	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

16th Meeting: Poznań, PL, 24-29 July, 2005
	Document: JVT-P031
Filename: JVT-P031.doc

	Title:
	Syntax for FGS pass fractioning

	Status:
	Input Document

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	Isabelle Amonou, Nathalie Cammas, Sylvain Kervadec, Stephane Pateux

France Telecom Division R&D

4, rue du clos Courtel. BP 59

35 512 Cesson Sevigne.

FRANCE
	
Tel:
Email:
	
+33 2 99 12 44 77
isabelle.amonou@francetelecom.com
nathalie.cammas@francetelecom.com
sylvain.kervadec@francetelecom.com
stephane.pateux@francetelecom.com

	Source:
	France Telecom Division R&D

Abstract
This document presents a syntax modification proposal for allowing FGS pass fractioning. I.e. that

an FGS enhancement pass may be split over several NAL units.
This syntax modification is justified for enabling dead sub-streams implementation and to help proposing

Medium Grain Scalability at the NAL unit level.

 Introduction

J-SVC offers SNR scalability thanks to CGS and FGS mechanisms. CGS mechanism codes residue using coding technique similar to AVC. FGS mechanism codes quantization residue using a progressive quantization technique. In such progressive quantization technique a slice is coded using two passes; coding of the new significant coefficients and refinement of the previously significant coefficients. These two passes are merged in one slice and are interleaved.
Rate adaptation is then performed by truncating such FGS NAL units.

A first drawback of truncating NAL units is that this mechanism is not compatible with transport applications such as multicast. As shown in [1], in multicast applications it may be necessary to adapt the bit-rate repartition among layers. This adaptation is made thanks to a classification of the stream elements (i.e. the NAL units) to the different layers (see figure Fig. 1). In such a scenario, scalability is then only feasible at the NAL level. However rate-distortion performances of J-SVC are generally stated using NAL truncation and non-truncation of the NALs may alter theses performance. Further the MGS constraint (i.e. 10% grain scalability in rate as defined in [4]) is not validated.

A second drawback of NAL units truncation is that this causes some syntax conflict with dead sub-streams notion [3]. When considering multi-layer coding the reference point used for prediction of an upper layer may correspond to a rate point with truncated NAL units. In J-SVM 2.0 syntax [3], the reference point is identified thanks to the field base_id_plus1 that defines the dependency_id and the quality_id of the reference point. This syntax is not consistent with the dead sub-streams notion: when allowing dead sub-streams, NAL units that are truncated to define the reference point are not kept unchanged in the generated bit-stream. Then the definition of the reference point with base_id_plus1 does not inform what is the amount fraction of the FGS pass that should be considered as a reference point. To solve this problem SEI message has been used in JSVM2 in order to signal the amount fraction of the FGS pass that defines the reference point.
[image: image1.png]B—

Vldea server

F-.ux--:k

Rules

Network

Transmission
report

Recelvers

[image: image2.png]NALs from the video coder
Upper layers elements

Enhancement

layer
Nominal rate Eiéments changed fror
(lower layer) [=——— " ay pacclayerto

- enhancement layer
Reduced
Base rate
layer

Priority layers elements.

Fig. 1 Example of an Adaptative streaming in a multicast environment

In order to deal with these problems we then propose to have smaller NAL units by fractioning FGS NAL units. An FGS pass will not be coded using only one NAL unit but will be spread over several NAL units.
Fractioned FGS pass will then allow for MGS and non ambiguous reference point identification

Proposed syntax for FGS pass fractioning

The basic idea is to consider a progressive refinement slice data payload as a byte sequence and to split it into several parts (defined by a maximum size for example or truncation size for reference point), introducing a kind of short header in order not to too much penalize the bit-rate (see Fig. 2). It is not designed for error resilience (like AVC-slices), as sub-parts are not independent (neither are progressive refinement slice data NAL units). Note that the fractioning or not of FGS passes is let to the encoder.

	[image: image3.wmf]NAL header

Slice header

Slice payload

NAL header

NAL payload

RBSP

RBSP

NAL

NAL

	[image: image4.wmf]NAL header

Slice header

Slice payload

NAL header

NAL payload

RBSP

RBSP

NAL

NAL header

NAL payload

NAL

	NAL unit generation for an FGS pass
	NAL units generation for fractioned FGS pass

Fig. 2 Illustration of FGS pass fractioning and NAL units generation
Modifications of the JSVM2 syntax and semantics are presented in annex.

