	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

16th Meeting: Poznań, PL, 24-29 July, 2005
	Document: JVT-P112
Filename: JVT-P112.doc

	Title:
	Revised syntax for FGS pass fractionning

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s:
	Stephane Pateux

France Telecom Division R&D

4, rue du clos Courtel. BP 59

35 512 Cesson Sevigne.

FRANCE
Ye-Kui Wang
Nokia Research Center
Visiokatu 1
33720 Tampere, Finland

Peter Amon
Siemens AG, Corporate Technology
CT IC 2, 81730 Munich, Germany

	
Tel:
Email:
	+33 2 99 12 41 77 stephane.pateux@francetelecom.com

+358 50 486 7004
ye-kui.wang@nokia.com

+49 (89) 636 54642
p.amon@siemens.com

	Source:
	France Telecom Division R&D, Nokia Corporation, Siemens AG

Abstract
This document presents a revised syntax for FGS pass fractioning to JVT-P031 as agreed during Poznan meeting.
Introduction
This document presents a revised syntax for FGS pass fractioning to JVT-P031 as agreed during Poznan meeting.

A fragmented progressive refinement NAL unit is signaled thanks to a is_fragmented flag. For such fragmented progressive refinement a slice_id field is used in order to identify unambiguously the slice a fragment refers to. Further fragment_order field and last_fragment flag are introduced for ordering fragments.
Proposed syntax modifications
S.7.2 Specification of syntax functions, categories, and descriptors

next_nalu_not_belongs_to_current_PRF () is specified as follows.
· If the following NAL unit belongs to the progressive refinement of the current slice, the return value of next_nalu_not_belongs_to_current_PRF is FALSE. This can be implemented by parsing the syntax elements of next NAL unit (quality_level and slice_id if available).
· Otherwise it is TRUE
Remark: the introduction of this function is a trick we propose at the syntax level in order to specify when "progressive_refinement_slice_data_in_scalable_extension" should be called. This kind of trick may also be a solution for defining when to launch inverse MCTF for reconstruction (this point is not still clear in the syntax as you have pointed out). This concept is quite similar to what is done currently in JSVM where such decoding is launched on the next NAL processing. In this proposed case, we perform the decoding during the current NAL processing thanks to a simple parse (only NAL header parsed) of the following NAL. This does not imply additional delay and lead to a simpler syntax.
Remark For this new syntax function it is necessary to have NAL units associated to fragments of a progressive refinement slice that are adjacent and ordered by increasing value of fragment_order.
swap_buffers (cBuffer0, cBuffer1) is specified as follows.
· A temporary buffer pointer cBufferPtr is set equal to cBuffer0
· cBuffer0 is set equal to cBuffer1

· cBuffer1 is set equal to cBufferPtr

S.7.3 Syntax in tabular form

S.7.3.2.12
Slice layer in scalable extension RBSP syntax
	slice_layer_in_scalable_extension_rbsp() {
	C
	Descriptor

	
slice_header_in_scalable_extension()
	2
	

	
if (slice_type != PR)
	
	

	

slice_data_in_scalable_extension()
	2 | 3 | 4
	

	
else {
	
	

	

if (fragmented_flag = = 1) {
	
	

	

if (fragment_order = = 0)
	
	

	

NumBytesInPRF = 0
	
	

	

while(!byte_aligned())
	
	

	

cabac_alignment_one_bit
	2
	f(1)

	

while(more_rbsp_data())
	
	

	

rbtmp_byte[NumBytesInPRF++]
	2 | 3 | 4
	b(8)

	

if ((last_fragment_flag = = 1) | |

next_nalu_not_belongs_to_current_PRF)
	
	

	

swap_buffers(rbtmp_byte, rbsp_byte)
	
	

	

}
	
	

	

if ((fragmented_flag = = 0) | | last_fragment_flag = = 1) | |

next_nalu_not_belongs_to_current_PRF))
	
	

	

progressive_refinement_slice_data_in_scalable_extension()
	
	

	
}
	
	

	
rbsp_slice_trailing_bits()
	2
	

	}
	
	

S.7.3.6
Slice header in scalable extension syntax

	slice_header_in_scalable_extension() {
	C
	Descriptor

	
slice_type
	2
	ue(v)

	
if (slice_type = = PR) {
	
	

	

fragmented_flag
	2
	b(1)

	

if (fragmented_flag = = 1) {
	
	

	

fragment_order
	2
	ue(v)

