	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

16th Meeting: Poznan, Poland 25-29 July, 2005
	Document: JVT-P019
Filename: JVT-P019r1.doc

	Title:
	CE10: Unified motion upsampling in Extended Spatial Scalability

	Status:
	Input Document to JVT

	Purpose:
	Proposal

	Author(s) or
Contact(s):
	J. Viéron, E. Francois, N. Burdin

THOMSON Multimedia R&D France,
Video Compression Lab,
1, Avenue Belle Fontaine – CS17617
35576 Cesson Sévigné Cedex – France
	
Tel:

Email:
	
+33 299 273 769

jerome.vieron@thomson.net

	Source:
	THOMSON

Abstract
This document relates to CE10, dealing with Extended Spatial Scalability. It corresponds to proposal2, focused on motion upsampling, in case of cropping and non dyadic spatial scalability. The proposed solution aims at unifying the two tools of Extended Spatial Scalability, that is, spatial scalability with ratio 3/2 and MB aligned cropping, and spatial scalability with any ratio and any cropping.

1 Introduction
This document relates to CE10, dealing with Extended Spatial Scalability, described in document JVT-O310. It corresponds to proposal2, focused on motion upsampling, in case of cropping and non dyadic spatial scalability.

The JSVM2 contains two tools supporting Extended Spatial Scalability, one called ESS_3_2 with a limited enhancement / base layer ratio of 3/2, [JVT-O42], one called ESS_Generic supporting any ratio, [JVT-O41]. The current proposal consists in providing a complexity reduction by fully unifying these solutions.

ESS_3_2 applies a “coarse-to-fine” motion upsampling, that is, followed by partitions inheritance and, if required, sub-partitions inheritance. Conversely, ESS_Generic applies a “fine-to-coarse”, that is, each 4x4 enhancement layer block first inherits, followed by an analysis process to derive sub-partitioning and concluded by another analysis to derive MB partitioning and types.

The current proposal consists in adapting the latter approach to perform a “coarse-to-fine” motion upsampling similar to what is done in the ESS_3_2 solution. The overall “Unified” motion upsampling process is described in the sequel.
2 Problem to solve

We consider two successive spatial layers, a low layer (considered as base layer) and a high layer (considered as enhancement layer), linked by the following geometrical relations :

· enhancement layer pictures dimensions are defined as enh_width and enh_height.

· base layer pictures dimensions are defined as BasePicWidth and BasePicHeight.

· base layer pictures are a downsampled version of sub-pictures of enhancement layer pictures, of dimensions ScaledBaseWidth and ScaledBaseHeight, positioned at coordinates (scaled_base_X , scaled_base_Y) in the enhancement layer pictures coordinates system.

The window corresponding to the scaled base layer is called cropping window in the sequel.

The motion upsampling process consists in inheriting motion of the high layer macroblocks from the motion of the low layer macroblocks. This process is only possible for high layer macroblocks fully inside the cropping window. The motion upsampling process for a given high layer macroblock is described in the next section.
3 Motion upsampling process description

A high layer macroblock can exploit inter-layer prediction using scaled base layer motion data, using either “BASE_LAYER_MODE” or “QPEL_REFINEMENT_MODE”. In case of using one of these two modes, the high layer macroblock is reconstructed with default motion data deduced from the base layer.

For a given high layer macroblock at position (MbIdxX , MbIdxY), the inheritance motion data process works in the four following steps:
· Geometrical parameters derivation
· Identification of the macroblock class,

· Derivation of the inherited partition and sub-partitions,
· Motion data inheritance

The full motion inheriting process is based on the geometrical parameters derived in the first step.
3.1 Geometrical parameters derivation
3.1.1 Principle

The high layer macroblock may inherit from 1 to 4 base layer macroblocks. Based on the geometrical configuration of the corrresponding base layer macroblocks, this step derives the following parameters:

· the horizontal and vertical positions (MbBorderX , MbBorderY) of the nearest base layer MB border, from the high layer MB center in the high layer reference (cf Figure 1),

· the horizontal and vertical positions (B8x8BorderX , B8x8BorderY) of the nearest base layer 8x8 block border, from the high layer MB center in the high layer reference (cf Figure 1).

[image: image1.emf]Base MB border

Base 8x8 block border

MbBorderX

(XB,YB)

(XC,YC)

B8x8BorderX

High MB

Figure 1: links between high layer MB and its corresponding base layer MBs.
3.1.2 Derivation process

Let (XP , YP) be the position of the upper left sample of the macroblock in the high layer reference.