We propose to use a fractioned flag in the slice header to indicate whether this NAL unit (containing the slice) is part of a multi-fraction FGS pass or not. Further if the FGS pass is fractioned a fraction_order and a last_fraction_flag are defined. For non initial FGS pass fractions, the slice header is shorten in order to limit extra header cost.
Impact of FGS pass truncation on dead sub-streams

In JSVM-2, dead sub-streams are implemented using SEI messages. These messages are necessary since reference point for inter-layer prediction is generally related to fractioned NAL units. However SEI messages could be omitted by a decoder. Further when not taking into account correct reference point for inter layer prediction, a performance drift is observed (see [5]).

Using fractioned FGS pass it is then possible to signal what is the exact part of the bit stream that should be treated by a decoder thanks to the DS_flag that is present in the NAL unit header.

References

[1] " Proposal for SVC streams storage and transport with MGS support", Gérard Babonneau, Bertrand Berthelot, Stéphanie Relier, Isabelle Amonou, Nathalie Cammas, Sylvain Kervadec, Stéphane Pateux, JVT-O049, Busan, April 2005

[2] "Scalable Video Coding – Working Draft 2", J. Reichel, H. Schwarz, M. Wien, JVT-O201, April 2005

[3] "Scalable Video Coding – Joint Scalable Video Model JSVM-2", J. Reichel, H. Schwarz, M. Wien, JVT-O202, April 2005

[4] "Applications and Requirements for Scalable Video Coding", ISO/IEC JTC1/SC29/WG11 N6880. Hong Kong, China, January 2005

[5] "Response to CE 5: Quality Layers" I. Amonou, N Cammas, S. Kervadec, S. Pateux, JVT-O044, Busan, April 2005

Annex with proposed syntax modification

S.7.2 Specification of syntax functions, categories, and descriptors

next_nalu_belongs_to_new_PRS () is specified as follows (PRS stands for "Progressive Refinement Slice") :

-
If any of the following conditions is true, the return value of next_nalu_belongs_to_new_ PRS () is equal to 1 :

o
Next NALU in decoding order has a value of QualityLevel different than the value of QualityLevel for the NALU being decoded

o
Next NALU in decoding order has a value of nal_unit_type different than 20 or 21

Remark: the introduction of this function is a trick we propose at the syntax level in order to specify when "progressive_refinement_slice_data_in_scalable_extension" should be called. This kind of trick may also be a solution for defining when to launch inverse MCTF for reconstruction (this point is not still clear in the syntax as you have pointed out). This concept is quite similar to what is done currently in JSVM where such decoding is launched on the next NAL processing. In this proposed case, we perform the decoding during the current NAL processing thanks to a simple parse (only NAL header parsed) of the following NAL. This does not imply additional delay and lead to a simpler syntax.

swap_buffers (cBuffer0, cBuffer1) is specified as follows.

-
It swaps the two buffers. At the end of this process, cBuffer0 contains the datas previously contained in cBuffer1 , and cBuffer1contains the datas previously contained in cBuffer0.
S.7.3 Syntax in tabular form

S.7.3.2.12
Slice layer in scalable extension RBSP syntax

	slice_layer_in_scalable_extension_rbsp() {
	C
	Descriptor

	
slice_header_in_scalable_extension()
	2
	

	
if(slice_type != PR)
	
	

	

slice_data_in_scalable_extension()
	2 | 3 | 4
	

	
else {
	
	

	

if(fractioned_flag) {
	
	

	

if(fraction_order = = 0)
	
	

	

NumBytesInFractionedPR = 0
	
	

	

while(!byte_aligned())
	
	

	

cabac_alignment_one_bit
	2
	f(1)

	

while(more_rbsp_data())
	
	

	

rbtmp_byte[NumBytesInFractionedPR++]
	2 | 3 | 4
	b(8)

	

}
	
	

	

if(!fractioned_flag | | last_fraction_flag | |

next_nalu_belongs_to_new_slice()) {
	
	

	

if(fractioned_flag)
	
	

	

swap_buffers(rbtmp_byte, rbsp_byte)
	
	

