opteron, Dual-Core AMD Athlon, Intel Pentium 4, Intel Celeron

Clock speeds: 2.0 – 3.2 GHz

Operating system: 32-bit Ubuntu Linux 8.04.4

Compiler: GCC 4.2.4

In order to reduce the number of reported platform descriptions, platform type C is quite heterogeneous, some of the systems may have been used interactively at the time of encoding, some of the systems may have used frequency scaling. The time measurements for platform C should therefore be taken with a grain of salt. A finer mapping to processor type or clock speed can be provided if required.
4.4 Expected memory usage of encoder

As described in Section 3.2 Class B sequences in Constraint Set 1 have been encoded in 2–3 parts. The reported memory usage for these sequences is the maximum memory usage among the individual parts of the bitstream.

See the companion file “JCTVC-A112_stream_details.xls” for measured values.
4.5 Expected memory usage of decoder

For a few anchor bitstreams the reported memory usage is zero. This is due the relatively short decoding time of the anchors and the memory usage being sampled at discrete times only.

See the companion file “JCTVC-A112_stream_details.xls” for measured values.
4.6 Complexity characteristics of encoder motion estimation and motion segmentation selection

For regular motion estimation, there is no difference to KTA 2.6r1. Additional complexity is imposed by the DMVD search and mode decision. For blocks coded in P_8x8 mode, a DMVD mode is tested for each 8x8 sub-block in addition to the regular 8x8 prediction types. For 16x8 and 8x16 macroblocks, all possible combinations of DMVD and regular motion coding are tested (both partitions use regular coding, only first partition uses DMVD, only second partition uses DMVD, both partitions use DMVD), in B pictures also different prediction directions for DMVD (List_0, List_1, bidirectional) are tested (the prediction direction for regular coding in 16x8 and 8x16 blocks is determined as part of the regular motion estimation process). For macroblocks using one 16x16 partition and large macroblocks using one 32x32 partition, an additional DMVD mode is tested (for all possible prediction directions in B pictures).

For test coding of each mode using DMVD, the corresponding DMVD prediction and search processes as described in Section 2.1 are invoked. The complexity of the DMVD cost derivation process should be roughly equivalent to a motion compensation operation for the DMVD template region.
4.7 Complexity characteristics of decoder motion compensation

As coding mode and DMVD usage are coded into the bitstream, the DMVD prediction process needs to be invoked only for those partitions actually using DMVD. For this proposal we used a low number of motion candidates during the DMVD search process in order to keep the complexity down. However, the DMVD candidate refinement process adds some complexity to the DMVD search process. Therefore, a flexible implementation of the DMVD processes is proposed, where for example the candidate refinement process may be switched off by the encoder or the number of reference pictures used during DMVD prediction may be limited (both would come at the cost of lower coding efficiency). Such configurations would be coded e.g. as part of the Sequence Parameter Set in order to allow for a trade-off between complexity and coding efficiency.
4.8 Complexity characteristics of encoder intra-frame prediction type selection

No difference relative to KTA 2.6r1.
4.9 Complexity characteristics of decoder intra-frame prediction operation

No difference relative to KTA 2.6r1.
4.10 Complexity characteristics of encoder transforms and transform type selection

No difference relative to KTA 2.6r1.
4.11 Complexity characteristics of decoder inverse transform operation

No difference relative to KTA 2.6r1.
4.12 Complexity characteristics of encoder quantization and quantization type selection

No difference relative to KTA 2.6r1.
4.13 Complexity characteristics of decoder inverse quantization

No difference relative to KTA 2.6r1.
4.14 Complexity characteristics of encoder in-loop filtering type selection

No difference relative to KTA 2.6r1.
4.15 Complexity characteristics of decoder in-loop filtering operation

No difference relative to KTA 2.6r1.
4.16 Complexity characteristics of encoder entropy coding type selection

No difference relative to KTA 2.6r1.
4.17 Complexity characteristics of decoder entropy decoding operation