The position in the base layer reference of the high layer MB center (XC , YC) is derived as follows:

· XC = ((XP0 + 8) * BasePicWidth + BasePicWidth / 2) / ScaledBaseWidth
· YC = ((YP0 + 8) * BasePicHeight + BasePicHeight / 2) / ScaledBaseHeight
with (XP0 , YP0) being defined as follows:

· XP0 = XP – scaled_base_X

· YP0 = YP – scaled_base_Y

· Let dX1 and dX2 be defined as follows:

· dX1 = (8 * (XC >> 3) * ScaledBaseWidth + BasePicWidth / 2) / BasePicWidth - (XP0 + 8)

· dX2 = (8 * (XC >> 3 + 1) * ScaledBaseWidth + BasePicWidth / 2) / BasePicWidth - (XP0 + 8)

· Let dY1 and dY2 be defined as follows:

· dY1 = (8 * (YC >> 3) * ScaledBaseHeight + BasePicHeight / 2) / BasePicHeight - (YP0 + 8)

· dY2 = (8 * (YC >> 3 + 1) * ScaledBaseHeight + BasePicHeight / 2) / BasePicHeight - (YP0 + 8)

· For Z being replaced by X and Y, the following applies.

· dZi = sign(dZi) * ((| dZi |+2) / 4) * 4
with i=1,2

· If((8 * (ZC >> 3)) % 16 = = 0)
MbBorderZ = dZ1
and
B8x8BorderZ = dZ2

· Otherwise,
MbBorderZ = dZ2
and
B8x8BorderZ = dZ1

3.2 Macroblock class derivation

3.2.1 Principle

Based on the geometrical parameters derived in section 3.1, we define four macroblock classes:
· Corner
the high layer macroblock has 1 corresponding base layer macroblock at position (XB/16 , YB/16)

· Hori
the high layer macroblock has 2 corresponding base layer macroblocks at positions (XB/16 , YB/16) and (XB/16 , (YB/16) + 1)

· Vert
the high layer macroblock has 2 corresponding base layer macroblocks at positions (XB/16 , YB/16) and ((XB/16) + 1 , YB/16)

· Center
the high layer macroblock has 4 corresponding base layer macroblocks at positions (XB/16 , YB/16) , ((XB/16) + 1 , YB/16) , (XB/16 , (YB/16) + 1) and ((XB/16) + 1 , (YB/16) + 1)

Where (XB , YB) , the position of the upper left sample of the current macroblock in the base layer reference is derived as follows:

· XB = XC-(MbBorderX>-8)
· YB = YC-(MbBorderY>-8)
3.2.2 Derivation Process
In the generic case, the two following steps are applied.

· If(| MbBorderX | >= 8) the following applies.

· If(| MbBorderY | >= 8)
MbClass = Corner

· Otherwise
MbClass = Hori

· Otherwise the following applies.

· If(| MbBorderY | >= 8)
MbClass = Vert

· Otherwise
MbClass = Center

3.2.3 Particular cases : SpatialScalabilityType 0, 1 and 2

3.2.3.1 SpatialScalabilityType 0 – ratio 1 with MB aligned crop

In this case, MbClass is systematically equal to corner and we have MbBorderX = MbBorderY = -8 and B8x8BorderX = B8x8BorderY = 0.
3.2.3.2 SpatialScalabilityType 1 – ratio 2 with MB aligned crop

In this case, MbClass is systematically equal to corner. The 4 positions described in the following table are possible.

Table 1 : derivation of mb class parameters in case of SpatialScalabilityType 1.
	(MbIdxX – ScaledBaseLeftOffset/16) % 2

(MbIdxY – ScaledBaseTopOffset/16) % 2
	0
	1

	0
	MbClass

(MbBorderX , MbBorderY)

(B8x8BorderX , B8x8BorderY)
	Corner

 (-8 , -8)

(8 , 8)
	Corner

 (8 , -8)

(-8 , 8)

	1
	MbClass

(MbBorderX , MbBorderY)

(B8x8BorderX , B8x8BorderY)
	Corner

 (-8 , 8)

(8 , -8)
	Corner

 (8 , 8)

(-8 , -8)

3.2.3.3 SpatialScalabilityType 2 – ratio 3/2 with MB aligned crop

In the ratio 3/2 case, the different parameters are directly derived from macroblock position, as described in Table 2, where (modX , modY) are defined as follows:

· modX = (MbIdxX – (scaled_base_X / 16)) % 3

· modY = (MbIdxY – (scaled_base_Y / 16)) % 3

Table 2 : derivation of mb class parameters in case of SpatialScalabilityType 2.
	modX % 3

modY % 3
	0
	1
	2

	0
	MbClass
(MbBorderX , MbBorderY)

(B8x8BorderX , B8x8BorderY)
	Corner_0

 (-8 , -8)

(4 , 4)
	Vert_0
 (0 , -8)
(12 , 4)
	Corner_1
 (8 , -8)

(-4 , 4)

	1
	MbClass
(MbBorderX , MbBorderY)

(B8x8BorderX , B8x8BorderY)
	Hori_0
 (-8 , 0)

(4 , 12)
	Center

 (0 , 0)

(12 , 12)
	Hori_1
 (8 , 0)

(-4 , 12)

	2
	MbClass
(MbBorderX , MbBorderY)

(B8x8BorderX , B8x8BorderY)
	Corner_2
 (-8 , 8)
(4 , -4)
	Vert_1
 (0 , 8)
(12 , -4)
	Corner_3