	

if (fragment_order != 0)
	
	

	

last_fragment_flag
	2
	b(1)

	
}
	
	

	
if ((fragmented_flag = = 0) | | (fragment_order = 0))
	
	

	

first_mb_in_slice
	2
	ue(v)

	
if (fragmented_flag = = 1)
	
	

	

slice_id
	2
	ue(v)

	
if ((fragmented_flag = = 0) | | (fragment_order = 0)) {
	
	

	

pic_parameter_set_id
	2
	ue(v)

	

if(slice_type = = PR) {
	
	

	

num_mbs_in_slice_minus1
	2
	ue(v)

	

luma_chroma_sep_flag
	2
	u(1)

	

}
	
	

	

frame_num

	2
	u(v)

	

if(!frame_mbs_only_flag) {
	
	

	

field_pic_flag
	2
	u(1)

	

if(field_pic_flag)
	
	

	

bottom_field_flag
	2
	u(1)

	

}
	
	

	

if(nal_unit_type = = 21)
	
	

	

idr_pic_id
	2
	ue(v)

	

if(pic_order_cnt_type = = 0) {
	
	

	

pic_order_cnt_lsb
	2
	u(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt_bottom
	2
	se(v)

	

}
	
	

	

if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
	
	

	

delta_pic_order_cnt[0]
	2
	se(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt[1]
	2
	se(v)

	

}
	
	

	

if(slice_type != PR) {
	
	

	

if(redundant_pic_cnt_present_flag)
	
	

	

redundant_pic_cnt
	2
	ue(v)

	

if(slice_type = = EB)
	
	

	

direct_spatial_mv_pred_flag
	2
	u(1)

	

key_picture_flag
	2
	u(1)

	

decomposition_stages
	2
	ue(v)

	

base_id_plus1
	2
	ue(v)

	

if(base_id_plus1 != 0) {
	
	

	

adaptive_prediction_flag
	2
	u(1)

	

}
	
	

	

if(slice_type = = EP | | slice_type = = EB) {
	
	

	

num_ref_idx_active_override_flag
	2
	u(1)

	

if(num_ref_idx_active_override_flag) {
	
	

	

num_ref_idx_l0_active_minus1
	2
	ue(v)

	

if(slice_type = = EB)
	
	

	

num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	

}
	
	

	

ref_pic_list_reordering()
	2
	

	

for(decLvl = temporal_level; decLvl < decomposition_stages; decLvl++)

{
	
	

	

num_ref_idx_update_l0_active[decLvl + 1]
	2
	ue(v)

	

num_ref_idx_update_l1_active[decLvl + 1]
	2
	ue(v)

	

}
	
	

	

if((weighted_pred_flag && slice_type = = EP) | |

(weighted_bipred_idc = = 1 && slice_type = = EB))
	
	

	

pred_weight_table()
	2
	

	

if(nal_ref_idc != 0)
	
	

	

dec_ref_pic_marking()
	2
	

	

if(entropy_coding_mode_flag && slice_type != EI)
	
	

	

cabac_init_idc
	2
	ue(v)

	

}
	
	

	

slice_qp_delta
	2
	se(v)

	

if(deblocking_filter_control_present_flag) {
	
	

	

disable_deblocking_filter_idc
	2
	ue(v)

	

if(disable_deblocking_filter_idc != 1) {
	
	

	

slice_alpha_c0_offset_div2
	2
	se(v)

	

slice_beta_offset_div2
	2
	se(v)

	

}
	
	

	

}
	
	

	

if(slice_type != PR)
	
	

	

if(num_slice_groups_minus1 > 0 &&

slice_group_map_type >= 3 && slice_group_map_type <= 5)
	
	

	

slice_group_change_cycle
	2
	u(v)

	

if(slice_type != PR && extended_spatial_scalability > 0) {
	
	

	

if (chroma_format_idc > 0) {
	
	

	

base_chroma_phase_x_plus1
	2
	u(2)

	

base_chroma_phase_y_plus1
	2
	u(2)

	

}
	
	

	

if(extended_spatial_scalability = = 2) {
	
	

	

scaled_base_left_offset
	2
	se(v)

	

scaled_base_top_offset
	2
	se(v)

	

scaled_base_right_offset
	2
	se(v)

	

scaled_base_bottom_offset
	2
	se(v)

	

}
	
	

	

}
	
	

	

SpatialScalabilityType = spatial_scalability_type()
	
