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Abstract

This contribution presents specifications of a new video coding algorithm developed for submission as a response to the Joint Call for Proposals on Video Compression Technology. The proposed video coding algorithm is based on well-known macroblock based hybrid coding architectures with block motion compensation and orthogonal transforms with coefficient quantization, and additional new coding tools. Major technical advances from existing state-of-the-art AVC/H.264 are to enable adaptation of macroblock size together with multi-level hierarchical motion partitioning, adaptive transform decision including new directional transforms, new intra coding mode exploiting self-correlation within a coded block, localized weighted prediction, and adaptive Wiener loop filtering. The performance gain with the basic part of the proposed architecture has been proven in some practical implementation studies including responses to MPEG’s Call for Evidence or KTA (Key Technical Area) work being conducted by ITU-T VCEG (Q6/SG16). The proposed algorithm showed around 1dB PSNR gain in average relative to high-complexity AVC/H.264 high profile over a wide range of test sequences. More gain can be observed especially for high-resolution video sources such as class A and B as reported in this contribution. The proposed architecture has more functional extensibility than the fixed use of existing 16x16 macroblocks, which could be a good starting point for further performance improvement, while maintaining product implementability.
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1 Introduction
This contribution presents specifications of a new video coding algorithm proposed as a response to the Joint Call for Proposals on Video Compression Technology [1], jointly issued by ISO/IEC MPEG and ITU-T VCEG (Q6/SG16). The most important requirements of this upcoming standard are algorithm optimization for next-generation high-quality sources up to 8Kx4K UHDTV and to achieve significant compression performance relative to “state-of-the-art” MPEG-4 AVC/ITU-T H.264 standard (AVC/H.264) [2]. To pursue this goal while maintaining product implementability near the expected completion date of standardization work, the proposed scheme uses a conventional block-based MC + transform based hybrid coding approach, which is a well-optimized and reliable video coding architecture for practical use and should be preferable in terms of H/W friendliness. Technical advances relative to AVC/ H.264 are listed below.

· Extension of macroblock size and ability of its adaptation at higher syntax level

· Inter prediction with hierarchical and non-rectangular shaped motion partitioning

· Adaptive transform with multiple block sizes and directional basis functions

· Block-based pyramid intra prediction

· MB-based weighted prediction

· Combined in-loop adaptive de-blocking and Wiener filtering
· Optimized CABAC design that accommodates extended macroblock size syntax
2 Algorithm Description

2.1 Overview
Figure 2‑1 and Figure 2‑2 show block diagrams of video encoder and decoder to be proposed in this submission. In the encoder, each source input frame is divided into a set of macroblock(MB)s, whose size can be determined by the encoder and signaled to decoder side via explicit syntax elements. The coding efficiency of this technique for high-resolution video coding has been proven by practical implementation based studies [3]-[5]. Adaptability of MB size enables the encoder to find the best trade-off between overhead bit budget and achievable distortion flexibly, for handling wide variety of picture resolutions from QVGA to 8Kx4K as specified in the Vision and Requirements for the new standard [6]. 
The proposed coding scheme relies on conventional picture coding types, which are I-, P-, and B-pictures. All MBs in I-pictures shall be encoded as intra blocks. MBs in P-pictures can use inter prediction using a single reference picture as well as adaptive use of intra blocks. Inter prediction using up to two reference pictures is allowed for MBs in B-pictures. AVC/H.264 based management of multiple reference pictures in the frame buffer is employed as a starting point for future enhancement of coding performance during standardization work.

For intra-coded blocks, the proposed scheme provides a set of coding modes among which the best mode can be chosen at the encoder per 16x16 luma block. Basically, this coding mode set consists of conventional AVC/H.264 intraNxN coding modes plus a new proposed mode named “BPP”(Block-based Pyramid intra Prediction) [7]. On the other hand, corresponding intra chroma components shall always be encoded by intra8x8 mode whose prediction mode can be chosen independently from that of luma. When the MB size of P- or B-pictures is set larger than 16x16, intra block can be chosen at a 16x16 sub-partition.

A hierarchical block partitioning based on a quad-tree structure is employed for inter prediction in P- and B-pictures. This is a kind of straight-forward extension to AVC/H.264 motion partitioning, but also supports some other features such as hierarchical use of skip modes, or additional simplified non-rectangular motion partition shapes Additional technical advances on inter prediction parts are adaptive PMV and direct MV derivation for compact representation of motion information, and MB-based weighted prediction that allows local adaptation of weighting factors [8].

The prediction residual signal of each MB is further compressed by using an adaptive transform and quantization process. In addition to the adaptive 4x4/8x8 transform adopted in AVC/H.264 High Profile, a 16x16 DCT is employed for efficient energy concentration of residual signals having relatively smooth distributions [9]. Thus, the transform block size for luma components can be chosen from 4x4, 8x8, and 16x16 depending on the inter prediction mode used to obtain the residual. The selected transform block size is then signaled to the decoder via explicit syntax element, together with inter prediction mode. When transform block size is 8x8 or 16x16, a set of 1‑D directional basis functions can also be selected instead of using the 2-D transform. This directional transform could represent edge-oriented residual signals efficiently, using fewer transform coefficients than the conventional 2-D transform [10]. The quantization process for transform coefficients is based on AVC/H.264 specifications, modified to accommodate the directional transform. A single-path version of rate distortion optimized quantization (RDO-Q) [11] process is applied as an encoder-only optimization.

CABAC is employed as entropy coder for the proposed scheme. Its arithmetic coding engine and the basic framework are the same as that of the AVC/H.264, but its initialization tables, binarizations and context modeling have been modified to optimize coding performance of the syntax for the support of extended MB sizes in the proposed scheme.

Finally, as for the in-loop filtering process, the proposed scheme takes a two-stage filtering solution, where an extended de-blocking filter from AVC/H.264 is applied first, then adaptive Wiener filtering is performed. The de-blocking filter process is based on the AVC/H.264 specification and is extended to support adaptive transform process and mixed intra/inter MB. The proposed adaptive Wiener filter is an extended version of BALF (Block-Adaptive Loop Filter)[12], which designs and utilizes multiple Wiener filters for quality enhancement of reference pictures.


[image: image1.emf] 

Frame

Memory

CABAC

Frame 

Memory

Motion 

Estimation

Motion 

Compensation

－

Transform/

Quantization

Inverse

Transform/

quantization

＋

Loop filtering

Adaptive transform block -size &

Directional transforms

Extended in-loop deblockingfilter 

& Adaptive Wiener loop filter

Adaptive PMV 

derivation

Division to 

MB

Intra Prediction

mb_type/

sub_mb_type_LX

Block-based Pyramid 

Prediction 

Improved direct mode

Macroblock size 

extension

Multi-layered

hierarchical motion 

partitioning

Non-rectangular 

motion partitions

MB-adaptive 

Weighted Prediction


Figure 2‑1  Block diagram of the proposed encoder
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Figure 2‑2  Block diagram of the proposed decoder

2.2 Macroblock size extension
The macroblock (MB) has been a basic data unit for encoding/decoding process in video coding standards for a long time, from the very early stage of standard such as H.261. On the other hand, its size has remained the same (i.e., 16 pixels x 16 lines for luma component) until the most recent standard AVC/H.264. To achieve high compression performance especially on UHDTV class video sources, it is essential to reduce the size of information to be encoded in lossless fashion, such as motion vector data. Since MB size limits the image region size that can be covered by single motion vector, it is not possible to reduce motion bits more unless MB size can be extended, or joint optimization for multiple MBs is performed, which requires extremely high computational loads. The MB size extension can also be justified by the fact that pixel-wise correlation should be getting higher as the resolution of video source is increased, and a single motion vector can cover wider image areas than for the case of coding for lower resolution video, if we ignore the influence of noise components.

In practice, however, the simple expansion of image area to be predicted by single motion vector results in increase of prediction error energy due to a “real-world” noise effect. Thus, an optimized design on adaptive motion block size support together with extended MB size should be required for new standard. In addition to that, extension of transform block size should be considered jointly, as smoother residual signal tends to be obtained when a larger motion block is chosen from a set of hierarchical motion partitioning shapes. This aspect will be specified in Section 2.3. In the proposed scheme, a mechanism to determine a MB size (MbSizeH, MbSizeV) depending on signal characteristics is supported. More specifically, it is allowed for the encoder to use one of the following two sizes for P- and B-picture coding. 
“32x32 MB”: MbSizeH = MbSizeV = 32 (in luma component)

“64x64 MB”: MbSizeH = MbSizeV = 64 (in luma component)
The coding performance reported in Section 3 has been obtained by fixing MbSizeH and MbSizeV within P- and B-pictures for all frames in a sequence (64x64 for class A and B, 32x32 for other classes), however, there should be further performance improvement by adapting these size values picture-by-picture or slice-by-slice, considering non-stationary property of video signals.

