LG's proposal for HVC

JCTVC-A110

ByeongMoon Jeon, SeungWook Park, JungSun Kim, JoonYoung Park

Introduction

- **∨** Based on AVC/H.264, the following new features are added
 - **§** Large macroblock structure (64x64 to 8x8 coding blocks)
 - § IIMM (Inter-Intra Mixed Mode)
 - **§** Skip mode with variable block size
 - **§** SPMV (Scaled Predicted Motion Vector)
 - **§** Template-based IC(Illumination Compensation)
 - **§** Modified MVC (Motion Vector Competition)
 - § SIFO of KTA
 - § New intra prediction types (I_32x32, I_mixed, ...,etc)
 - **§** New chroma intra prediction mode (chroma estimation mode)
 - § Border handling scheme
 - § ADF (Adaptive Deblocking Filter)
 - § QALF of KTA
 - § MDDT with modified kernels
 - **§** Adaptive scan ordering
 - § AWR (Adaptive Warped Reference)
 - **§** PAIF (Parametric Adaptive Interpolation Filter)
 - § MVC with B skip/direct
- ✓ Proposed model has Substantially increased compression capability

relative to AVC/H.264

Macroblock Structure

- **v** Macroblock structure for inter prediction
 - **§** Macroblock unit size is 32x32
 - **§** partitioned into several shapes of motion-compensated blocks
 - **§** Can be clustered up to 64x64

Macroblock Structure (Cont'd)

\boldsymbol{v} Skip mode with variable block size

§ Applies to the following blocks partitions

Ø 64x64, 64x32, 32x64, 32x32

Ø 32x16, 16x32, 16x16

- à efficient for high resolution
- à efficient for low resolution
- **§** Increases the portion of skip mode

Ø Increases coding efficiency

v IIMM (Inter-Intra Mixed Mode)

- § A macroblock (32x32) has both inter and intra submacroblocks
- § 1 bit flag in each submacroblock (16x16) to signal inter or intra
- **§** Same structure with AVC/H.264 **à** efficient for low resolution

v SMVP (Scaled motion vector predictor)

§ The motion vectors of the neighboring blocks is scaled according to the temporal distance between current and reference pictures

Scaled mvLXN = (td / tb) * mvLXN

Inter prediction (Cont'd)

v Template-based IC (Illumination Compensation)

- § To compensate the illumination change between pictures
- § Offset value representing the illumination change between current and predicted block is derived at decoder
 - Ø Offset is set to the difference value between the DC values of T_{cur} and T_{pred}
- § Offset value is added to the predicted block to compensate illumination change

✓ Modified MVC (Motion Vector Competition)

§ MVC of KTA is modified to be compatible with the new tools

Ø Combined with SPMV(Scaled predicted motion vector)

v SIFO(Switched Interpolation Filter Offset)

§ The single pass SIFO of KTA is employed

Intra-frame prediction

v Intra prediction types

§ A macroblock has one of two intra macroblock modes

Ø I_32x32, I_mixed

§ Each submacroblock has one of three submacroblock modes Ø I_4x4, I_8x8, I_16x16

v I_32x32

§ Four prediction modes (vertical, horizontal, DC, plane) of AVC/H.264 is used for 32x32 block

Intra32x32PredMode	Name of Intra32x32PredMode	
0	Intra_32x32_Vertical	
1	Intra_32x32_Horizontal	
2	Intra_32x32_DC	
3	Intra_32x32_Plane	

Intra-frame prediction (Cont'd)

v I_mixed

- § Each submacroblock can be coded one of three prediction modes,
 Ø I_4x4, I_8x8, I_16x16
 Ø Each mode has one of 9 prediction mode of AVC/H.264
- § Two flags (transform_16x16_flag, transform_8x8_flag) signal prediction type and transform size of a submacroblock