 (8 , 8)

(-4 , -4)

3.3 Macroblock partition and sub-partitions inheritance
3.3.1 Principle
The goal of this process is to derive macroblock partition and sub-partitions from the corresponding base layer macroblocks, the MB class and the couples (MbBorderX , MbBorderY) and (B8x8BorderX , B8x8BorderY). These variables are used to identify if the high layer macroblock is (potentially) divided, as described in the following:

· |MbBorderX| = = 0
a base MB frontier vertically divides a high layer MB

· |MbBorderX| = = 4
a base MB frontier vertically divides a high layer 8x8 block

· |B8x8BorderX| = = 0
a base 8x8 block frontier can vertically divide a high layer MB

· |B8x8BorderX| = = 4
a base 8x8 block frontier can vertically divide a high layer 8x8 block

· |MbBorderX+B8x8BorderX|/2 = = 4
a base 4x4 block frontier can vertically divide a high layer 8x8 block

The same rules applies for the Y dimension. In this case, the block division can apply horizontally.
3.3.2 Inheritance processes

3.3.2.1 Global variables and basic functions

In the sequel, we assume that the following variables are known:
· MbClass: the class of the current macroblock as defined in section 3.1.

· (MbBorderX , MbBorderY): the horizontal and vertical positions of the nearest base layer MB border, from the high layer MB center in the high layer reference as defined in section 2.1
· (B8x8BorderX , B8x8BorderY): the horizontal and vertical positions of the nearest base layer 8x8 block border, from the high layer MB center in the high layer reference as defined in section 2.1
· MbTypeBase[j]: defined as the mb_type of aMbAddrBase[j] (with j=0..3), with aMbAddrBase derived by invoking section 6.5.2 of document JSVM.2-AnnexS [JVT-O202] with the address of current macroblock as input.
The following defines basic functions that are common to the further inheritance MB partition and sub-partitions processes.
Suffix(type , dim)
This function gives the suffix of the variable type corresponding to the dimension dim (dim is equal to 0 for X and to 1 for Y). If type is INTRA it returns INTRA.
If type is an INTRA mode, returns INTRA

· Otherwise, the following applies

· The last part of the name of type is first extracted (for instance 16x8)

· If(dim = = 0) the first dimension value is returned (16 in the previous example)

· Otherwise, the second dimension value is returned (8 in the previous example)

splitBlock(borderPos , b8x8Idx , dim)
This function returns 1 if the 8x8 block b8x8Idx is potentially splitted in the dimension dim.
· If(| borderPos | = = 4)

· If(dim) return - (2 * (b8x8Idx / 2) – 1)) = = sign (borderPos)

· Otherwise return - (2 * (b8x8Idx % 2) – 1)) = = sign (borderPos)

· Otherwise, return 0.

minBlockSize(size0 , size1)
This function returns the min between size0 and size1. If both inputs are INTRA, it returns INTRA.

· If(size0 = = INTRA)
· If(size1 = = INTRA) return INTRA

· Otherwise, return size1

· Otherwise, if(size1 = = INTRA) , return size0

· Otherwise, return min(size0 , size1)

getBaseIdx(b8x8Idx , b4x4Idx)
This function returns (mbAddrBase, mbPartIdxBase, subMbPartIdxBase), with mbAddrBase being the base macroblock address, mbPartIdxBase the base partition index and, if it exists, subMbPartIdxBase the base sub partition index, from which the 4x4 block b8x8Idx / b4x4Idx inherits.
· Let idxBaseBX and idxBaseBY be defined as follows.

· Let MapTab be Table 3 which gives the mapping between current and base layer 4x4 blocks as a function of MbBorderZ and B8x8BorderZ (with Z being replaced by X or Y).
· idxBaseBX = MapTab[MbBorderX , B8x8BorderX , 2 * (b8x8Idx % 2) + (b4x4Idx % 2)]

· idxBaseBY = MapTab[MbBorderY , B8x8BorderY , 2 * (b8x8Idx / 2) + (b4x4Idx / 2)]

· Let mbIdx be defined as follows.

· If(MbClass = = Corner) , the following applies.

· mbIdx = 0

· Otherwise if(MbClass = = Vert) , the following applies.

· mbIdx = idxBaseBX / 4
· Otherwise if(MbClass = = Hori) , the following applies.

· mbIdx = idxBaseBY / 4
· Otherwise (MbClass = = Center) , the following applies.

