

JCTVC-A107

Video coding technology proposal for MPEG-HVC/ITU-T EPVC

K.Sugimoto, Y.Itani, Y.Isu, N.Hiwasa, S.Sekiguchi Mitsubishi Electric Corporation

R.A.Cohen Mitsubishi Electric Research Laboratories

P.Wu and N.Sprljan Mitsubishi Electric R&D Centre Europe, Visual and Sensing Division

Outline

- Codec overview
- Proposed coding tools
- Coding performance
- Complexity analysis
- Simulation software
- Conclusion

Overview of Proposed Codec

- MB-based MC+Transform hybrid coding with
 - MB size extension
 - Adaptive transform with block-size extension and directional transforms
 - Block-based Pyramid Prediction
 - Multi-level hierarchical motion partitions including simplified diagonal partition modes
 - MB-adaptive Weighted Prediction
 - Adaptive PMV/Direct MV derivation
 - Adaptive in-loop Wiener filter with extended AVC de-blocking
- Non-normative remarks to obtain reported performance
 - Single-pass RDO-Q
 - EPZS based motion vector search
 - No use of frame multi-pass coding

MB size extension

- Promising for coding performance enhancement
 - Better R-D trade-off depending on source characteristics
 - resolution, motion activity, texture smoothness, etc
 - Relevant for video source having higher inter-sample correlation such as *high-resolution video*
 - Essentially no complexity impact to normative process

Changes for the Better

Motion representation

- Multi-layer hierarchical motion partitions
 - Quad-tree based
 - Simplified non-rectangular ("diagonal") shapes
 - Mixed intra/inter in a MB
 - Hierarchical skip support

Diagonal motion partitioning

- Promising through literatures
 - Around 8% gain with pixel-wise partitioning (by too-complex encoding)
 - Decoding complexity impact: only on memory access
- Issue: "Efficiency and Complexity" trade-off
 - Flexible partitioning increases pattern representation bits and encoding complexity
- Proposal: "Simplified" and "Block-aligned" shapes
 - PMV derivation by shifting spatial neighboring positions depending on shape

Adaptive PMV derivation

- Extends KTA's Motion Vector Competition concept to exploit temporal correlation
- 1-bit signaling per motion partition to select spatial or temporal PMV candidate

Contribute to reduction of motion bits especially becoming a burden in high-resolution video coding

Improved direct mode

- Adaptive direct MV derivation from spatial and temporal candidates
 - Without signaling bit by SAD competition at both encoder and decoder
 - Used also as B-Skip MV
- Use of closest spatial neighboring MV, not outside a MB as AVC
 - Consideration on MB size extension
- Selective prediction generation at picture edge
 - "Uni-directional pred." when UMV observed at picture edge
 - Avoid unreliable prediction with UMV

Contribute to coding performance improvement for B-picture

MB-adaptive Weighted Prediction

- WP in H.264 / MPEG-4 AVC works at a picture level $\mathbf{Y} = o + w\mathbf{X}$
- Explicit mode parameters computed for the picture prior to compression, commonly used in combination with Picture Level RDO
- MBWP defines WP signalling and operation at the MB level MBp = o + wMBc'

 Decoder: Complexity as in AVC-style WP.

• Encoder: Lagrangian cost minimisation with MV and WP (weight and offset) as variables. Minimum distortion point can for instance obtained by linear regression and then the result is modified by a rate-constrained search:

$$J(o,w,mv) = D(o,w,mv) + \lambda_{WP}R(o,w) + \lambda_{MV}R(mv)$$

Other aspects on inter prediction

- Essentially identical to AVC
 - Semantics of slice (picture) type
 - Q-pel accuracy MV representation
 - Chroma MV derivation
 - Multiple reference pictures and refldx signaling
 - MC interpolation filtering

Intra prediction

- New intra coding mode
 - Block-based Pyramid Prediction (BPP)
- Re-use AVC on
 - Luma intra4x4, intra8x8, intra16x16 in addition to BPP
- Modification to AVC on
 - 16x16 DCT for intra16x16 residue
 - Intra8x8 coding to chroma

Block-based Pyramid Prediction (BPP)

- Provides "rough sketch" of the original block samples as the prediction.
 - Better prediction compared with the intra prediction in AVC could be provided for natural images such as non-straight edges, spot, etc.
- Hybrid BPP and AVC intra prediction algorithm
 - IntraNxN (N=4,8,16) predictions in AVC are also supported.
 - RDO decision of the best intra prediction
- Could easily be extended to support larger block size, 4:4:4 or 4:2:2 video formats.