No difference relative to KTA 2.6r1.
4.18 Degree of capability for encoder parallel processing

No difference relative to KTA 2.6r1.
4.19 Degree of capability for decoder parallel processing

No difference relative to KTA 2.6r1. During the DMVD search process, the DMVD cost calculation for different motion candidates can be performed in parallel. However, the DMVD prediction for neighboring partitions needs to be performed sequentially as the template matching process requires access to the decoded signal (or prediction signal in some cases) of the current picture.
5 Algorithmic characteristics

5.1 Random access characteristics

Constraint Set 1 bitstreams are coded with periodic intra pictures. Sequence and Picture Parameter Sets (SPS, PPS) are present in the bitstream prior to each I picture, enabled by the ResendSPS=3 (which was back-ported to KTA 2.6r1) and EnableOpenGOP=1 encoder configuration parameters.

As described in Section 3.2 the class B sequences in Constraint Set 1 were coded in 2–3 parts. The intra period for the sequences is identical among the individual parts. The last frame of each part is always coded as a P picture (even if the IntraPeriod encoder parameter would normally make it an I picture, this is enabled by LastFrameAsP=1, see Section 6), therefore the maximum intra period for class B sequences is one frame more than in the individual parts. It was ensured that the maximum intra period follows the 1.1 seconds random access interval allowed in the CfP [1]. Maximum intra period and corresponding random access interval for each bitstream can be found in the companion document “JCTVC-A112_stream_details.xls”.
5.2 Delay characteristics

For Constraint Set 1 hierarchical B picture coding with the same characteristics found in the Alpha ancor has been used. For classes A and B1 a GOP size of 4 (3 B pictures between I/P, 3 dyadic levels) was used. For classes B2, C, and D a GOP size of 8 (7 B pictures between I/P, 4 dyadic levels) was used.

Constraint Set 2 streams were coded using an IPPP coding structure.
6 Software implementation description

The software for our proposal is based on the KTA software version 2.6r1. As such, the programming language is C.

In addition to the DMVD algorithm described in Section 2.1 and in order to comply with the constraints defined in the CfP [1], we implemented Sequence Parameter Set resending into the KTA encoder, which shares the encoder configuration parameter name “ResendSPS” and semantics found in recent versions of the JM software. We also made a few bug fixes and enhancements to the KTA encoder, which are not related to coding algorithms. Most prominently, we enabled the possibility to change the GOP size for the last coded GOP in order to be able to code all required frames with hierarchical B picture coding, and we fixed the “ChangeQPB” encoder parameter to correctly work in hierarchical B picture coding on order to allow a single QP change per sequence for better meeting the target bitrates. Furthermore, we added the boolean encoder parameter “LastFrameAsP” which will code the last frame of a sequence in display order as a P picture if it would originally be coded as an I picture (given a suitable setting of “IntraPeriod”).

Encoder and decoder binaries were compiled for Linux platforms as described in Section 4.3. A decoder binary has also been compiled for the Windows platform.

7 Highlighted aspects discussion / Closing remarks
While we do not endorse a KTA based test model for development of a future standard, this proposal wants to demonstrate the feasibility of a decoder-side motion vector derivation scheme in the context of high performance video compression. It is shown that DMVD can provide objective and subjective performance improvements in combination with a broad set of coding tools from H.264/MPEG-4 Part 10 (AVC) and those implemented in the KTA software. The impact of DMVD on the bitstream syntax is very low, a specification in terms of decoding processes (not yet to the detail required for a standard specification) is given in this document.

For the purposes of this CfP response, a very specific configuration of DMVD has been used. However, within the DMVD framework several configuration parameters are variable and possibilities exist for trading complexity for compression performance. Therefore, further study is required for integrating DMVD into the test model to be selected as basis for standardization. We propose the consideration of DMVD as a valuable tool in the new standard.