· mbIdx = 2 * (idxBaseBY / 4) + idxBaseBX / 4
· mbAddrBase is set to aMbAddrBase[mbIdx]

· b8x8IdxBase is set to (2 * ((idxBaseBY / 2) % 2) + ((idxBaseBX / 2) % 2))

· b4x4IdxBase is set to (2 * (idxBaseBY % 2) + (idxBaseBX % 2))

· Let mbPartIdxBase be defined as the index of the macroblock partition of mbAddrBase covering the 4x4 block b4x4IdxBase
· Let subMbPartIdxBase be defined as the index of the sub-partition, if it exists, of partition mbPartIdxBase, covering the 4x4 block b8x8IdxBase / b4x4IdxBase.
· return (mbAddrBase , mbPartIdxBase , subMbPartIdxBase)

Table 3- Mapping table between current and base layer 4x4 blocks (MapTab[])
	b4x4 coordinate
	0
	1
	2
	3

	MbBorderZ
	B8x8BorderZ
	
	
	
	

	-12
	4
	0
	1
	1
	2

	-8
	4
	0
	0
	1
	2

	-8
	8
	0
	0
	1
	1

	-4
	4
	3
	4
	5
	6

	-4
	8
	3
	4
	5
	5

	-4
	12
	3
	4
	4
	5

	0
	8
	2
	3
	4
	5

	0
	12
	3
	3
	4
	4

	0
	16
	3
	3
	4
	4

	4
	-12
	2
	3
	3
	4

	4
	-8
	2
	2
	3
	4

	4
	-4
	1
	2
	3
	4

	8
	-8
	2
	2
	3
	3

	8
	-4
	1
	2
	3
	3

	8
	0
	0
	1
	2
	3

	12
	-4
	1
	2
	2
	3

	12
	0
	1
	1
	2
	2

	16
	0
	1
	1
	2
	2

getMbTypeBaseSize(b8x8Idx , dim)
This function returns the mb_Type Suffix, corresponding to dimension dim, of the base macroblock(s) from which the 8x8 block b8x8Idx inherits.

· Let mbTypeBase0 and mbTypeBase1 be defined as follows.

· Let mbAddrBase0 be derived by invoking function getBaseIdx(b8x8Idx , 0)

· Let mbAddrBase1 be derived by invoking function getBaseIdx(b8x8Idx , 3)

· Let mbTypeBase0 be the MB type of mbAddrBase0

· Let mbTypeBase1 be the MB type of mbAddrBase1

· return minBlockSize(Suffix(mbTypeBase0 , dim) , Suffix(mbTypeBase1 , dim)).

getSubMbTypeBaseSize(b8x8Idx , dim)
This function returns the subMb_Type Suffix, corresponding to dimension dim, of the base 8x8 block(s) from which the 8x8 block b8x8Idx inherits.

· Let subMbTypeBase0 and subMbTypeBase1 be defined as follows.

· Let mbAddrBase0, mbPartIdx0 be derived by invoking function getBaseIdx(b8x8Idx , 0)

· Let mbAddrBase1, mbPartIdx1 be derived by invoking function getBaseIdx(b8x8Idx , 3)

· Let subMbTypeBase0 be the sub-MB type of partition mbPartIdx0 of mbAddrBase0

· Let subMbTypeBase1 be the sub-MB type of partition mbPartIdx1 of mbAddrBase1

· return minBlockSize(Suffix(subMbTypeBase0 , dim) , Suffix(subMbTypeBase1 , dim)).
getSubMbTypeBaseSize2(dim)
This function returns the subMb_Type Suffix, corresponding to dimension dim, of the base 8x8 block(s) from which the current Mb inherits.

· Let subMbTypeBase0 and subMbTypeBase1 be defined as follows.

· Let mbAddrBase0, mbPartIdx0 be derived by invoking function getBaseIdx(0 , 0)

· Let mbAddrBase1, mbPartIdx1 be derived by invoking function getBaseIdx(3 ,0)

· Let subMbTypeBase0 be the sub-MB type of partition mbPartIdx0 of mbAddrBase0

· Let subMbTypeBase1 be the sub-MB type of partition mbPartIdx1 of mbAddrBase1

· return minBlockSize(Suffix(subMbTypeBase0 , dim) , Suffix(subMbTypeBase1 , dim)).
isIntraBase(Ddim, Ddual, b8x8Idx)
This function returns 1 if the Base MB(s) corresponding to the block of index b8x8Idx are INTRA.

- If splitBlock(Ddim , b8x8Idx , dim)&& splitBlock(Ddual , b8x8Idx , 1-dim)
- return ((MbTypeBase[0] == INTRA) && (MbTypeBase[1] == INTRA)
 && (MbTypeBase[2] == INTRA) && (MbTypeBase[3] == INTRA))
- Otherwise,
- Let mbAddrBase0 be derived by invoking function getBaseIdx(b8x8Idx , 0)
- Let mbAddrBase1 be derived by invoking function getBaseIdx(b8x8Idx , 3)
- Let mbTypeBase0 be the MB type of mbAddrBase0
- Let mbTypeBase1 be the MB type of mbAddrBase1
- return ((mbTypeBase0 == INTRA) &&(mbTypeBase1 == INTRA)).
computeSubMbTypeSize(D,Ddual , d , b8x8Idx , dim)
This function returns the sub-partition size, in the dimension dim, of the block of index b8x8Idx.