2.3 Motion representation

2.3.1 Hierarchical motion partitioning

In the proposed coding scheme, motion compensated prediction based on hierarchical block partitioning depending on MB size, is employed for inter prediction. An inter MB (i.e., MB belonging to P- or B-picture) can have a 32x32 or 64x64 luma block size. When the MB size is 32x32, an inter macroblock can be split into up to four quad-tree motion partitions, each of which has a 16x16 block size. This first quad-tree partition level is called L0(“Layer0”)-partition. A partition belonging to L0-partition can have its own prediction mode “sub_mb_type_L0”. When the MB size is 64x64(Figure 2‑3), an inter MB can be split into up to four L0-partitions, each of which has a 32x32 block size. Each L0-partition can have its own sub_mb_type_L0. Then, a L0-partition can further be split into up to four L1(“Layer1”)-partitions, each of which has a 16x16 block size. Each L1-partition can have its own prediction mode “sub_mb_type_L1”. Given this specification, the smallest-size motion partition that can have sub_mb_type_LX (X=0,1,2) information shall be 16x16 block, and the smallest-size motion partition within a MB shall be 8x8 block in luma domain. Motion partition for chroma components shall be derived from corresponding luma partition shape, and has one-fourth size and the same shape as the corresponding luma partition.
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Figure 2‑3  Multi-layer hierarchical motion partitioning

In this proposed design, the largest motion block has the same size as the MB, but the smallest motion block size is constrained to 8x8 to limit memory bandwidth requirement due to a need of access to edge pixels of reference block for the purpose of MC interpolation filtering. Coding mode can also be assigned to each motion partition. At the MB-level, “mb_type” signals coding mode for a MB. “sub_mb_type_L0” is used to specify coding mode for a 1st layer sub-partition (L0 sub-partition), each of which is obtained by first quad-tree partitioning of a MB. Then, if necessary, “sub_mb_type_L1” or “sub_mb_type_L2” specify coding mode of L1 or L2 sub-partition, which are obtained by applying recursive quad-tree partitioning to L0 or L1 sub-partitions, respectively. Available types for each coding mode have been designed with consideration of size-effect in each partition level. In particular, skip mode, which utilizes PMV as its motion vector and does not transmit non-zero coefficients at all, is defined in all partition levels (the smallest partition size is 8x8). The number of available types in the highest partition layer is reduced relative to lower partition layers so that signaling bits can be limited without sacrifice of loss of prediction efficiency.

“mb_type” and “sub_mb_type_LX”(X=0,1,2) allowed for P- and B-pictures are defined in Table 2‑1 to Table 2‑7. Inta coding mode (P[B]_I4x4, P[B]_I8x8, P[B]_I16x16 and P[B]_BPP) can only be selected at sub-partition level having 16x16 block-size.

Table 2‑1 mb_type allowed for P-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	P_1Part
	1
	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UL
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at top-left position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UR
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at top-right position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LL
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at bottom-left position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LR
	2
	Part0: 

Other part of part1 in a MB

Part1:

(MbSizeH>>1) ×(MbSizeV>>1) at botto-right position in a MB
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


Table 2‑2  sub_mb_type_L0 allowed for P-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	P_1Part
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UL
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at top-left position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_UR
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at top-right position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LL
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at bottom-left position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_LR
	2
	Part0: 

Other part of part1 in a L0 sub-partition

Part1:

(MbSizeH>>2) ×(MbSizeV>>2) at botto-right position in a L0 sub-partition
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na
	32x32MB:

Pred_L0

64x64MB:

na

	P_I4x4 *
	16
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	P_I8x8 *
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	P_I16x16 *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na

	P_BPP *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


  * can be selected only when 32x32MB (MbSizeH = MbSizeV = 32) is used.

Table 2‑3 sub_mb_type_L1 allowed for P-picture (only for 64x64MB)

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	P_Skip
	1
	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	P_1Part
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	P_2Part_H
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	na
	na

	P_2Part_V
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	P_4Part
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	P_I4x4
	16
	(MbSizeH>>4) ×(MbSizeV>>4)
	na
	na
	na
	na

	P_I8x8
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	P_I16x16
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	P_BPP
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na


Table 2‑4 mb_type allowed for B-picture
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip
	1
	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	MbSizeH×MbSizeV
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	MbSizeH×MbSizeV
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	MbSizeH×MbSizeV
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L0_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L0_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L1_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L1_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L0_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L0_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_L0_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L0_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L1_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_L1_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_BI_H
	2
	MbSizeH ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V
	2
	(MbSizeH>>1) ×MbSizeV
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part
	4
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na


Table 2‑5  sub_mb_type_L0 allowed for B-picture 

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip
	1
	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>1)×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L0_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L0_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	Pred_L1
	na
	na

	B_2Part_L1_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L1_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	Pred_L0
	na
	na

	B_2Part_L0_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L0_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L0
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_L1_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	Pred_L1
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_L0_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L0_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L0
	na
	na

	B_2Part_BI_L1_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_L1_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	Pred_L1
	na
	na

	B_2Part_BI_BI_H
	2
	(MbSizeH>>1) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V
	2
	(MbSizeH>>2) ×(MbSizeV>>1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part_L0*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	B_4Part_L1*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	Pred_L1
	Pred_L1

	B_4Part_BI*
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)

	B_I4x4 *
	16
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	B_I8x8 *
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	B_I16x16 *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na

	B_BPP *
	1
	(MbSizeH>>1) ×(MbSizeV>>1)
	na
	na
	na
	na

	B_4Part
	4
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na


* can be selected only when 32x32MB (MbSizeH = MbSizeV = 32) is used.

Table 2‑6 sub_mb_type_L1 allowed for B-picture

	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Skip*
	1
	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_Direct
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>2)×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_2Part_L0_L0_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L0_L0_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L0
	Pred_L0
	na
	na

	B_2Part_L1_L1_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_L1_L1_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	Pred_L1
	Pred_L1
	na
	na

	B_2Part_BI_BI_H*
	2
	(MbSizeH>>2) ×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_2Part_BI_BI_V*
	2
	(MbSizeH>>3) ×(MbSizeV>>2)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	na
	na

	B_4Part_L0*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L0
	Pred_L0
	Pred_L0
	Pred_L0

	B_4Part_L1*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	Pred_L1
	Pred_L1
	Pred_L1
	Pred_L1

	B_4Part_BI*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)
	(Pred_L0, Pred_L1)

	B_I4x4*
	16
	(MbSizeH>>4) ×(MbSizeV>>4)
	na
	na
	na
	na

	B_I8x8*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na

	B_I16x16*
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	B_BPP*
	1
	(MbSizeH>>2) ×(MbSizeV>>2)
	na
	na
	na
	na

	B_4Part*
	4
	(MbSizeH>>3) ×(MbSizeV>>3)
	na
	na
	na
	na


* can be selected only when 64x64MB (MbSizeH = MbSizeV = 64) is used.

Table 2‑7  sub_mb_type_L2 allowed for B-picture (only for 64x64MB)
	
	NumPart
	PartSize
	PartPredMode

(part0)
	PartPredMode

(part1)
	PartPredMode

(part2)
	PartPredMode

(part3)

	B_Direct
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	na
	na
	na

	B_1Part_L0
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	Pred_L0
	na
	na
	na

	B_1Part_L1
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	Pred_L1
	na
	na
	na

	B_1Part_BI
	1


	(MbSizeH>>3)×(MbSizeV>>3)
	(Pred_L0, Pred_L1)
	na
	na
	na


2.3.2 Non-rectangular motion partitions

It has been proven that hierarchical motion partitioning is promising to perform efficient inter prediction as adopted in AVC/H.264. On the other hand, it is also true that small motion partition sizes like 4x4 tend to capture more noise components as video resolution gets higher, since it becomes difficult to see specific object structure within such a small motion partition area. It should also be noted that small motion partition with longer-tap MC interpolation filter becomes a burden in terms of memory bandwidth in practical codec implementations. The proposed algorithm alternatively adopts a simple set of non-rectangular motion partition shapes as illustrated in Figure 2‑4. The advantage of using these motion partitions is that movement of object boundaries can efficiently be captured by allowing a diagonal partition within a square block, and thus resulting motion vector data can be represented more efficiently than the use of quad-tree partitioning. Much literature has shown these advantages in various partitioning schemes [13]-[15]. Complicated partitioning shapes have been proposed in some previous works, however, they require more bits to represent complicated partition shape itself, and thus overall coding performance should be bounded at some point in spite of the increased encoding complexity. Thus, we propose to employ only a simple set of diagonal partitions. In Figure 2‑4, “M” represents width and height of a MB-level or LX-level sub-partition. These diagonal partition modes can only split a MB- or LX-level sub-partition into two regions, each of which has specific motion vector respectively. 
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Figure 2‑4  Non-rectangular Motion Partition Shapes
2.3.3 Motion vector prediction
Efficient coding of motion information is essential for high-resolution video coding since it is not possible to take a lossy coding approach for coding of motion parameters, and thus this information is going to occupy significant overhead bits as higher compression ratios are required. Rate-constrained motion estimation by using coded motion bits as rate factor is a basic solution to find the best trade-off between motion search efficiency and overhead bit budget. In such framework, derivation of accurate motion vector predictor (PMV) gives better results since motion vectors are usually encoded by predictive coding with estimated PMV. The proposed scheme employs a spatio-temporal adaptive PMV derivation method to improve prediction efficiency of motion vectors. In B-pictures, direct motion vector derivation is essentially an equivalent concept to PMV derivation. The proposed scheme adopts an improved direct mode based on an adaptive direct motion vector derivation to obtain more accurate direct motion vectors.
2.3.3.1  Spatio-temporal adaptive PMV decision
The KTA study in ITU-T VCEG adopted an adaptive PMV derivation technique called Motion Vector Competition (MVC) [16]. MVC finds the best PMV in terms of coding efficiency of motion bits from multiple candidates for potential PMVs those can be determined from spatially neighboring MVs, and sends a 1-bit flag to notify the decoder which PMV is selected at the encoder.