Intra-frame prediction (Cont'd)

v Chroma intra prediction

- § Prediction unit size is 8x8
- § New chroma prediction mode (chorma estimation mode) is added to AVC/H.264 modes (DC, vertical, horizontal, plane)
- § Predicted chroma samples are derived from the reconstructed luma samples based on linear model

pred_c[x, y] =
$$\alpha * P_L[2*x, 2*y] + \beta$$

$$a = \frac{R(P'_{L}, P'_{C})}{R(P'_{L}, P'_{L})}$$
$$b = mean(P'_{C}) - a * mean(P'_{L})$$

pred_c[x, y] : chroma pixels to be predicted

 P_L [2*x, 2*y] : subsampled luma pixels

à gray pixels in luma block

 P'_L : pixels subsampled from neighboring pixels of luma block

à black pixels in luma block

- ${\rm P}_{\rm C}^\prime$: neighboring pixels of chroma block
 - à black pixels in chroma block

v PROPOSED METHOD

- § When a part of macroblock (32x32) lies within the padded region, the macroblock is partitioned into four 16x16 submacroblocks
- § Submacroblocks within the padded region are derived at decoder without any overhead
 - vP/BPicture
 - Ø 16x16 SKIP
 - **v** I Picture

Ø I_16x16

- Ø prediction mode depends on its position
 - right border : horizontal mode
 - bottom border : vertical mode

v Transforms

- **§** DCT : 4x4, 8x8, 16x8, 8x16, 16x16
- **§** MDDT : New MDDT kernels

	Luma		Chroma
	Block size	Transform	Transform
Inter	64x64, 64x32, 32x64, 32x32, 32x16, 16x32, 16x16	§ 4x4, 8x8, 16x16	 § 4x4 § 2x2 or 4x4 DC Hadamard depending on skip status
	16x8	§ 4x4, 8x8, 16x8	
	8x16	§ 4x4, 8x8, 8x16	
	8x8	§ 4x4, 8x8	
Intra	I_32x32	§ DC pred mode : 16x16 DCT § Other modes : 16x16 MDDT	§ 4x4 § 4x4 DC Hadamard
	I_mixed (I_16x16, I_8x8, I_4x4)	Same transform size as block size	

v Scan order

§ Adaptive scan order with new initial values

v In-loop Filters

- **§** Adaptive Deblocking Filter (ADF)
 - Ø Adaptive deblocking filter based on 'Wiener filtering' scheme
 - Ø Filter coefficients are calculated by resolving MMSE between the original and the reconstructed pictures.
 - Ø ADF or AVC/H.264 deblocking filter is applied adaptively in each slice
- § Quad-tree based Adaptive Loop Filter (QALF)
 § QALE of KTA is employed
 - § QALF of KTA is employed

✓ Entropy Coding

§ AVC/H.264 CABAC is employed

Other tools

- **u** Tools being developed but not included in the submitted model
- **u** By adopting these tools, further improvements can be expected

✓ AWR (Adaptive Warped Reference)

- **§** Generates a new warped reference picture considering complex motions such as scaling, rotation, sheering, and so on.
- § Modeling of a parametric warping function using KLT(Kanade-Lucas-Tomasi) feature tracker
- § Refer to JCTVC-021

✓ PAIF (Parametric Adaptive Interpolation Filter)

- **§** Transmits just 5 parameters instead of individual filter coefficients to represent interpolation filter
- **§** Less bits for representing filters and closer to optimal filter than existing AIFs
- § Refer to JCTVC-021

✓ MVC (Motion Vector Competition) with B skip/direct

§ MVC with B skip/direct is utilized to maximize benefits of MVC scheme

✓ Chroma estimation mode with phase shift

§ The new chroma prediction mode (chroma estimation mode) is modified considering phase difference between luma and chroma samples