· If(isIntraBase((D,Ddual ,b8x8Idx) return -1

· Otherwise,
- If splitBlock(D , b8x8Idx , dim), return 4

- Otherwise, if splitBlock(d , b8x8Idx , dim), the following applies.

- return (getMbTypeBaseSize(b8x8Idx , dim) / 2)
- Otherwise, if(| (D + d) / 2 | = = 4)

- return getSubMbtypeBaseSize(b8x8Idx , dim)

· Otherwise, return 8.
computePredIdx(currIdx , numPred)
This function returns a predictor index of currIdx. If numPred is equal to 1 it returns the index of its horizontal neighbour otherwise the index of its vertical neighbour is returned.
· If(numPred = = 1) return (currIdx + (1 – 2 * (currIdx % 2)))

· Otherwise, return ((currIdx + 2) % 4)

computeBlkSize(suffix,D)
· If(suffix = = 8) && ((D == 4) || ((D == 12)) return 4

· Otherwise, If(suffix = = 8) && ((D == 0) || ((D == 16)) return 8;

· Otherwise, return 16

3.3.2.2 Macroblock partitioning inheritance

Input of this process is the address of the current macroblock
Output of this process is the macroblock partitioning mbLabel of the current macroblock.

· If(MbClass = = Center)

· Let cptrIntra be a variable set equal to 0.

· For b8x8Idx indexed by 0..3

· If(MbTypeBase[b8x8Idx] = = INTRA), cptrIntra +=4
· If splitBlock(MbBorderX , b8x8Idx , 0) cptrIntra<<=1

· If splitBlock(MbBorderY , b8x8Idx , 1) cptrIntra <<=1
· If(cptrIntra > 8) mbLabel = INTRA

· Otherwise, mbLabel = 8x8

· Otherwise,

· if(MbClass = = Corner)

· mbTypeBaseSuffixX = Suffix(MbTypeBase[0] , 0)

· mbTypeBaseSuffixY = Suffix(MbTypeBase[0] , 1)

· mbLabelX = computeBlkSize(mbTypeBaseSuffixX , | B8x8BorderX |)
· mbLabelY = computeBlkSize(mbTypeBaseSuffixY , | B8x8BorderY |)
· is8x8Base = (MbTypeBase[0] = = 8x8)

· Otherwise, if(MbClass = = Vert)
· If((MbTypeBase[0] == INTRA) && (MbTypeBase[1] == INTRA)
|| (MbTypeBase[0] == INTRA) && (splitBlock(MbBorderX , 1, 0)
|| (MbTypeBase[1] == INTRA) && (splitBlock(MbBorderX , 0, 0))
· mbTypeBaseSuffixY = INTRA
· Otherwise,

· mbTypeBaseSuffixY = minBlockSize (Suffix(MbTypeBase[0] , 1) , Suffix(MbTypeBase[1] , 1))

· mbLabelY = computeBlkSize(mbTypeBaseSuffixY , | B8x8BorderY |)
· mbLabelX= (| B8x8BorderX | == 4) ? 4 : 8)
· is8x8Base = (MbTypeBase[0] = = 8x8) ||(MbTypeBase[1] = = 8x8)

· Otherwise, (MbClass = =Hori)

· If((MbTypeBase[0] == INTRA) && (MbTypeBase[1] == INTRA)
|| (MbTypeBase[0] == INTRA) && (splitBlock(MbBorderY , 1, 1)
|| (MbTypeBase[1] == INTRA) && (splitBlock(MbBorderY , 2, 1))

· mbTypeBaseSuffixX = INTRA
· Otherwise,

· mbTypeBaseSuffixX = minBlockSize (Suffix(MbTypeBase[0] , 0) , Suffix(MbTypeBase[1] , 0))
· mbLabelX = computeBlkSize(mbTypeBaseSuffixX , | B8x8BorderX |)
· mbLabelY= (| B8x8BorderY | == 4) ? 4 : 8)
· is8x8Base = (MbTypeBase[0] = = 8x8) ||(MbTypeBase[1] = = 8x8)

· If(mbTypeBaseSuffixX==INTRA) or (mbTypeBaseSuffixY==INTRA) mbLabel = INTRA

· Otherwise,

· If(mbLabelX = =4) or (mbLabelY = = 4) mbLabel = 8x8

· Otherwise,

· If(is8x8Base)
· If((mbLabelX ! = 8) && (| B8x8BorderX | = = 8))

· mbLabelX = min (mbLabelX , 2 * getSubMbTypeBaseSize2(0))
· If((mbLabelY ! = 8) && (| B8x8BorderY | = = 8))

· mbLabelY = min (mbLabelY , 2 * getSubMbTypeBaseSize2(1))

mbLabel = mbLabelX_mbLabelY
3.3.2.3 Sub-partitions inheritance
Input to this process is a 8x8 block partition index b8x8Idx.
Output of this process is 8x8 block sub-partition label mbPartLabel.

For the 8x8 block with index b8x8Idx, the block partitioning mbPartLabel derivation is defined as follows.