Changes for the Better BPP Normative Process

Adaptive 2-D Transform

- Adaptive block-size 2D transform for luma inter residue
 - Simple decision depending on motion partition size

- Coding mode dependent transform for luma intra residue
 - − intra4x4, intra8x8 \rightarrow 4x4, 8x8
 - − Intra16x16 \rightarrow 16x16 DCT

Directional Transforms

- Directional transforms used in addition to 2-D DCT
- Sets of low-complexity 1-D transforms co-aligned over block
- Conventional transforms are used no training required
- Rate-distortion optimized selection of transform

Changes for the Better

Example Using Directional Transforms

Original BasketballDrill

Directional Transform Usage

Intra Picture Coded without Directional Transforms

Intra Picture Coded with Directional Transforms₁₆

Quantization/Scanning

- Conceptually identical to AVC
 - 16x16 DCT does not use decomposition into "core" + "scale" matrices, and zig-zag scanning is used
- Modification for Directional Transforms
 - Coefficients scaled so existing quantizer can be used
 - DC coefficients scanned first, then AC
- Non-normative settings for obtaining reported coding performance
 - Single-pass RDO-Q **USED**
 - Hierarchical QP offsets USED
 - Q-matrix function NOT USED

Entropy Coding

- **CABAC** with modifications to support MB size extension syntax
 - Quad-tree based CBP representation
 - Unification of symbol representation of intra16x16 mode with other intra modes
 - Skip mode at sub-partition levels

In-loop filtering

- Extended AVC de-blocking filter
 - Consideration on 16x16 transform block and mixed intra/inter blocks
 - Strength derivation and actual filtering process identical to AVC
- Adaptive Wiener filter
 - Enhancement to KTA BALF tool
 - Quality improvement of decoded picture and inter-prediction reference

Enhanced BALF

- Applies up to two Wiener filters per video component adaptively
 - Optimising two Wiener filters together with the adaptive indication flags

<u>Significant coding gain</u> observed, at penalty of picture-level repetitive filter design and local adaptation process

Coding Performance Summary

- Constraint Set1
 - Hierarchical B structure identical to Alpha anchor
 - Around 1dB luma BD-PSNR gain for class A/B/C at higher compression condition
- Constraint Set2
 - IPPP structure with hierarchical P style QP offsets
 - Relative to Beta anchor
 - Around 1dB luma BD-PSNR gain for class B/E at higher compression condition
 - Relative to Gamma anchor
 - Around 2dB luma BD-PSNR gain for class B/E at higher compression condition

Class A/B, CS1 vs. Alpha anchor

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Traffic	-25.14	1.07	-22.41	0.83
PeopleOnStreet	-16.88	0.95	-13.86	0.76
avarage	-21.01	1.01	-18.13	0.79

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Kimono	-31.81	1.35	-29.50	1.08
ParkScene	-20.90	0.85	-16.70	0.65
Cactus	-24.17	0.85	-22.88	0.68
BasketballDrive	-27.47	1.03	-25.00	0.78
BQTerrace	-33.04	0.69	-32.80	0.53
avarage	-27.48	0.95	-25.38	0.74

Class B/E, CS2 vs. Beta anchor

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Kimono	-33.68	1.52	-32.43	1.31
ParkScene	-15.09	0.58	-12.01	0.44
Cactus	-18.20	0.63	-17.26	0.52
BasketballDrive	-29.54	1.18	-27.63	0.95
BQTerrace	-27.32	0.63	-25.05	0.47
avarage	-24.76	0.91	-22.87	0.74

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Vidyo1	-27.70	1.38	-26.55	1.10
Vidyo3	-20.05	1.00	-20.85	0.86
Vidyo4	-20.75	0.95	-18.80	0.70
avarage	-22.83	1.11	-22.07	0.89

Class B/E, CS2 vs. Gamma anchor

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Kimono	-48.99	2.51	-49.01	2.28
ParkScene	-36.77	1.64	-32.73	1.42
Cactus	-40.23	1.64	-38.70	1.44
BasketballDrive	-45.18	2.13	-43.39	1.76
BQTerrace	-56.02	1.89	-51.29	1.43
avarage	-45.44	1.96	-43.02	1.66
	1		1	

Sequence	BD low		BD high	
	Bitrate Δ	PSNR Δ	Bitrate Δ	PSNR Δ
Vidyo1	-44.79	2.58	-44.63	2.16
Vidyo3	-40.14	2.33	-40.08	2.01
Vidyo4	-41.42	2.23	-41.87	1.87
avarage	-42.12	2.38	-42.20	2.01