8 References

[1] ITU-T Q6/16 and ISO/IEC JTC1/SC29/WG11, Joint call for proposals on video compression technology, MPEG Document N11113, Kyoto, Japan, January 2010.

[2] Gisle Bjøntegaard, “Calculation of Average PSNR Differences between RD curves”, ITU-T SG16/Q6, 13th VCEG Meeting, Austin, Texas, USA, April 2001, Doc. VCEG-M33.

[3] Gisle Bjøntegaard, “Improvements of the BD-PSNR model”, ITU-T SG16/Q6, 35th VCEG Meeting, Berlin, Germany, July 2008, Doc. VCEG-AI11.

8.1 References relevant to DMVD

The following list contains several MPEG, VCEG and JVT documents and conference papers that discuss DMVD in more detail.
[4] S. Kamp, M. Evertz, and M. Wien, “Decoder side motion vector derivation,” Doc. MPEG2007/M14917, ISO/IEC JTC1/SC29/WG11, Shenzen, China, Oct. 2007.

[5] S. Kamp, M. Evertz, and M. Wien, “Decoder side motion vector derivation,” Doc. VCEG-AG16, ITU-T SG16/Q6 VCEG, 33rd Meeting, Shenzhen, China, Oct. 2007.

[6] S. Kamp, M. Evertz, and M. Wien, “Decoder side motion vector derivation with multiple reference pictures,” Doc. VCEG-AH15, ITU-T SG16/Q6 VCEG, 34rd Meeting, Antalya, Turkey, Jan. 2008.

[7] S. Kamp and M. Wien, “Multi-hypothesis prediction with decoder side motion vector derivation,” Doc. JVT-AA040, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 27th Meeting, Geneva, Switzerland, Apr. 2008.

[8] S. Kamp and M. Wien, “Improving AVC compression performance by template matching with decoder-side motion vector derivation,” Doc. MPEG2008/M15375, ISO/IEC JTC1/SC29/WG11, Archamps, France, Apr. 2008.

[9] S. Kamp, B. Bross, and M. Wien, “Fast decoder side motion vector derivation,” Doc. VCEG-AJ18, ITU-T SG16/Q6 VCEG, 36th Meeting, San Diego, California, USA, Oct. 2008.

[10] S. Kamp, M. Evertz, and M. Wien, “Decoder side motion vector derivation for inter frame video coding,” in Proc. of IEEE International Conference on Image Processing ICIP ’08, (San Diego, CA, USA), pp. 1120–1123, Oct. 2008.

[11] S. Kamp and M. Wien, “Fast decoder side motion vector derivation with candidate scaling,” Doc. JVT-AD018, Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG, 30th Meeting, Geneva, Switzerland, Jan. 2009.

[12] S. Kamp, J. Ballé, and M. Wien, “Multihypothesis prediction using decoder side motion vector derivation in inter frame video coding,” in Proc. of SPIE Visual Communications and Image Processing VCIP ’09, (San José, CA, USA), Jan. 2009.

[13] S. Kamp and M. Wien, “Fast decoder side motion vector derivation with candidate scaling for improving AVC compression performance,” Doc. MPEG2009/M16069, ISO/IEC JTC1/SC29/WG11, Lausanne, Switzerland, Feb. 2009.

[14] S. Kamp, B. Bross, and M. Wien, “Fast decoder side motion vector derivation for inter frame video coding,” in Proc. of International Picture Coding Symposium PCS ’09, (Chicago, IL, USA), May 2009.

[15] S. Kamp, J. Ballé, and M. Wien, “Response to Call for Evidence in HVC: Hybrid video coding with ETP and DMVD,” Doc. MPEG2009/M16661, ISO/IEC JTC1/SC29/WG11, London, UK, July 2009.
9 Patent rights declaration(s)

RWTH Aachen University may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).

Page: 1
Date Saved: 2010-04-11

_1206018652.unknown

_1206018678.unknown

_1206018629.unknown