	

	
}
	
	

	}
	
	

S.7.4 Semantics
S.7.2.4.8
Slice layer without partitioning RBSP semantics

The specification of this subclause in AVC shall apply.

rbtmp_byte[i] is the i-th byte of a progressive_refinement_slice_data_in_scalable_extension() payload, starting from the end of the slice header. It does not include the slice headers. The rbtmp_byte[] is used to append sub-parts of the slice data of a progressive refinement slice before parsing its syntax elements.
S.7.4.6
Slice header in scalable extension semantics

fragmented_flag equal to 1 specifies that the current NAL unit is fragmented. fragmented_flag equal to 0 specifies that the current NAL unit is not fragmented. If fragmented_flag is not present it shall be inferred to be equal to 0.
When fragmented_flag is equal to 1, the NAL unit cannot be parsed independently; in this case the RBSP bytes of the slice data of all NAL units with identical values of first_mb_in_slice, slice_type, slice_id and fragmented_flag shall be stored in a temporary RBSP byte buffer in increasing order of fragment order. The parsing process is started when a NAL unit with last_fragment_flag equal to 1 is received or when the next NAL unit is not a NAL unit with identical values of first_mb_in_slice, slice_type and fragmented_flag, or when the next NAL unit belongs to another access unit.

fragment_order specifies the order in which the NAL units with fragmented_flag equal to 1 shall be ordered before the parsing process is started. If fragment_order is not present it should be inferred to be equal to 0.
A NAL unit with fragmentOrder = fragment_order greater than 0 shall immediately follow a NAL unit with identical values of first_mb_in_slice, slice_id, slice_type and fragmented_flag, and a value of fragment_order equal to fragmentOrder – 1.

last_fragment_flag equal to 1 specifies that the current NAL unit is the last fragment of a progressive refinement slice and that the parsing process can be started. last_fragment_flag equal to 0 specifies that zero or more NAL units containing fraction of the current progressive refinement slice may follow.
If not present last_fragment_flag shall be inferred to be equal to 0 for a fragmented progressive refinement slice with fragment_order equal to 0 and shall be inferred to be equal to 1 otherwise.
slice_id specify an unambiguous identifier for a slice. slice_id is only relevant inside a layer (specified by dependency_id) of an access unit. If slice_id is not present it shall be inferred to be equal to first_mb_in_slice.
base_id_plus1 minus 1 specifies the value of dependency_id, quality_level and fragment_order for base pictures that are used for inter-layer prediction of coding mode, motion, samples values, and/or residual values of the current slice. base_id_plus1 equal to 0 specifies that no inter-layer prediction (of coding mode, motion, sample value, and/or residual prediction) is used for the current slice. base_id_plus1 greater than 0 specifies that an inter-layer prediction (of coding mode, motion, sample value, and/or residual prediction) may be used for the current slice when signaled in the macroblock layer.

If base_id_plus1 is greater than 0, the variables DependencyIdBase, QualityLevelBase and FragmentOrderBase are derived as follows.:

DependencyIdBase = (base_id_plus1 – 1) >> 4

QualityLevelBase = ((base_id_plus1 – 1)>>2) & 3.

FragmentOrderBase = (base_id_plus1 – 1) & 3.

Otherwise (base_id_plus1 is equal to 0), DependencyIdBase and QualityLevelBase are set equal to –1.
[remaining unchanged]
Remark

In this syntax proposal, following conditions regarding stream ordering are assumed to be true:

-
All NAL units of the same slice are consecutive for a given dependency_id and must be ordered by non decreasing QualityLevel (This assumption is related to NAL ordering considering the adopted AU semantic).

-
All FGS fractions of a progressive refinement slice must be ordered by increasing value of priority_id
This ordering is necessary in order to use the next_nalu_not_belongs_to_current_PRF syntax function introduced in order to control the decoding process.

(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image1.wmf]
	[image: image2.png]1S0
NS

	[image: image3.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Place and date of submission
	
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	
	

	Title
	
	

	Contribution number
	
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image4.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image5.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image6.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image7.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image8.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	[image: image9.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image10.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

�Please note that the “frame_num” syntax element position is different than the one in JVT-P112 original document. This is because it depends on the “pic_parameter_set_id” syntax element.

An alternative solution would be to put it back in the short header, but to also add “pic_parameter_set_id” in the short header.

File: JVT-P112.doc
Page: 1
Date Saved: 2005-08-03