- Let mbPartLabelX be derived by invoking computeSubMbTypeSize(MbBorderX, MbBorderY, B8x8BorderX, b8x8Idx , 0).

- Let mbPartLabelY be derived by invoking computeSubMbTypeSize(MbBorderY, MbBorderX, B8x8BorderY, b8x8Idx , 1).

- If((mbPartLabelX <= 0) or (mbPartLabelY <= 0)), mbPartLabel = INTRA

- Otherwise mbPartLabel = mbPartLabelX_mbPartLabelY

3.4 Motion data Inheritance
3.4.1 Principle

The goal of this process is to inherit the motion data (reference indices and motion vectors) of each partition/sub-partition of the macroblock. The process works in three steps:
- motion data inheritance,

- if needed, merging of reference indices of 8x8 blocks,

- if needed, processing of partitions inheriting from intra macroblocks, using neighbor partitions as predictors.
3.4.2 Inheritance processes
3.4.2.1 Related functions

inheritPartitionMotion(mbLabel , mbPartIdx)

This function performs the motion data inheritance of a macroblock partition mbPartIdx. If the corresponding base macroblocks are INTRA, no motion data inheritance is performed and the function returns -1. Otherwise motion data inheritance is performed and it returns 1.

- If(mbLabel ! = 8x8) , the following applies.

- Let b8x8Idx be defined as follows.

- If(mbLabel = = 16x8) b8x8Idx = 2*mbPartIdx

- Otherwise b8x8Idx = mbPartIdx

- Let mbAddrBase, mbPartIdxBase, subMbPartIdxBase be derived by invoking function getBaseIdx(b8x8Idx , 0).

- If mb_type of mbAddrBase is INTRA, return -1.

- Otherwise, for X being replaced by 0 and 1, RefIdxLX[mbPartIdx] and MvLX[mbPartIdx][0] are set to the reference index and motion vector of mbAddrBase/mbPartIdxBase/subMbPartIdxBase.

- Otherwise,

- Let mbPartLabel be derived by invoking section 3.3.3 with mbPartIdx as input.

- If mbPartLabel is equal to INTRA, return -1.

- Otherwise, the following applies.

- Let nbSubPart be the number of sub-partitions corresponding to mbPartLabel.

- Let refIdxBaseL0[i] and refIdxBaseL1[i] (with i = 0.. nbSubPart-1) be two arrays of variables.

- Let mvBaseL0[i] and mvBaseL1[i] (with i = 0.. nbSubPart-1) be two arrays of motion vectors.

- For subMbPartIdx indexed by 0..nbSubPart – 1, the motion inheritance is achieved as follows.

- If inheritSubPartitionMotion(mbPartLabel , mbPartIdx , subMbPartIdx , refIdxBaseL0 , refIdxBaseL1, mvBaseL0 , mvBaseL1) is equal to 0 , the following applies.

- Let predIdx be a variable initialized by invoking computePredIdx(subMbPartIdx, 1).

- If inheritSubPartitionMotion(mbPartLabel , mbPartIdx , predIdx , refIdxBaseL0 , refIdxBaseL1 , mvBaseL0 , mvBaseL1) is equal to 0 , the following applies.

- predIdx is derived by invoking computePredIdx(subMbPartIdx , 2).

- inheritSubPartitionMotion (mbPartLabel , mbPartIdx, predIdx , refIdxBaseL0 , refIdxBaseL1, mvBaseL0 , mvBaseL1) is invoked.

- For X being replaced by 0 and 1, the reference index merging is achieved as follows.

- Let minRefIdxLX be a variable set to the minimum reference index of the refIdxBaseLX[i] , with i=0..nbSubPart -1.

- If at least two refIdxBaseLX[i] with I = 0.. nbSubPart -1, are different , the following applies.

- For each sub-macroblock partition, indexed by subMbPartIdx = 0..nbSubPart -1,

- If(refIdxBaseLX[subMbPartIdx] ! = minRefIdxLX) , the following applies.

- Let predIdx be computed by invoking computePredIdx(subMbPartIdx, 1).

- If(refIdxBaseLX[predIdx] ! = minRefIdxLX) , predIdx is computed by invoking computePredIdx(subMbPartIdx , 2).

- mvBaseLX[subMbPartIdx] = mvBaseLX[predIdx]

- RefIdxLX [mbPartIdx] is set to minRefIdxLX.

- For each sub-macroblock partition, indexed by subMbPartIdx=0..nbSubPart -1, the following applies

- Let motion vector mvBaseTempo set equal to mvBaseLX[subMbPartIdx]
- The scaling of the inherited vector is performed by invoking the sub-clause 8.4.1.5.3 of [JVT-O202] with mvBaseTempo as input and MvLX[mbPartIdx][subMbPartIdx] as output.
- The function returns 1.

inheritSubPartitionMotion (mbPartLabel , mbPartIdx , subMbPartIdx , refIdxBaseL0 , refIdxBaseL1 , mvBaseL0 , mvBaseL1)

This function performs the motion data inheritance of a sub-partition mbPartIdx/subMbPartIdx. If the corresponding base macroblock is INTRA, no motion data inheritance is performed and the function returns -1. Otherwise motion data inheritance is performed and it returns 1.