	

progressive_refinement_slice_data_in_scalable_extension()
	
	

	
}
	
	

	
rbsp_slice_trailing_bits()
	2
	

	}
	
	

S.7.3.6
Slice header in scalable extension syntax

	slice_header_in_scalable_extension() {
	C
	Descriptor

	
first_mb_in_slice
	2
	ue(v)

	
slice_type
	2
	ue(v)

	
pic_parameter_set_id
	2
	ue(v)

	
if(slice_type = = PR) {
	
	

	

num_mbs_in_slice_minus1
	2
	ue(v)

	

luma_chroma_sep_flag
	2
	u(1)

	

fractioned_flag
	2
	u(1)

	

if(fractioned_flag) {
	
	

	

fraction_order
	2
	ue(v)

	

last_fraction_flag
	2
	u(1)

	

}
	
	

	
}
	
	

	
frame_num
	2
	u(v)

	
if((slice_type != PR | | !fractioned_flag | | fraction_order = = 0) {
	
	

	

if(!frame_mbs_only_flag) {
	
	

	

field_pic_flag
	2
	u(1)

	

if(field_pic_flag)
	
	

	

bottom_field_flag
	2
	u(1)

	

}
	
	

	

if(nal_unit_type = = 21)
	
	

	

idr_pic_id
	2
	ue(v)

	

if(pic_order_cnt_type = = 0) {
	
	

	

pic_order_cnt_lsb
	2
	u(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt_bottom
	2
	se(v)

	

}
	
	

	

if(pic_order_cnt_type = = 1 && !delta_pic_order_always_zero_flag) {
	
	

	

delta_pic_order_cnt[0]
	2
	se(v)

	

if(pic_order_present_flag && !field_pic_flag)
	
	

	

delta_pic_order_cnt[1]
	2
	se(v)

	

}
	
	

	

if(slice_type != PR) {
	
	

	

if(redundant_pic_cnt_present_flag)
	
	

	

redundant_pic_cnt
	2
	ue(v)

	

if(slice_type = = EB)
	
	

	

direct_spatial_mv_pred_flag
	2
	u(1)

	

key_picture_flag
	2
	u(1)

	

decomposition_stages
	2
	ue(v)

	

base_id_plus1
	2
	ue(v)

	

if(base_id_plus1 != 0) {
	
	

	

adaptive_prediction_flag
	2
	u(1)

	

}
	
	

	

if(slice_type = = EP | | slice_type = = EB) {
	
	

	

num_ref_idx_active_override_flag
	2
	u(1)

	

if(num_ref_idx_active_override_flag) {
	
	

	

num_ref_idx_l0_active_minus1
	2
	ue(v)

	

if(slice_type = = EB)
	
	

	

num_ref_idx_l1_active_minus1
	2
	ue(v)

	

}
	
	

	

}
	
	

	

ref_pic_list_reordering()
	2
	

	

for(decLvl = temporal_level; decLvl < decomposition_stages; decLvl++)

{
	
	

	

num_ref_idx_update_l0_active[decLvl + 1]
	2
	ue(v)

	

num_ref_idx_update_l1_active[decLvl + 1]
	2
	ue(v)

	

}
	
	

	

if((weighted_pred_flag && slice_type = = EP) | |

(weighted_bipred_idc = = 1 && slice_type = = EB))
	
	

	

pred_weight_table()
	2
	

	

if(nal_ref_idc != 0)
	
	

	

dec_ref_pic_marking()
	2
	

	

if(entropy_coding_mode_flag && slice_type != EI)
	
	

	

cabac_init_idc
	2
	ue(v)

	

}
	
	

	

slice_qp_delta
	2
	se(v)

	

if(deblocking_filter_control_present_flag) {
	
	

	

disable_deblocking_filter_idc
	2
	ue(v)

	

if(disable_deblocking_filter_idc != 1) {
	
	

	

slice_alpha_c0_offset_div2
	2
	se(v)

	

slice_beta_offset_div2
	2
	se(v)

	

}
	
	

	

}
	
	

	

if(slice_type != PR)
	
	

	

if(num_slice_groups_minus1 > 0 &&

slice_group_map_type >= 3 && slice_group_map_type <= 5)
	
	

	

slice_group_change_cycle
	2
	u(v)