The proposed scheme extends this concept of MVC so that it can exploit the temporal correlation of motion vectors as well as the spatial one. In general, a video frame consists of various moving regions each of which has different spatio-temporal correlations in motion vectors such as foreground objects and background region, or a region with a complicated motion field where spatial PMV is a much better candidate than the temporal one, and the other region with a smooth motion field where temporal PMV can represent the motion field better than spatial ones. Due to the non-stationary property of video signals, it should be efficient to introduce an adaptive PMV decision per each motion vector under the assumption that CABAC can efficiently represent the signaling bit depending on context of the video source. In the proposed scheme, the following temporal and spatial PMVs are available for selection (Figure 2‑5).
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Figure 2‑5  Candidates for adaptive PMV derivation
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 is derived by referring to motion vector of co-located motion partition in a reference picture to be used for prediction. When deriving 
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are adjusted to the partition edge, and use the same derivation process as that for rectangular partitions. If the reference direction of the motion vector of a co-located motion partition is different from the current motion vector, then 
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 is obtained by motion vector scaling assuming a linear motion field. Final PMV is determined by competition between 
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 with regard to resulting rate cost for differential motion vector data (mvd).
2.3.3.2  Adaptive direct vector derivation
Direct mode is known as an efficient coding mode for B-picture coding due to its prediction efficiency and no need of motion bits to be transmitted to decoder. Since coding efficiency of direct mode highly depends on the accuracy of the estimated direct motion vector, the proposed scheme introduces locally adaptive derivation of the direct motion vector by enabling selection of the best candidate from spatial and temporal neighboring motion vector data. A similar mechanism can be used at slice level in the AVC/H.264, however, local adaptation can capture non-stationary motion fields of various video sources much better. It is noted that the scheme employed here does not transmit selection bit to decoder side, which means no additional overhead bit is required for this adaptation.

Adaptive decision of direct vector is performed as illustrated in Figure 2‑6. Similarity of prediction block candidates is used as decision criteria. In Figure 2‑6, 
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represent forward and backward prediction blocks obtained by one of the direct vector candidate derived from temporal co-located vector, and 
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are forward and backward prediction blocks obtained by the other direct vector candidate derived from spatial neighboring vector. Given this notation, similarity criteria are defined by:
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Bigger SAD shows that the difference between forward and backward prediction samples is more significant and correlation is lower. Thus, the final direct motion vector is determined as the one that can produce a smaller SAD value. Considering that the proposed scheme extends MB size, the spatial direct vector candidate is obtained by using nearest neighboring motion vector data, instead of using the ones located outside of the current MB as specified in AVC/H.264. This can improve estimation accuracy of the spatial direct vector candidate.
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Figure 2‑6  Adaptive direct vector derivation

2.3.4 Obtaining inter prediction

Except for the above-mentioned enhancements, inter prediction derivation process is essentially identical to the one of AVC/H.264. Motion vector precision is up to quarter-sample accuracy, and the MC interpolation filter used to generate half- and quarter-pel reference samples is identical to the one used in AVC/H.264. The chroma motion vector is also derived from the motion vector of the corresponding luma component based on an AVC/H.264 compliant derivation process. A motion partition of P-picture can use only one reference picture belonging to reference picture list 0, and it is permitted for a motion partition in B-picture to use two prediction blocks obtained from reference picture list 0 and list 1. In B-picture, mb_type or sub_mb_type elements contain signaling on which the reference picture list is used to form a final prediction as shown in Table 2‑4 to Table 2‑7. Even though the experimental results in Section 3 have not been obtained with full-optimization of reference picture list management, the proposed scheme assumes availability of the same level of customization of reference picture list management, by using memory management control operations (MMCO) or reference picture re-ordering etc.

One typical difference in the inter prediction derivation process from that of AVC/H.264 is the adaptive selection of prediction direction at a picture edge when direct mode is used there. The direct mode in the proposed scheme checks resulting forward and backward direct motion vectors to see whether either points outside of the valid picture area (i.e., each vector is unrestricted motion vector). If one of forward/backward direct vectors is an unrestricted motion vector, prediction samples are generated by only using the other direct vector. This can avoid unnecessary prediction loss caused by averaging unreliable prediction samples with unrestricted motion vectors, and could reduce memory bandwidth when unidirectional prediction is selected.
2.3.5 MB-adaptive weighted prediction
In the AVC/H.264, arbitrary multiplicative weighting factors and additive offset factors can be applied to the reference picture predictions. This “weighted prediction” can generally be represented with the following relation:
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where X is a reference picture signal, Y is the predicted image signal, o is an additive offset and w is a multiplicative weight. A separate offset/weight pair can be assigned to each of the reference picture signals used to predict the current picture. In the explicit mode, weight and offset are specified at the slice level and their derivation is not defined by the standard. In the implicit mode the weights are computed according to the distance to the referenced pictures, where the relationship between the picture distances and the applied weights are defined by the standard. The standard leaves a provision for applying different explicit weighting parameters for different segments of a slice, down to the size of a macroblock, by means of reference picture reordering and memory management control operations (MMCO). However, this is not sufficient for the parameter sets that would be large enough to support fine grain adaptation at a macroblock level.  
Furthermore, the derivation of the picture-level weighted prediction parameters normally entails some multipass scheme, where picture data has to be processed at least twice. One possibility is just to estimate the parameters, for which the whole picture statistics need to be captured before the actual compression, in order to compute the optimal weighting parameters using some criteria related to the expected compression performance. Since in practice the compression performance utilizing picture level weighted prediction cannot be estimated reliably without actually compressing the data, a scheme known as “Picture Level Rate-Distortion Optimisation” can be employed, in which the picture is compressed multiple times, each time with different weighted prediction parameters, including a mode where weighted prediction is disabled, and the best outcome in terms of Lagrangian cost is preserved. This has the disadvantage of relatively high computational complexity.

Since the derivation of the explicit weighting parameters is not defined by the standard, various schemes exist. In the literature the following derivation methods are discussed: offset only by subtracting means of two pictures, weight only by dividing means of two pictures, histogram based and linear regression based methods, and also iterative variations of all previous methods, where the parameters are adjusted after motion compensation. The heuristic based methods compute several pairs of parameters, each by using a different derivation method, and then by using a particular metric decide which one would perform the best.

To adapt to the illumination changes within the picture, the operation of weighted prediction is here defined at the local level, where for each picture segment or block a different set of weighting parameters is defined and sent in the part of the bit-stream that conveys parameters for the current block. The operation of weighted prediction can be defined with:
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where Bcn is a block from the n+1-st reference picture, Bp is the prediction signal, o is offset and wn is the weight associated with block Bcn. Bp is used to predict the current block.

In the current implementation the level where the proposed weighted prediction operates is the macroblock. In this context the method presented here is called MBWP (MacroBlock Weighted Prediction) [8]. For the sake of simpler notation, MBWP is only presented here for the unidirectional prediction case (e.g. P pictures), with generalisation considerations to multi-reference pictures discussed where required. In this case MBWP can be defined with:
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where MBc′ is a decoded macroblock, MBp is the prediction signal, obtained by means of interpolation in the case of sub-pel precision motion vectors or directly from the previously decoded pictures, o is offset and w is weight. MBp is used to predict the current macroblock.

The prediction signal is added to the decoded difference signal 
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 and the current macroblock 
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 is then reconstructed as:
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A diagram of a decoder incorporating MBWP is presented in Figure 2‑7. The input stream of the current macroblock is entropy decoded, resulting in the following data: quantized transformed samples of the current macroblock, motion vectors and weighting parameters. The main difference from AVC/H.264 is that the weighted prediction parameters are sent on the macroblock level and predicted from the previously decoded ones. Motion compensation is then performed, using the decoded motion vectors and the previously decoded reference signal. Such motion compensated signal is then modified by applying weight and offset. The residual macroblock signal is obtained by inverse quantization and inverse spatial transform, after which the weighted prediction signal is added to obtain the decoded macroblock samples.
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Figure 2‑7  Block diagram of decoder utilizing MBWP
Weighting parameters are found in such way that the RD cost is minimised, with offset o and weights w as variables:
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The RD cost is composed of SSE distortion
[image: image33.wmf](

)

,

Dow

 and rate 
[image: image34.wmf](

)

,

Row

 that takes into account both rate of the motion vectors and the weighting parameters. The Lagrangian multiplier is equal to 
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. The parameters are quantized in order to send them efficiently in the bitstream. Here the uniform quantization step of 128 is used. The offset and weight parameters are quantized in the following way:
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where 
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 denotes rounding to the nearest integer.
2.4 Intra coding
The proposed scheme supports a new intra coding mode called “Block-based Pyramid intra Prediction”(BPP) mode, together with modified versions of conventional AVC/H.264 intra prediction modes. The BPP mode exploits correlation between samples of the original block and its reduced resolution samples when correlation with spatially neighboring pixels is not so strong. Conventional AVC/H.264 intra modes have also been modified to accommodate efficient coding of high-resolution video. One of the modifications is replacement of transform of intra16x16 mode from two-stage DC/AC separated transforms to a 16x16 single stage transform. The Second modification is the application of intra8x8 coding modes adopted in AVC/H.264 to 4:2:0 chroma components. This larger block-size transform is useful especially for high-resolution video due to the higher correlation between adjacent pixels.

2.4.1 Block-based Pyramid Prediction
In the AVC/H.264, intra prediction is conducted in the spatial domain by referring to neighboring samples of previously-decoded blocks. Those predictors are linearly extrapolated to generate the prediction of pixels of the current block. This conventional intra prediction performs dramatically well on straight edges along the same direction as the prediction. On the other hand, if an edge whose direction differs from all intra prediction modes existing in the current block, the intra prediction adds an unnecessary straight edge to the residual signal, which degrades coding efficiency. In this submission, Block-based Pyramid Prediction (BPP) [7] is introduced to overcome the problem stated above.

A block diagram of the BPP algorithm is depicted in Figure 2‑8. At the encoder, an input original block of samples Bo is down-sampled to block Bs, which is passed to a subtractor. Meanwhile, the average of the input block is predicted by referring to neighboring samples of previously-coded blocks, and a predicted average sample value d is output to the subtractor and an adder. At the subtractor, the predicted average sample value d is subtracted from each sample of the down-sampled block.