- Let b4x4Idx be defined as follows.

- If(mbPartLabel = = 8x4) b4x4Idx = 2* subMbPartIdx

- Otherwise b4x4Idx = subMbPartIdx

- Let mbAddrBase, mbPartIdxBase, subMbPartIdxBase be derived by invoking function getBaseIdx(mbPartIdx , b4x4Idx)

- If mb_type of mbAddrBase is INTRA, return -1.

- Otherwise, the following applies.

- For X being replaced by 0 and 1, refIdxBaseLX[subMbPartIdx] and mvBaseLX[subMbPartIdx] are set to the reference index and motion vector of mbAddrBase/mbPartIdxBase/subMbPartIdxBase.

- The function returns 1.
3.4.2.2 Partition motion inheritance
Inputs to this process are

· a macroblock partition label mbLabel,

· a macroblock partition index mbPartIdx.
Outputs of this process are

· reference indices RefIdxL0[mbPartIdx] and RefIdxL1[mbPartIdx],
· motion vectors MvL0[mbPartIdx][i] and MvL1[mbPartIdx][i] with i = (0..nbPart), and nbPart being the number of partitions corresponding to mbLabel.

The process for inheriting motion data of partition mbPartIdx is the following.

- If inheritPartitionMotion(mbLabel , predIdx) is equal to 0, the following applies.

- Let predIdx be a variable derived by invoking computePredIdx(mbPartIdx , 1).

- If inheritPartitionMotion(mbLabel , predIdx) is equal to 0, the following applies.

- predIdx is derived by invoking computePredIdx(mbPartIdx , 2)

- inheritPartitionMotion(mbLabel , predIdx) is invoked.

- RefIdxLX[mbPartIdx] = RefIdxLX[predIdx]

- Let mbPartLabel be derived by invoking section 3.3.3 with predIdx as input.

- Let nbSubPart be the number of sub-partitions corresponding to mbPartLabel.

- For subMbPartIdx indexed by 0..nbSubPart – 1, the following applies.

- MvLX[mbPartIdx][subMbPartIdx] = MvLX[predIdx][subMbPartIdx]

4 Syntax and semantics modifications – with respect to JSVM-2

No modification of the syntax.

5 Decoding process modifications – with respect to JSVM-2

Most of the envisaged JSVM modifications are located in section 8.4.1.6. The following modifications of the JSVM-2 decoding process section are proposed.

Changes in JSVM-2 / Section S.6.5.4

The part related to SpatialScalabilityType equal to 2 will be replaced by the process described in function getBaseIdx() of section 3.1.3.1, that will apply when SpatialScalabilityType is greater than 1.

Changes in JSVM-2 / Section S.8.4.1.6.2 and JSVM-2 / Section S.8.4.1.6.3
These sections will be replaced by the motion data inheritance process described in section 3.1.4.

Changes in JSVM-2 / Section S.8.4.1.6.4
This section will be replaced by the macroblock partitioning label derivation process described in section 3.1.3.3.

Changes in JSVM-2 / Section S.8.4.1.6.5
This section will be replaced by the macroblock label derivation process described in section 3.1.3.2.

Changes in JSVM-2 / Section S.8.4.1.6.6

This section will be replaced by the macroblock class derivation process described in section 3.1.2. Accordingly, the geometrical derivation process described in section 3.1.1 will be added in section 8.4.1.6.

Motion inheriting related functions (except function getBaseIdx()) and variables defined in section 3.1.3.1, will be added in section 8.4.1.6.

6 Complexity considerations

The proposed “Unified” solution gives similar results to the JSVM2, while unifying the different types of spatial scalability (1:dyadic with MB aligned cropping / 2:ratio 3/2 with MB aligned cropping / 3:any ratio with any cropping), and consequently simplifying both the textual description and the implementation. The main complexity reductions are the following:

· significant reduction of the number of divisions and multiplications (rescaling operations reduced from 32 to 6 per MB),

· removal of the systematic 4x4 block motion inheritance thanks to the coarse-to-fine approach (MB type inheritance / partition inheritance / sub-partition inheritance).

· removal of the systematic merging operations required for each 4x4 block and each 8x8 block in the JSVM2 generic solution,

7 References

[JVT-O310]
Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG JVT-O310, “Core Experiments on Extended Spatial Scalability (CE-10)”, E.Francois, S.Sun.

[JVT-O041]
E. Francois, J. Viéron, G. Marquant, N. Burdin, and P. Lopez, “Generic Extended Spatial Scalability”, Joint Video Team of ISO/MPEG and ITU-T VCEG, Doc. JVT-O041, Busan, Korea, April 05.