Coding structure

Constraint set 1

- ✔ Hierarchical B coding / GOP8/ IDR picture every 1 sec
- ✓ Same configuration of alpha anchor except the following changes
 - **§** Number of reference frames for P pictures=5
 - **§** Number of reference frames for B pictures=4 (2 reference pictures allowed for each list)
 - § Weighted prediction disabled
 - § 16x16, 16x8, 8x16, 8x8, 4x4 transforms enabled

Constraint set 2

- ✔ I-P-P-P coding / IDR only at first picture
- \boldsymbol{v} Same configuration of gamma anchor except the following changes
 - **§** Number of reference frames for P pictures=5
 - § CABAC enabled
 - § 16x16, 16x8, 8x16, 8x8, 4x4 transforms enabled

v Constraint Set 1 (alpha)

Class	BD psnr	BD rate
А	1.11	-23.94
В	1.01	-30.57
С	1.26	-26.85
D	0.92	-19.85
Avg.	1.06	-25.83

Max Min BD-PSNR BD-Rate BD-PSNR BD-Rate **Class B-BQTerrace Class D-RaceHorses** 0.71 -36.15 0.62 -11.76 36 40 LG LG 35 38 JM JM Y PSNR (dB) Y PSNR (dB) 34 36 33 34 32 32 30 31 300 600 900 1500 2000 4000 6000 8000 10000 120(0 1200 1800 0 Rate (Kbps) Rate (Kbps)

v Constraint Set 2 (gamma)

Class	BD psnr	BD rate
В	1.85	-44.42
С	1.60	-33.65
D	1.15	-25.11
E	2.31	-45.01
Avg.	1.70	-37.01

Subject quality comparison

✓ An artifact (propagation & blurring of chroma components) are visible especially when coded at low bit rates

 ${\bf v}$ The artifact is removed by considering chroma components in the R-D calculation process at encoder side

Alpha anchor

Proposed model

CS1 - Class C PartyScene @R2 (512kbps)

Subject quality comparison (Cont'd)

Alpha anchor

Proposed model

CS1 - Class C BasketballDrill @R2 (512kbps)

Subject quality comparison (Cont'd)

Alpha anchor

Proposed model

CS1 - Class C BasketballDrill @R2 (512kbps)

Software implementation

- **v** On top of JM 11.0, new tools are implemented
- **v** C programming language
- ✓ Complied using Microsoft Visual Studio 2008 under Microsoft Widows XP 32bit edition platform
- \mathbf{v} No code-level optimization for complexity

Complexity

v Time Measurement

- **§** Consumed time for encoding & decoding
- § Platform
 - Ø 32bit executables are used in encoder and decoder.
 - Ø CPU : Intel Core i7 950 @ 3.07Ghz (quad core)
 - Ø Memory : 12 GB
- § Two target rates are tested due to time limitation
 Ø Rate2 (middle rate) / Rate5 (highest rate)

v Encoder/Decoder complexity

- § Encoder
 - Ø CS1 : 9.27 times more than JM16.1 (4.64 times if implemented on the latest JM)
 - Ø CS2 : 18.73 times more than JM16.1 (9.37 times if implemented on the latest JM)

§ Decoder

- Ø CS1 : 7.69 times more than JM16.1 (2.20 times if implemented on the latest JM)
- Ø CS2 : 7.11 times more than JM16.1 (2.03 times if implemented on the latest JM)
- **§** Comparison between JM11.0 and the latest JM
 - Ø JM11.0 encoder is about 2 times slower than the latest JM
 - Ø JM11.0 decoder is about 3.5 times slower than the latest JM

- ✓ LG's proposed model is based on AVC/H.264 JM 11.0
- ✓ Outperforms alpha anchor and gamma anchor, achieving 25.83% and 37.01% bit rate reduction under CS1 and CS2 respectively
- \mathbf{v} Complexity reduction was not considered in the submitted model.
- ✓ Coding performance is expected to be further improved if the additional tools are implemented (AWR, PAIF, MVC with B skip/direct, Chroma estimation mode with phase shift)