                Bsr(i, j) = Bs(i, j) – d,   (i, j)
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The residual down-sampled block is output to a transformation/quantization process. During transformation and quantization, the residual down-sampled block Bsr is transformed and quantized methods similar to those used in  AVC/H.264, and then quantized coefficients of the residual down-sampled block Fsr are output. These coefficients Fsr are then inverse transformed and inverse quantized, and a reconstructed residual down-sampled block B’sr is output to an adder. At the adder, the predicted average sample value d from the average prediction part is added to each sample of the reconstructed residual down-sampled block B’sr.
                B’s(i, j) = B’sr(i, j) + d,   (i, j)
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The reconstructed down-sampled block B’s is up-sampled to the size of the original input block and output as a prediction of the original input block Bp. The quantized coefficients of the residual down-sampled block Fsr are entropy coded to be used at the decoder to generate the identical prediction block.
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Figure 2‑8  Block diagram of the BPP algorithm for encoder

Figure 2‑9 is a block diagram of the BPP algorithm for decoder. At the decoder, the quantized coefficients of the residual down-sampled block Fsr are obtained by entropy decoding and input to an inverse transformation and quantization process. At the same time, the average of the prediction block is predicted by referring to neighboring samples of previously-decoded blocks, and a predicted average sample value d is output to the subtractor. The coefficients Fsr are inverse inverse quantized/transformed, and the reconstructed residual down-sampled block B’sr is output to an adder. The predicted average sample value d is added to each sample of the reconstructed residual down-sampled block B’sr, as was done in the BPP procedure in the encoder.
                B’s(i, j) = B’sr(i, j) + d,   (i, j)
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The reconstructed down-sampled block B’s is up-sampled to the size of the original input block and output as a prediction of the original input block Bp, which are identical to the prediction block samples at the encoder.
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Figure 2‑9  Block diagram of the BPP for decoder
2.4.2 AVC/H.264 based intra coding modes

Modified AVC/H.264 luma intra coding modes are employed for luma intra coding as well as BPP mode, and the best mode is determined per each 16x16 partition from all possible intra coding modes. One specific difference from the AVC/H.264 is that intra16x16 mode utilizes 16x16 DCT for its residual coding instead of two-stage 4x4 integer transforms. In an I-picture, the 16x16 partition corresponds to a MB thus intra coding mode is determined per each MB as in the AVC/H.264. On the other hand, intra mode can only be selected in the 16x16 partition unit in P- and B-pictures.

2.4.3 Intra chroma coding

For intra coding of chroma components, the developed scheme utilizes intra8x8 coding mode employed by the AVC/H.264 luma intra coding. Both U and V components are predicted with a single common prediction mode that is chosen from 9 directional prediction modes defined in the AVC/H.264 and the prediction mode decision is made independently from the luma coding and prediction mode. The residual signal is encoded by an 8x8 integer transform and corresponding quantization process.
2.5 Spatial transforms
2.5.1 Adaptive block-size 2-D transform

The residual signal obtained as the result of inter prediction is encoded using an adaptive multiple block-size transform technique. The basic concept of adaptive block-size transform employed in this specification is to use a simple set of 2-D integer transforms {4x4, 8x8, 16x16} and to allow 1-bit selection (i.e., selection of one from two candidates) per each sub-partition layer. The adaptive transform size selection can only be allowed for the luma component, and a unit of transform size selection shall be at the maximum block size of the corresponding sub-partition layer. For 4x4 and 8x8 transforms, AVC/H.264 compliant specification shall be used. For the 16x16 transform, a simple real-valued DCT transform basis rounded into integer accuracy is used to obtain experimental results in Section 3. 
Transform configurations allowed for inter pictures are summarized in Table 2‑8 to Table 2‑11. Conceptually, larger transform block sizes can be selected for relatively large motion partitions considering that the residual signal for a large motion partition tends to be smoother than that for a smaller motion partition. More specifically, only the 16x16 DCT can be used for a motion partition that is larger than 32x32. Adaptive decision from 16x16 and 8x8 transforms is allowed for motion partitions smaller than 32x32 but larger than 16x16. Similarly, 8x8 and 4x4 transforms can be selected adaptively for a motion partition that is smaller or equal to a 16x16 block size. A 1-bit flag indicating transform block size shall be multiplexed into the coded data of each partition. Note that in B-picture coding, adaptive transform block size decision is not available for L1 sub-partition in 32x32MB case and for L2 sub-partition in 64x64MB case. For these cases, transform block size shall be determined at larger motion partition level.
Table 2‑8  Transform process for P-picture (32x32 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	P_1Part
	-
	-
	16x16 or 8x8
	MB

	P_2Part_H
	-
	-
	16x16 or 8x8
	MB

	P_2Part_V
	-
	-
	16x16 or 8x8
	MB

	P_2Part_UL
	-
	-
	16x16 or 8x8
	MB

	P_2Part_UR
	-
	-
	16x16 or 8x8
	MB

	P_2Part_LL
	-
	-
	16x16 or 8x8
	MB

	P_2Part_LR
	-
	-
	16x16 or 8x8
	MB

	P_4Part
	P_1Part
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_V
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_H
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_UL
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LR
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LL
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_2Part_LR
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_4Part
	-
	8x8 or 4x4
	SPL0

	P_4Part
	P_I4x4
	-
	4x4
	SPL0

	P_4Part
	P_I8x8
	-
	8x8
	SPL0

	P_4Part
	P_I16x16
	-
	16x16
	SPL0

	P_4Part
	P_BPP
	-
	16x16
	SPL0


Table 2‑9  Transform process for P-picture (64x64 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	P_1Part
	-
	-
	16x16
	na

	P_2Part_H
	-
	-
	16x16
	na

	P_2Part_V
	-
	-
	16x16
	na

	P_4Part
	P_1Part
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_H
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_V
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_UL
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_UR
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_LL
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_2Part_LR
	-
	16x16 or 8x8
	SPL0

	P_4Part
	P_4Part
	P_1Part
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_H
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_H
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_UL
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LR
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LL
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_2Part_LR
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_4Part
	8x8 or 4x4
	SPL1

	P_4Part
	P_4Part
	P_I4x4
	4x4
	SPL1

	P_4Part
	P_4Part
	P_I8x8
	8x8
	SPL1

	P_4Part
	P_4Part
	P_I16x16
	16x16
	SPL1


Table 2‑10  Transform process for B-picture (32x32 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	Transform configuration (Luma)
	Unit of selection

	B_Direct
	-
	-
	16x16 or 8x8
	MB

	B_1Part_L0
	-
	-
	16x16 or 8x8
	MB

	B_1Part_L1
	-
	-
	16x16 or 8x8
	MB

	B_1Part_BI
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L0_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_L1_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L0_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L0_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L1_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_L1_V
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_BI_H
	-
	-
	16x16 or 8x8
	MB

	B_2Part_BI_BI_V
	-
	-
	16x16 or 8x8
	MB

	B_4Part
	B_Direct
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_L0
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_L1
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_1Part_BI
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L0_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_L1_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L0_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L0_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L1_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_L1_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_BI_H
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_2Part_BI_BI_V
	-
	8x8 or 4x4
	SPL0

	B_4Part
	B_I4x4
	-
	4x4
	SPL0

	B_4Part
	B_I8x8
	-
	8x8
	SPL0

	B_4Part
	B_I16x16
	-
	16x16
	SPL0

	B_4Part
	B_BPP
	-
	16x16
	SPL0

	B_4Part
	B_4Part
	B_Direct
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_L0
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_L1
	8x8 or 4x4
	SPL0

	B_4Part
	B_4Part
	B_1Part_BI
	8x8 or 4x4
	SPL0


Table 2‑11  Transform process for B-picture (64x64 MB case)

	mb_type
	sub_mb_type_L0
	sub_mb_type_L1
	sub_mb_type_L2
	Transform configuration (Luma)
	Unit of selection

	B_Direct
	-
	-
	-
	16x16
	MB

	B_1Part_L0
	-
	-
	-
	16x16
	MB

	B_1Part_L1
	-
	-
	-
	16x16
	MB

	B_1Part_BI
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_L0_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_L0_BI_V
	-
	-
	-
	16x16
	MB

	B_2Part_L1_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_L1_BI_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L0_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L0_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L1_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_L1_V
	-
	-
	-
	16x16
	MB

	B_2Part_BI_BI_H
	-
	-
	-
	16x16
	MB

	B_2Part_BI_BI_V
	-
	-
	-
	16x16
	MB

	B_4Part
	B_Direct
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_L0
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_L1
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_1Part_BI
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L0_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_L1_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L0_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L0_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L1_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_L1_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_BI_H
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_2Part_BI_BI_V
	-
	-
	16x16 or 8x8
	SPL0

	B_4Part
	B_4Part
	B_Direct
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_L0
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_L1
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_1Part_BI
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L0_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_L1_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L0_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L0_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L1_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_L1_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_BI_H
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_2Part_BI_BI_V
	-
	16x16 or 8x8
	SPL1

	B_4Part
	B_4Part
	B_I4x4
	-
	4x4
	SPL1

	B_4Part
	B_4Part
	B_I8x8
	-
	8x8
	SPL1

	B_4Part
	B_4Part
	B_I16x16
	-
	16x16
	SPL1

	B_4Part
	B_4Part
	B_BPP
	-
	16x16
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_Direct
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_L0
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_L1
	8x8 or 4x4
	SPL1