Complexity in Encoding Process

- Similar degree of encoding speed to JM anchor observed
 - Reported performance results were obtained
 - at around 2x encoding time than anchor with current functional algorithm simulator
 - without using frame-level multi-pass coding
 - same memory size as anchor
- Complexity notice
 - Computations for MB-level RDO decision due to increased number of motion partitions and prediction/coding modes
 - Total memory requirement strongly depends on implementation, and can be expected via conventional codec implementation

Mode decision in I-picture

- 16x16 conventional MB size
- All prediction modes and MB coding modes are determined by RDO
- Transform decision
 - 1. RDO decision with 2-D transform
 - 2. Directional transform basis functions further evaluated by RDO for intra8x8 and intra16x16 cases
- Chroma
 - intra8x8 coding

Mode decision in P/B-pictures

- MB size: 64x64(class A/B) or 32x32(class C/D/E)
- Motion estimation
 - EPZS based
 - ME cost: sum of SADs of all color components and motion bits
 - MBWP parameter decision
- Mode and transform block-size/basis type
 - jointly determined by RDO per each motion partition
- Intra mode
 - evaluated at partition having 16x16 block size, after finding the best MV and inter mode

Complexity in Decoding (Normative) Process

- Could be within a few times complexity relative to AVC High Profile
- Computational complexity factors
 - In-loop Wiener filtering
 - Down/Up-sampling in BPP (less impact for inter pictures)
 - SAD computation for adaptive direct MV derivation
- Same level of computational complexity as AVC for
 - Directional Transforms
 - MB-adaptive Weighted Prediction
- Additional memory usage
 - Intermediate storage for adaptive Wiener filter process
- Additional memory bandwidth
 - SAD computation for adaptive direct MV derivation
 - Frame memory access during in-loop Wiener filtering

Other characteristics

- Random access & Delay characteristics
 - Same degree as existing MPEG/ITU-T H.26x Standards by using conventional GOP structure
- Error resilience
 - Same degree as AVC in terms of context adaptive coding architecture
 - Slice structure is possible as usual
- Extensibility
 - Supports of 4:4:4 coding, scalability, multi-view coding are equivalently possible as done in AVC extensions
- Parallel processing
 - Conventional approaches possible (Slice partitioning, MB-level pipeline process flow)
 - In-loop Wiener filter requires more consideration

On simulation software

- Pure standard C-language based code
 - Clean implementation of extended MB size support
 - No use of CPU dependent instructions
- Multi-platform
 - Windows (VisualStudio, gcc/cygwin)
 - Linux (gcc)
 - Mac OS X (gcc)
 - Any UNIX workstations (gcc)
- 64bit operating system assumed
- Modularized extensible design
 - existing software modules in JM/KTA has been reusing without changing the code too much

Remarks

- MB-based hybrid coding is still preferable for practical codec implementations
 - Especially for next-generation UHDTV H/W codec up to 8Kx4K
- MB size extension and in-loop Wiener filter tool should be considered as "starting point" of reference model
 - has been verified by explorations in MPEG CfE / VCEG KTA study
 - Significant coding gain achieved
- Core experiments should target:
 - More performance enhancements with additional proposed tools
 - Further studies on performance-complexity trade-off
 - Performance improvement for higher resolution video sources
- Our codec simulator offers clean and extensible platform for future collaborative standardization work

Summary of Proposed Tools

Category	Proposed Tool
MB size	Explicit MB size signaling
Transform	Adaptive block-size transform
	•Directional transforms
Entropy Coding	Advanced PMV derivation
Loop Filter	Enhanced BALF
Intra Prediction	Block-based Pyramid Prediction
Motion representation	 Multi-level hierarchical motion partitioning
	 diagonal partition shapes
	 Improved direct mode
	•MB-adaptive weighted prediction

Conclusion

- A new video coding algorithm for MPEG-HVC/ITU-T EPVC presented
 - Single-pass picture coding with "Back-to-basics" approach
 - Up to 1dB Luma PSNR gain relative to Alpha/Beta anchor
 - Up to 2dB Luma PSNR gain relative to Gamma anchor
 - Predictable decoder complexity relative to AVC
- Recommendations
 - To adopt the proposed coding algorithm framework into reference model and enhance performance further through CE process until Oct.
 - To consider Super Hi-Vision source for further studies
 - To be proposed by JCTVC-A023