	

if(slice_type != PR && extended_spatial_scalability > 0) {
	
	

	

if (chroma_format_idc > 0) {
	
	

	

base_chroma_phase_x_plus1
	2
	u(2)

	

base_chroma_phase_y_plus1
	2
	u(2)

	

}
	
	

	

if(extended_spatial_scalability = = 2) {
	
	

	

scaled_base_left_offset
	2
	se(v)

	

scaled_base_top_offset
	2
	se(v)

	

scaled_base_right_offset
	2
	se(v)

	

scaled_base_bottom_offset
	2
	se(v)

	

}
	
	

	

}
	
	

	

SpatialScalabilityType = spatial_scalability_type()
	
	

	
}
	
	

	}
	
	

	
	
	

S.7.4 Semantics
S.7.2.4.8
Slice layer without partitioning RBSP semantics

The specification of this subclause in AVC shall apply.
cabac_alignment_one_bit has the same semantics as cabac_alignment_one_bit in subclause Erreur ! Source du renvoi introuvable..

rbtmp_byte[i] is the i-th byte of a progressive_refinement_slice_data_in_scalable_extension() payload, it does not include the slice headers. The rbtmp_byte[] is used to append sub-parts of the slice data of a progressive refinement slice before parsing its syntax elements.
S.7.4.6
Slice header in scalable extension semantics

fractioned_flag equal to 1 specifies that the current NAL unit is fractioned. fractioned_flag equal to 0 specifies that the current NAL unit is not fractioned.

When fractioned_flag is equal to 1, the NAL unit cannot be parsed independently; in this case the RBSP bytes of the slice data of all NAL units with identical values of first_mb_in_slice, slice_type, pic_parameter_set_id, num_mbs_in_slice_minus1, luma_chroma_sep_flag, and fractioned_flag shall be stored in a temporary RBSP byte buffer in increasing order of fraction order, and the parsing process is started when a NAL unit with last_fraction_flag equal to 1 is received or when the next NAL unit is not a NAL unit with identical values of first_mb_in_slice, slice_type, pic_parameter_set_id, num_mbs_in_slice_minus1, luma_chroma_sep_flag, and fractioned_flag.

fraction_order specifies the order in which the NAL units with fractioned_flag equal to 1 shall be ordered before the parsing process is started.

A NAL unit with fractionOrder = fraction_order greater than 0 shall immediately follow a NAL unit with identical values of first_mb_in_slice, slice_type, pic_parameter_set_id, num_mbs_in_slice_minus1, luma_chroma_sep_flag, and fractioned_flag, and a value of fraction_order equal to fractionOrder – 1.

last_fraction_flag equal to 1 specifies that the current NAL unit is the last fraction of a progressive refinement slice and that the parsing process can be started. last_fraction_flag equal to 0 specifies that zero or more NAL units containing fraction of the current progressive refinement slice may follow.

Remark

In this syntax proposal, following conditions regarding stream ordering are assumed to be true:

-
All NAL units of the same slice are consecutive for a given dependency_id and must be ordered by non decreasing QualityLevel (This assumption is related to NAL ordering considering the adopted AU semantic).

-
All FGS fractions of a progressive refinement slice must be ordered by increasing value of priority_id
This ordering is necessary in order to use the next_nalu_belongs_to_new_PRS syntax function introduced in order to control the decoding process.
(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image5.wmf]
	[image: image6.png]1S0
NS

	[image: image7.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	France Telecom Division R&D
	

	Mailing address
	4, rue du clos courtel BP 59
35 512 Cesson Sévigné
	

	Country
	FRANCE
	

	Contact person
	Stéphane Pateux
	

	Telephone
	(+33) 2 99 12 41 77
	

	Fax
	(+33) 2 99 12 40 98
	

	Email
	stephane.pateux@francetelecom.com
	

	Place and date of submission
	Poznan, 19/07/2005
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	Syntax for FGS pass fractioning
	

	Contribution number
	JVT-P031
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image8.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image9.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	
[image: image10.wmf]

x

	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image11.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image12.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	
	

	Inventor(s)/Assignee(s)
	
	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	
[image: image13.wmf]

x

	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image14.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

File: JVT-P031_v1.doc
Page: 1
Date Saved: 2005-07-20

_1080736133.doc
 x