	B_4Part
	B_4Part
	B_4Part
	B_1Part_BI
	8x8 or 4x4
	SPL1


2.5.2 Directional transform

The transform used by AVC/H.264 to process both Intra and Inter prediction residuals is related to an integer 2-D DCT, implemented using horizontal and vertical transforms. Others have found that the coding efficiency can be improved by using direction-dependent transforms, since the residuals often contain textures that exhibit directional features. For example, the mode-dependent directional transform of [17] uses KLT functions to code Intra prediction residuals. The KLT functions, which are computed based upon training data prior to encoding, are dependent upon the Intra prediction direction or mode.
In the proposed scheme, we employ a set of lower-complexity directional transforms in a rate-distortion optimized framework to code prediction residuals [10]. For coding prediction residuals, we would like to exploit correlation along the direction of features in a block while avoiding the generation of high-frequency transform coefficients, by not applying transforms orthogonal to these features. The basis functions for the directional transforms are therefore sets of co-aligned 1-D DCTs applied over a block. The angle of these transform paths span evenly-spaced intervals over the range of [0°,180°). Some example basis functions for these directional transforms are shown in Figure 2‑10.
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Figure 2‑10  Subset of directional transform basis functions
The directional transforms convert an NxN block of prediction residual data X = {xi,j} to sets of 1-D DCT coefficients Cm, m=0,1,…,M-1, where M is the number of 1-D transform paths applied over the block. The coefficients along the path for Cm are
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, k=0,1,…,Km, where Km is the length of transform path Cm. The DC coefficients of these transforms are therefore
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, m=0,1,…,M-1. These directional transforms are used within a rate-distortion optimized framework, as shown in Figure 2‑11. The prediction residual is coded using the traditional 2-D integer DCT as in AVC/H.264, and then it is coded using the set or a subset of the available directional transforms. For each residual block, the transform that yields the lowest rate-distortion cost function
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is selected as the transform to be used for the final encoding of the block.
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Figure 2‑11  Selection and coding using directional transforms
In the current system, directional transforms are used on 8x8 Intra prediction residuals. With directional transforms, the mode decision process is repeated, first for the 2-D DCT, and then for each directional transform. Because we are choosing among a set of transforms for coding each macroblock, we must also signal which transform is used. Currently, for Intra macroblocks, we signal in the macroblock header a 0 if the 2-D DCT is used and a 1 if a directional transform is used. If this bit is 1, we also signal the index (direction) of the directional transform. If, for example, we can choose among four different directions, two additional bits are signaled, representing directions 0, 1, 2, or 3, which would typically correspond to 0°, 45°, 90°, and 135°. 
2.6 Quantization

The proposed coding scheme generally relies on the concept of AVC/H.264 quantization process for transform coefficients. For 4x4 and 8x8 transform coefficients, the same quantization process as that of the AVC/H.264 has been adopted in the proposed scheme. A transform matrix with integer-rounded real-value elements is directly used for the 16x16 DCT, thus direct quantization with step size derived from Qp is applied to 16x16 DCT coefficients. Scanning for 16x16 DCT coefficients is based on zig-zag scanning method, which is a straight-forward extension of conventional zig-zag scan to support 16x16 DCT coefficients.
When directional transforms as specified in the previous section are used, the quantizers and quantizer matrices in H.264/AVC are still configured for use with the traditional 2-D integer transform. To eliminate the need for having different quantizers for each direction, we scale the directional transform coefficients prior to quantization so that the traditional quantizer matrices can still be used. Given an NxN block of directional transform coefficients
[image: image51.wmf]j

i

v

,

, the scaling of coefficients prior to quantization becomes

[image: image52.wmf]QStep

MF

bits

q

v

v

j

i

j

i

×

<<

×

=

¢

_

1

,

,

,





(14)

Where MF corresponds to the quantizer scaling matrix in the encoder, q_bits is a function of the bit-precision of the data, and the Quantization Parameter QP for the block, and Qstep is the quantizer step size. Similarly, after decoding, an inverse scaling matrix must be applied before performing the inverse transform. Also prior to quantization, the directional transform coefficients are rearranged so that the zig-zag scan processes the DC coefficients first. Thus, 
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, m=0,1,…,M-1 are first quantized, followed by 
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For non-normative encoding optimization, single-path RDO-Q [11] is applied to all transform blocks. For constraint set1 condition, the coding performance to be reported in Section 3 was obtained by using the same hierarchical B structure and frame Qp setting rule as those are used in Alpha anchor. For constraint set2, the reported gain in Section 3 was observed by using normal IPPP structure with hierarchical P style Qp offset. It is noted that Beta anchor adopts 3-layered hierarchical P with Qp offsets, but the proposed scheme for constraint set2 did use 2-layered Qp offset.
2.7 In-loop filtering
2.7.1 De-blocking filter

An extended version of in-loop de-blocking filter of the AVC/H.264 is employed to reduce blocking artifacts. The basic algorithm itself is almost the same as that of AVC/H.264, and the main modifications are the support of 16x16 transform block size and mixed intra/inter block in a MB for P-, and B-pictures. Filter strength derivation is performed only with luma component, and filter length and coefficients are based on those from the AVC/H.264.
2.7.2 Adaptive Wiener filter

The (locally) decoded video frame processed by an extended de-blocking filter is further input to an adaptive Wiener filtering process for restoring distortion introduced by the lossy encoding process with some expense on additional small bit budget. The proposed adaptive Wiener filtering tool is based on BALF (Block-based Adaptive Loop Filtering) [12], which is enhanced to utilize multiple Wiener filters. The operation of BALF at the encoder side depends on the information of such an input picture and the original picture of the same frame. The Wiener filtering technique is applied to extract the “optimal” Wiener filter coefficients. The extracted Wiener filter coefficients and their associated adaptive switching on and off flags are sent to the decoder. Based on the decoded information from the video bitstreams, the decoder can operate correctly for an encoder matching in-loop filtering. 
The operational function blocks of the enhanced BALF can be further described in Figure 2‑12. In addition to the original BALF algorithm, the enhanced BALF evaluates feasibility of using additional Wiener filtering operation for image area where the first Wiener filtering is not effective. At the end of the enhanced BALF process, if BALF filtering has been triggered, the decoded picture buffer will be then updated with the newly filtered version of the picture and such a picture is also output as the final decoded video picture.
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Figure 2‑12  Block diagram of enhanced BALF decoding
2.8 Entropy coding

The proposed coding scheme extends the CABAC (Context-Adaptive Binary Arithmetic Coding) specification adopted in the AVC/H.264, in order to support efficient entropy coding of MB syntax elements with MB size extension. The arithmetic coding engine itself is based on that of the AVC/H.264. Major modifications are listed as follows.

· Introduce quad-tree based representation of coded_block_pattern to accommodate mixed transform block-size within a MB, and adaptation of CABAC process to it

· Unification of symbol representation of intra16x16 mode with other intra modes, to limit increase of bit budget required to represent mode information as MB size is going to be increased.

· Skip mode representation is supported not only at MB level but also at sub-partition levels.
3 Compression performance
3.1 Constraint set 1 configuration relative to Alpha anchor

Luma BD values using low-rate 4Qp points and high-rate 4Qp points are shown in Table 3‑1 to Table 3‑5. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A107_PSNR.xls.
Table 3‑1 Class A, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Traffic
	-25.14 
	1.07 
	-22.41 
	0.83 

	PeopleOnStreet
	-16.88 
	0.95 
	-13.86 
	0.76 

	avarage
	-21.01 
	1.01 
	-18.13 
	0.79 


Table 3‑2 Class B, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-31.81 
	1.35 
	-29.50 
	1.08 

	ParkScene
	-20.90 
	0.85 
	-16.70 
	0.65 

	Cactus
	-24.17 
	0.85 
	-22.88 
	0.68 

	BasketballDrive
	-27.47 
	1.03 
	-25.00 
	0.78 

	BQTerrace
	-33.04 
	0.69 
	-32.80 
	0.53 

	avarage
	-27.48 
	0.95 
	-25.38 
	0.74 


Table 3‑3 Class C, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-23.65 
	1.08 
	-22.69 
	1.01 

	BQMall
	-20.46 
	1.09 
	-18.54 
	0.92 

	PartyScene
	-20.70 
	0.82 
	-19.60 
	0.81 

	RaceHorses
	-23.04 
	1.03 
	-20.43 
	0.91 

	avarage
	-21.96 
	1.01 
	-20.32 
	0.91 


Table 3‑4 Class D, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-12.91 
	0.63 
	-10.57 
	0.57 

	BQSquare
	-22.48 
	0.89 
	-22.33 
	0.89 

	BlowingBubbles
	-9.63 
	0.40 
	-10.63 
	0.46 

	RaceHorses
	-8.38 
	0.41 
	-6.69 
	0.36 

	avarage
	-13.35 
	0.59 
	-12.55 
	0.57 


Table 3‑5 Overall, Constraint Set 1 relative to Alpha anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall avarage
	-21.38 
	0.88 
	-19.64 
	0.75 


3.2 Constraint set 2 configuration relative to Beta and Gamma anchors
3.2.1 Performance relative to Beta anchors

Luma BD values using low-rate 4Qp points and high-rate 4Qp points are shown in Table 3‑6 to Table 3‑10. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A107_PSNR.xls.
Table 3‑6 Class B, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-33.68 
	1.52 
	-32.43 
	1.31 

	ParkScene
	-15.09 
	0.58 
	-12.01 
	0.44 

	Cactus
	-18.20 
	0.63 
	-17.26 
	0.52 

	BasketballDrive
	-29.54 
	1.18 
	-27.63 
	0.95 

	BQTerrace
	-27.32 
	0.63 
	-25.05 
	0.47 

	avarage
	-24.76 
	0.91 
	-22.87 
	0.74 


Table 3‑7 Class C, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-14.99 
	0.63 
	-14.34 
	0.59 

	BQMall
	-15.43 
	0.80 
	-13.00 
	0.63 

	PartyScene
	-12.07 
	0.44 
	-8.23 
	0.32 

	RaceHorses
	-15.11 
	0.62 
	-13.85 
	0.57 

	avarage
	-14.40 
	0.62 
	-12.36 
	0.53 


Table 3‑8 Class D, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-8.26 
	0.38 
	-7.21 
	0.37 

	BQSquare
	10.24 
	-0.32 
	14.02 
	-0.43 

	BlowingBubbles
	7.08 
	-0.26 
	7.81 
	-0.31 

	RaceHorses
	-2.36 
	0.11 
	-1.68 
	0.09 

	avarage
	1.67 
	-0.02 
	3.24 
	-0.07 


Table 3‑9 Class E, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Vidyo1
	-27.70 
	1.38 
	-26.55 
	1.10 

	Vidyo3
	-20.05 
	1.00 
	-20.85 
	0.86 

	Vidyo4
	-20.75 
	0.95 
	-18.80 
	0.70 

	avarage
	-22.83 
	1.11 
	-22.07 
	0.89 


Table 3‑10 Overall, Constraint Set 2 relative to Beta anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall avarage
	-15.20 
	0.64 
	-13.57 
	0.51 


3.2.2 Performance relative to Gamma anchors

BD values using low-rate 4Qp points and high-rate 4Qp points are shown in Table 3‑11 to Table 3‑15. Bitrate and PSNR values of all color components for each test sequence are recorded into the attached Excel sheet JCTVC-A107_PSNR.xls.

 Table 3‑11 Class B, Constraint Set 2 relative to Ganma anchor

	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Kimono
	-48.99 
	2.51 
	-49.01 
	2.28 

	ParkScene
	-36.77 
	1.64 
	-32.73 
	1.42 

	Cactus
	-40.23 
	1.64 
	-38.70 
	1.44 

	BasketballDrive
	-45.18 
	2.13 
	-43.39 
	1.76 

	BQTerrace
	-56.02 
	1.89 
	-51.29 
	1.43 

	avarage
	-45.44 
	1.96 
	-43.02 
	1.66 



Table 3‑12 Class C, Constraint Set 2 relative to Ganma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballDrill
	-37.26 
	1.79 
	-37.51 
	1.76 

	BQMall
	-33.65 
	1.94 
	-31.54 
	1.73 

	PartyScene
	-39.82 
	1.61 
	-37.93 
	1.62 

	RaceHorses
	-25.58 
	1.10 
	-24.09 
	1.06 

	average
	-34.08 
	1.61 
	-32.77 
	1.54 



Table 3‑13 Class D, Constraint Set 2 relative to Ganma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	BasketballPass
	-21.66 
	1.06 
	-21.06 
	1.13 

	BQSquare
	-42.75 
	1.67 
	-40.69 
	1.66 

	BlowingBubbles
	-24.49 
	1.06 
	-23.88 
	1.09 

	RaceHorses
	-11.92 
	0.58 
	-9.96 
	0.54 

	avarage
	-25.21 
	1.09 
	-23.90 
	1.11 



Table 3‑14 Class E, Constraint Set 2 relative to Ganma anchor
	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Vidyo1
	-44.79 
	2.58 
	-44.63 
	2.16 

	Vidyo3
	-40.14 
	2.33 
	-40.08 
	2.01 

	Vidyo4
	-41.42 
	2.23 
	-41.87 
	1.87 

	avarage
	-42.12 
	2.38 
	-42.20 
	2.01 



Table 3‑15 Overall, relative to Ganma anchor

	Sequence
	BD low
	BD high

	
	Bitrate Δ
	PSNR Δ
	Bitrate Δ
	PSNR Δ

	Overall avarage
	-36.92 
	1.74 
	-35.52 
	1.56 


3.3 Discussions on coding performance
In terms of rate-distortion performance, around 1dB PSNR gain at the same bitrate relative to Alpha anchor is achievable with the proposed scheme. More gain can be observed especially around lower bitrate range. Given that Alpha anchors have been generated with extremely high-complexity encoding configuration to get the best rate-distortion performance including frame multi-pass coding, the observed gain with the proposed scheme can be said to be significant. It should also be noted that the proposed scheme does not use any frame-level multi-pass coding mode decision to obtain the reported gain.

A simple summary on subjective check made by proponents is that objective PSNR gain reflects visible subjective improvement. Temporal flickers typically observed for higher compression conditions can drastically be reduced by the proposed scheme, and subjective improvements on chroma components can obviously be found.
4 Complexity analysis
4.1 Complexity factors in encoding process
4.1.1 Encoding time and measurement methodology
The encoding time obtained per each encoding case is summarized in the attached Excel sheet JCTVC-A107_EncodingTime.xls. It is noted that these measurement results have been obtained by using various Linux x86_64 workstations typically having Intel Xeon processor around 3GHz clock, with several different time measurement methods depending on each encoding case. The attached Excel sheet contains notes to specify which time measurement method was used per each stream.
4.1.2 Expected memory usage
Any encoder compliant to the proposed coding scheme needs to equip frame-wise memory to store temporal motion vectors per each reference picture to support adaptive PMV and direct vector derivation, , which is the same situation as the case of AVC/H.264 profiles enabling B-picture coding. Additional frame memory to store the result of in-loop de-blocking filter is required for use as input to adaptive Wiener filtering process. Local memory usage should depend on which implementation platform is selected. 
4.1.3 Motion estimation and motion segmentation selection

In the proposed scheme, a motion vector is estimated per each luma motion partition up to quarter-pel accuracy by using EPZS based motion search algorithm [18] with multiple reference frames. The best motion vector is determined as the one that gives minimum motion estimation cost 
[image: image56.wmf]ME

ME

ME

ME

R

D

J

l

+

=

, where 
[image: image57.wmf]ME

D

 is the prediction error for the current motion partition measured by sum of SADs of all color components, 
[image: image58.wmf])

(

MD

ME

l

l

=

 is Lagrangian parameter to be used for derivation of motion cost and 
[image: image59.wmf]ME

R

 represents coded bits for the motion parameter for the current motion partition, respectively. The motion estimation processes for P- and B-pictures are summarized in Figure 4‑1 and Figure 4‑2.

It is noted that process for fractional sample generation is identical to that of AVC/H.264, thus no additional complexity can be assumed relative to AVC/H.264 for obtaining prediction samples of one motion partition. It should also be noted that the proposed scheme does not use smaller motion blocks that 8x8 those require extra memory bandwidth than that for larger motion blocks due to a need of MC interpolation filtering at block edge. A non-rectangular motion partition may require proper reference frame memory access, where one is obtaining a full rectangle block that covers the focused non-rectangular partition area, and the other is splitting memory access into two rectangular partition areas. Considering that the ME process needs to find the best motion vectors for other prediction modes for the block covering non-rectangular motion partition, actual memory bandwidth should depend on which ME strategy is used.
Performance reported in Section 3 was obtained by applying this motion search process to all possible motion partition shapes of all partition layers. Thus computational penalty relative to AVC/H.264 (especially, anchors) can be interpreted as a difference of number of motion vectors to be estimated within a MB. 
MBWP is applied only to P-picture MBs, and its encoding process can be divided into two stages - motion estimation part and mode selection part. As for the motion estimation, if the currently selected inter coding mode is supported for MBWP then do the following:

· For selected MVs found with EPZS find weighting parameters that minimize Lagrangian cost function.

· If the found weighting parameters are non-default (weighting parameters are defined to be zero in the case when weighting is not performed) store the weighting parameters and the associated motion vectors into a sorted list, ordered by the Lagrangian cost. This Lagrangian cost is composed of the commonly employed motion vector rate constrained cost, as used for block matching in motion estimation, with an additional component of weighing parameters rate cost.
Regarding the mode selection part, if the currently selected mode is supported for MBWP then do the following:

· For the first (or first n) weighting parameters-motion vector combinations from the sorted list created in the motion estimation find the distortion and rate when encoded. 

· Compare the Lagrangian cost to the mode cost with weighting parameters set to default (when weighting is not performed), and if the cost is lower then enable MBWO for the block and encode the weighting parameters.
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Figure 4‑1  Motion estimation process for P-picture
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Figure 4‑2  Motion estimation process for B-picture
4.1.4 Intra-frame prediction type selection
Figure 4‑3 and Figure 4‑4 illustrate mode decision in encoding process of intra block. All intra coding modes and prediction modes are evaluated with their coding cost given by 
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 represents coded bits for the current intra block, respectively.
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Figure 4‑3  coding mode decision for intra block
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Figure 4‑4  Intra prediction mode decision for each intra sub-block

BPP is applied I-picture MBs as well as P- and B-picture sub-partitions where other Intra modes are applicable. Its encoding process can be divided into 8 steps as follows:
(1) For 16x16 original block samples, down sampling to a 4x4 block is applied by collecting average sample values from each 4x4 original samples.

(2) DC prediction is applied on down sampled 4x4 block using the same algorithm as Intra 16x16 DC prediction, and the residual 4x4 block is forwarded to the next step.

(3) The residual 4x4 block is transformed and quantized using conventional 4x4 integer transform/quantization same as in AVC/H.264.

(4) The quantized transform coefficients are entropy coded.

(5) The quantized transform coefficients are inverse-quantized and inverse-transformed to generate the reconstructed residual down-sampled block.

(6) The reconstructed residual down-sampled block and DC prediction value is added to get the reconstructed down-sampled block.

(7) Finally, the reconstructed down-sampled block is up-sampled by using bicubic interpolation to the size of a 16x16 block as BPP prediction.

(8) The residual of BPP prediction is encoded using 16x16 DCT/quantization same as Intra 16x16 mode.

Final SSE for BPP block is calculated after these 8 steps. Additional complexity compared to Intra 16x16 DC prediction is as listed below:

· Down-sampling from 16x16 blcok to 4x4 block

· DCT/Q/IQ/IDCT on a 4x4 block

· Entropy coding of a 4x4 block

· Up-sampling from 4x4 block to 16x16 block

4.1.5 Transforms and transform type selection
For intra blocks, transform block size for luma component is determined by its intra coding mode. For chroma components, the residual signal of each 8x8 sub-block resulting from intra8x8 prediction is always encoded with 8x8 integer transform. Thus, the transform block size decision is made through intra coding mode decision. The encoder used to generate bitstreams subject to formal subjective testing performed additional coding efficiency evaluation of directional transform by R-D cost criteria, which is shown in Figure 4‑5. The mode decision process is first performed using the 2‑D transform. This process is then repeated for each directional transform. The transform that yields the minimum rate-distortion cost is selected as the final transform to be used to encode the block.
The transform block size decision for inter luma residual is performed per each motion partition equal to or larger than 16x16 block size as specified in Section 2.5.1. The best transform block size is determined based on R-D cost competition, by applying all candidate transform block sizes for each partition of inter residual signal obtained with the best motion vector for the partition.
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Figure 4‑5 Directional transform decision process
4.1.6 Quantization and quantization type selection
The proposed scheme simply adopts the AVC/H.264 based quantization process for 4x4 and 8x8 transform blocks, with modifications for quantization of Directional Transform coefficients as specified in Section 2.6. For the 16x16 DCT, the current implementation does not use decomposition of transform matrix to “core + scaling” ones like AVC/H.264. So, total (transform + quantization) process takes much more computational time than that of AVC/H.264. It is recommended to conduct core experiments to choose a low-complexity 16x16 transform process. RDO-Q is used but it is similar level of complexity to that of anchors.

4.1.7 In-loop filtering type selection

In-loop filtering of the proposed scheme is a simple sequentially combined process of de-blocking and adaptive Wiener filtering. The de-blocking part is a straight-forward extension of AVC/H.264 in-loop filter process, and the use of a larger transform block size (e.g., 16x16 DCT or chroma 8x8 transform) saves a significant amount of filtering operation steps inside each partition. No additional computation to that of AVC/H.264 is required for determining strength value at block boundaries. It is also noted that, from the viewpoint of its principle, it should be possible to implement it as a MB level process.

The operation of the enhanced BALF at the encoder side depends on the information of such an input picture and the original picture of the same frame. The Wiener filtering technology is applied to extract the “optimal” Wiener filter coefficients. The extracted Wiener filters coefficients and their associated adaptive switching “on” and “off” flags, namely alf flags (adaptive loop filter), need to be sent to the decoder. Based on this overhead information decoded from the video bitstream, the decoder can operate correctly and match encoder’s in-loop filtering. The operational function blocks of the enhanced BALF encoding process are depicted in Figure 4‑6. As indicated in this figure, the basic encoding process can be described as follows: (1) Initial Wiener filter coefficients generation (both set of Wiener filters coefficients will update from such initial values); (2) With the initially available Wiener filter coefficients, identify the effective alf block-size and switch “on” and “off” alf flag conditions; (3) Iteration loops to find the best (in RDO terms) filter coefficients for the first Wiener filter and the second Wiener filter as well as the alf flag decision (alf block size decision also made jointly inside the iteration loops); (4) BALF bitstreams generation on the packing of all BALF flags and the Wiener filters coefficients; (5) Updating the decoded picture buffer with the correct BALF filtered version of pictures for possible future references.

Note that during the encoder optimization process for capturing effective Wiener filters coefficients and associated alf flags, the Wiener filters coefficients are only updated in a statistical “optimal” way: If at one iteration loop stage, the alf flag at the time is “on” for an alf block, the associated video data at the location will be used for the first Wiener filter coefficients updating; also if the alf flag is “off”, the video data at the location will be used for updating the second Wiener filter coefficients. When the first Wiener filter coefficients are updated, they can be used for further updating the alf block flag (since the newly obtained coefficients will filter the same alf block differently, therefore, it can achieve a better coding efficiency gain or end up otherwise – preferring a different Wiener filter – the second Wiener filter). Because the updating of the coefficients and the alf flag has to be at the separate steps, the iteration loop is needed in order to reach the most effective BALF parameter settings. In a real encoding operation, such iteration loops will be limited to no more than 3 times.
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Figure 4‑6  Block diagram of enhanced BALF encoding

4.1.8 Entropy coding
The proposed scheme employs a CABAC engine identical to that of AVC/H.264, which is the most significant complexity part of entropy coding process. A set of context models has been modified to fit to new syntax supporting extended MB size, but the memory requirement needed to accommodate all modified context models can be considered as a similar level of memory size. It should be noted that real-time H/W implementations of existing AVC/H.264 CABAC have already been available in the real market, and future H/W technologies could solve its applications to higher-resolution video sources than HD.
4.1.9 Mode decision
Figure 4‑7 to Figure 4‑9 illustrate inter coding mode decision in P-picture encoding process. All inter coding modes are evaluated with their coding cost given by 
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 is coding distortion for the current MB or partition measured by SSE, 
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 represents coded bits for the current MB or partition, respectively. After finding the best inter modes, intra mode evaluation is performed at the level of partition having 16x16 block size.
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Figure 4‑7  mb_type decision for P-picture


[image: image75.emf] 

deteriminethe best sub_mb_type_L0 based on coding cost 

using estimated motion parameters

Set corresponding coding cost to  min_cost

For each sub-partition in 

all Layer1 sub-partitions 

Sum of coding cost of all 

Layer1 partitions < min_cost

Select 4Part as the best 

sub_mb_type_L0

Select Layer0 partition type as 

the best sub_mb_type_L0

best sub_mb_type_L0 (=4Part), best 

sub_mb_type_L1(*), best mvand best 

ref_idxper each partition

Yes

No

Motion estimation for each Layer0 partition of 

sub_mb_type_L0 candidate

best mvand ref_idxfor each 

sub_mb_type_L0

Mode decision for each Layer1 sub -partition(*)

best sub_mb_type_L0, best  mvand 

best ref_idxper each partition

Note: Final sum of coding cost for all 

Layer1 sub-partitions needs to 

incorporate overhead bits required for 

Layer0-level mode representation.

(*) evaluation of sub_mb_type_L1 is performed only when MB size  is 64x64.


Figure 4‑8  sub_mb_type_L0 decision for P-picture
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Figure 4‑9  sub_mb_type_L1 decision for P-picture (only for 64x64MB)
Figure 4‑10 to Figure 4‑15 illustrate inter coding mode decision in the B-picture encoding process. All inter coding modes are evaluated with their coding cost given by 
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 is the coding distortion for the current MB or partition measured by SSE, 
[image: image79.wmf]1

l
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 represents coded bits for the current MB or partition, respectively. After finding the best inter modes, intra mode evaluation is performed at the level of partition having 16x16 block size.
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Figure 4‑10  mb_type decision for B-picture


[image: image82.emf] 

deteriminebest Layer0 partition type among Skip, Direct, 1Part, 

2Part_H and 2Part_V based on coding cost

Set corresponding coding cost to  min_cost

determine best Layer1 partition type among 

Skip, Direct, 1Part, 2Part_H, 2Part_V, 4Part 

based on coding cost

For each sub-partition in 

all Layer1 sub-partitions

best Layer0 partition type 

among 1Part, 2Part_H and 

2Part_V and min_cost

best Layer1 partition types and sum 

of coding cost of all Layer1 sub -

partitions(rdcost_4Part)

rdcost_4Part < min_cost

Select 4Part as best Layer0 

partition type

Select best Layer0 partition type 

among 1Part, 2Part_H and 2Part_V 

as best Layer0 partition type

best Layer0 partition type and best  mvand 

best ref_idxand best prediction direction 

per each sub-partition of best Layer0 

partition type

Motion estimation for each Layer0 partition type (1Part/2Part_H/ 2Part_V)

best mvand ref_idxand 

prediction direction for each 

partition type

Yes

No


Figure 4‑11  sub_mb_type_L0 decision for B-picture (for 64x64MB)
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Figure 4‑12  sub_mb_type_L1 decision for B-picture (for 64x64MB)
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Figure 4‑13  sub_mb_type_L2 decision for B-picture (only for 64x64MB)
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Figure 4‑14  sub_mb_type_L0 decision for B-picture (for 32x32MB)
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Figure 4‑15  sub_mb_type_L1 decision for B-picture (for 32x32MB)
4.1.10 Degree of capability for encoder parallel processing

As in the conventional MPEG/H.26x standard compliant products, MB-level pipelining can be designed except for the enhanced BALF process. 

4.2 Complexity factors in decoding process
4.2.1 Decoding time and measurement methodology
The decoding time results obtained for anchor and proposed streams are summarized in the attached Excel sheet JCTVC-A107_DecodingTime.xls All time measurements were performed by running the JM17.0 decoder and submitted binary proposed decoder on a single Linux x86_64 workstation equipped with an Intel Xeon processor at around 3GHz. The “user time” obtained by standard “time” command is chosen as measurement method.

4.2.2 Expected memory usage
Any decoder compliant to the proposed coding scheme needs to equip frame-wise memory to store temporal motion vectors per each reference picture to support adaptive PMV and direct vector derivation, and additional frame memory to store the result of in-loop de-blocking filter to be used as input to frame-wise adaptive Wiener filtering process. For local memory usage, the new intra BPP mode requires storage of a self-prediction block, which is negligible since it will not be used for prediction of any other blocks than the currently decoded block. No further significant additional memory is required compared with the AVC/H.264 decoding process.
4.2.3 Motion compensation 
The process for fractional sample generation is completely the same as that of AVC/H.264, thus no additional complexity can be assumed relative to AVC/H.264 for obtaining prediction samples of one motion partition. Non-rectangular motion partition may, however, require proper reference frame memory access, where one is obtaining full rectangle block that covers the focused non-rectangular partition area, and the other is splitting memory access into two rectangular partition areas. It should be noted that the proposed scheme does not use smaller motion blocks than 8x8 those require extra memory bandwidth than that for larger motion blocks due to a need of MC interpolation filtering at block edge. Adaptive direct motion vector derivation introduces an increase of computation and memory bandwidth, due to the need of block SAD calculations to determine the best direct vector per each partition coded with direct mode.

For MBWP, the increase in decoding complexity compared to the case where weighting is not performed exists in the operation of weighting, which is a division-free integer-safe operation, and can be represented with the following expression, where x is the original pixel value:


[image: image87.wmf](

)

(

)

(

)

128647

qiqi

oxw

+×++

?

                                       (15)
The obtained values are subsequently clipped to the defined range of the picture samples. The operation is also SIMD-friendly as it can be broken into components that can be applied on the whole block at once, thus leading to a reduced complexity.
4.2.4 Intra-frame prediction operation
Intra 4x4, Intra 8x8 and Intra 16x16 prediction samples are generated in the same way as AVC/H.264. 

Figure 4‑16 shows generation process of Block-based Pyramid Prediction described in 2.4.1. The BPP prediction samples are generated by 4 steps as follows:

(1) BPP prediction coefficients are entropy decoded.

(2) The coefficients are inverse-quantized and inverse-transformed to generate the reconstructed residual down-sampled block.

(3) The reconstructed residual down-sampled block and DC prediction value are added to get the reconstructed down-sampled block.

(4) Finally, the reconstructed down-sampled block is up-sampled by using bicubic interpolation to the size of a 16x16 block as BPP prediction.

Additional complexity compared to Intra 16x16 DC prediction is as listed below:

· IQ/IDCT on a 4x4 block

· Entropy decoding of a 4x4 block

· Up-sampling from 4x4 block to 16x16 block
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Figure 4‑16 Block-based Pyramid Prediction
4.2.5 Inverse transform / quantization operation
Use of 16x16 DCT without “core + scaling” de-composition introduces additional computations, but relevant “low-complexity” transform can be discussed as a topic of core experiments. When directional transforms are used in the decoder, the conventional 2-D DCT is simply replaced by a directional transform when indicated by a flag in the bit-stream. For the block-based 1‑D directional transforms described in Section 2.5.2, there are generally fewer operations required as compared to the 2-D DCT. For example, the θ=0° direction is one-half the complexity of the 2-D DCT, given that it performs 1‑D DCTs only in the vertical direction, as compared to the 2‑D DCT, which performs both vertical and horizontal 1‑D transforms. The diagonal directional transforms such as θ=45° have more transforms than θ=0°, however all but one of them are shorter than the block dimension N, making them about one-third the complexity of the 2-D DCT depending upon the particular implementation.
4.2.6 In-loop filtering operation
In-loop filtering of the proposed scheme is a simple sequentially combined process of de-blocking and adaptive Wiener filtering. The de-blocking part is a straight-forward extension of AVC/H.264 in-loop filter process, and the use of a larger transform block size (e.g., 16x16 DCT or chroma 8x8 transform) saves lots of filtering operations inside each partition. No additional computation to that of AVC/H.264 is required for determining Strength value at block boundaries.

In general, the complexity of enhanced BALF at a decoder is close to or probably a little bit more than that of the BALF implemented in ITU-T VCEG Key Technical Areas (KTA) software. In KTA technology, for each video component, e.g., luma, only one Wiener filter is adaptively used. During a decoding process, for each alf (adaptive loop filter) processing block, it can be filtered by the provided Wiener filter or transparently passed through without any filtering. In enhanced BALF, the algorithm has been modified with an assistance of “Use_ad_luma_filter_flag”. If this flag is “off”, the enhanced BALF decoding process is the same as that of the KTA BALF operation; when this flag is “on”, all those alf blocks which are not subject to the first Wiener filter filtering will now go through a Wiener filtering with the second set of the transmitted Wiener filter coefficients.
The maximum operation for KTA BALF at a decoder can be described as in an extreme case that the Wiener filtering process will filter every single alf blocks with the maximum filter tap numbers as 9x9. For the enhanced BALF, the maximum operations will not exceed that of maximum required from the KTA BALF. For a single alf block, with enhanced BALF, the video data will be subject to (1) filtering by the first Wiener filter, or (2) filtering by the second Wiener filter, or (3) no filtering. Since these three decisions are independent and at a time we can only have one of them; therefore, there should be no further processing delay from enhanced BALF than KTA BALF. Note that before the BALF filtering process, all the filtering decisions for all the alf blocks are known. Therefore, the loading or set-up of the Wiener filter for each alf block will only need once for both the enhanced BALF and the KTA BALF.

The luma BALF filtering is independent from chroma ,and the luma will have separate Wiener filter coefficients from that of chroma. The two chroma components will share the same Wiener filter in the current design. This is the case for both the enhanced BALF and the KTA BALF.

The Wiener filters are two dimensional (2-D) symmetric filters with tap numbers of 5x5, or 7x7, or 9x9. The maximum operations for a video picture can then be described as: to filter all the pixels for the complete picture; and for each pixel location, a standard 9x9 2-D filtering will apply. So far the adaptive nature of the BALF design will automatically optimize the use of the Wiener filters; when a 5x5 filter is used the BALF operations for that picture will be reduced from the maximum complexity. All the evidence so far suggest that the trade-off of the BALF decoding complexity against the video coding efficiency gain indicates that it is well-justified to include the in-loop adaptive Wiener filtering technology into the future video coding standard.
4.2.7 Entropy decoding
The proposed scheme employs a CABAC engine identical to that of AVC/H.264, which is the most significant complexity part of entropy coding process. A set of context models has been modified to fit to new syntax supporting extended MB size, but the memory requirement needed to accommodate all modified context models can be considered as similar level of memory size. It should be noted that real-time H/W implementations of existing AVC/H.264 CABAC have already been available in the real market, and future H/W technologies could solve its applications to higher-resolution video sources than HD.
4.2.8 Degree of capability for decoder parallel processing

As in the conventional MPEG/H.26x standard compliant products, MB-level pipelining can be designed except for the enhanced BALF process. 
5 Algorithmic characteristics
5.1 Random access characteristics
The proposed scheme provides the same level of random access capability as that of AVC/H.264. Though the performance report in Section 3 includes only the results with open GOP condition, video coding experts could easily expect that closed GOP is possible with IDR picture and difference on R-D characteristics between open and closed GOPs.
5.2 Delay characteristics
From the viewpoint of algorithmic architecture, the proposed scheme provides the same level of delay characteristics as that of AVC/H.264, since the same coded data structure as conventional video coding standard (i.e., sequence, GOP, picture, slice and macroblock) can be used.
5.3 Extensibility

The proposed scheme has flexibility to support 4:4:4/high bit-depth video sources through relevant modifications to prediction methods, transform/quantization as defined in AVC/H.264 High444 profiles. Error resilience is also the same level of AVC/H.264 since the proposed scheme supports slice structure and multiple reference picture management as adopted in AVC/H.264. It can also be said that scalability extension is possible with the similar technical approach to SVC.
6 Software implementation description

The codec simulator developed for this submission has been implemented using pure C language, without using any platform specific instructions such as MMX/SSE. In this sense, simulator binaries can be built on any platform (Windows, Linux, Mac OS X as UNIX etc…). This software has been implemented from scratch under a concept of easy function modularization, but JM and KTA software modules have been re-used for implementation of encoding/decoding process based on the conventional AVC/H.264 specification or formally adopted KTA coding tools. It can be said that the current software is a clean and extensible implementation that is suitable for further investigation of coding architectures with extended MB sizes and adaptive transforms combined with adaptive in-loop filtering.
7 Closing remarks

This contribution has presented a specification, coding performance report and complexity assessment of a new video coding algorithm proposed by Mitsubishi Electric, as a response to the Call for Proposals for next-generation video coding standard to be developed by ISO/MPEG and ITU-T Q6/SG16. The proposed scheme is based on a “traditional” MB-based MC + transform hybrid coding architecture, which has been a well-known video coding architecture that is helpful for practical implementation purposes, but its reported performance shows significant coding efficiency enhancements relative to the current “state-of-the-art” standard AVC/H.264, especially for higher-resolution video sources. This characteristic should meet an important requirement of the new standard to achieve high coding efficiency for future Ultra HDTV up to 8Kx4K, since real-time codec implementations for such higher resolution video will become more difficult due to the huge increase of raw pixel rate. In particular, the MB size extension together with in-loop adaptive Wiener filtering has been verified in various implementation studies so far, and further optimizations to that framework should provide additional coding gain. Given these observations, this proponent recommends starting the development of a reference model of the new standard by considering the algorithm framework and new coding tools proposed in this contribution. 
8 Patent rights declaration

Mitsubishi Electric Corporation may have IPR relating to the technology described in this contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and non-discriminatory terms as necessary for implementation of the resulting ITU-T Recommendation | ISO/IEC International Standard (per box 2 of the ITU-T/ITU-R/ISO/IEC patent statement and licensing declaration form).
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