[JVT-O042]
J. Viéron, E. Francois, G. Marquant, N. Burdin, and P. Lopez, “Extended Spatial Scalability with a 3/2 ratio”, Joint Video Team of ISO/MPEG and ITU-T VCEG, Doc. JVT-O042, Busan, Korea, April 05.

 [JVT-O202]

Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG JVT-O202, “Joint Scalable Video Model JSVM 2-AnnexS”, J.Reichel, H.Schwarz, M.Wien

(Append for Proposal Documents)

JVT Patent Disclosure Form
	International Telecommunication Union
Telecommunication Standardization Sector
	International Organization for Standardization
	International Electrotechnical Commission

	[image: image2.wmf]
	[image: image3.png]1S0
NS

	[image: image4.png]

Joint Video Coding Experts Group - Patent Disclosure Form
(Typically one per contribution and one per Standard | Recommendation)

Please send to:

JVT Rapporteur Gary Sullivan, Microsoft Corp., One Microsoft Way, Bldg. 9, Redmond WA 98052-6399, USA

Email (preferred): Gary.Sullivan@itu.int Fax: +1 425 706 7329 (+1 425 70MSFAX)

This form provides the ITU-T | ISO/IEC Joint Video Coding Experts Group (JVT) with information about the patent status of techniques used in or proposed for incorporation in a Recommendation | Standard. JVT requires that all technical contributions be accompanied with this form. Anyone with knowledge of any patent affecting the use of JVT work, of their own or of any other entity (“third parties”), is strongly encouraged to submit this form as well.

This information will be maintained in a “living list” by JVT during the progress of their work, on a best effort basis. If a given technical proposal is not incorporated in a Recommendation | Standard, the relevant patent information will be removed from the “living list”. The intent is that the JVT experts should know in advance of any patent issues with particular proposals or techniques, so that these may be addressed well before final approval.

This is not a binding legal document; it is provided to JVT for information only, on a best effort, good faith basis. Please submit corrected or updated forms if your knowledge or situation changes.

This form is not a substitute for the ITU ISO IEC Patent Statement and Licensing Declaration, which should be submitted by Patent Holders to the ITU TSB Director and ISO Secretary General before final approval.

	Submitting Organization or Person:

	Organization name
	THOMSON
	

	Mailing address
	1 avenue de belle fontaine

35511 CESSON SEVIGNE CEDEX

FRANCE
	

	Country
	FRANCE
	

	Contact person
	Jerome Vieron
	

	Telephone
	+33 2 99 27 37 69
	

	Fax
	
	

	Email
	jerome.vieron@thomson.net
	

	Place and date of submission
	Poznan, Poland, 25 april 05
	

	Relevant Recommendation | Standard and, if applicable, Contribution:

	Name (ex: “JVT”)
	JVT
	

	Title
	CE10: Unified motion upsampling in Extended Spatial Scalability
	

	Contribution number
	JVT-P019
	

	
	
	

(Form continues on next page)

	Disclosure information – Submitting Organization/Person (choose one box)

	
	

	[image: image5.wmf]
	2.0
The submitter is not aware of having any granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

or,

	The submitter (Patent Holder) has granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution. In which case,

	[image: image6.wmf]
	2.1
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a free license to an unrestricted number of applicants on a worldwide, non-discriminatory basis to manufacture, use and/or sell implementations of the above Recommendation | Standard.

	
	

	[image: image7.wmf]
	2.2
The Patent Holder is prepared to grant – on the basis of reciprocity for the above Recommendation | Standard – a license to an unrestricted number of applicants on a worldwide, non-discriminatory basis and on reasonable terms and conditions to manufacture, use and/ or sell implementations of the above Recommendation | Standard.

Such negotiations are left to the parties concerned and are performed outside the ITU | ISO/IEC.

	
	

	[image: image8.wmf]
	2.2.1
The same as box 2.2 above, but in addition the Patent Holder is prepared to grant a “royalty-free” license to anyone on condition that all other patent holders do the same.

	
	

	[image: image9.wmf]
	2.3
The Patent Holder is unwilling to grant licenses according to the provisions of either 2.1, 2.2, or 2.2.1 above. In this case, the following information must be provided as part of this declaration:

· patent registration/application number;
· an indication of which portions of the Recommendation | Standard are affected.
· a description of the patent claims covering the Recommendation | Standard;

	In the case of any box other than 2.0 above, please provide the following:

	Patent number(s)/status
	Provisional filing (Thomson)

	

	Inventor(s)/Assignee(s)
	Vieron, Francois, Burdin (Thomson)

	

	Relevance to JVT
	
	

	Any other remarks:
	
	

	(please provide attachments if more space is needed)

(form continues on next page)

Third party patent information – fill in based on your best knowledge of relevant patents granted, pending, or planned by other people or by organizations other than your own.

	Disclosure information – Third Party Patents (choose one box)

	
	

	[image: image10.wmf]
	3.1
The submitter is not aware of any granted, pending, or planned patents held by third parties associated with the technical content of the Recommendation | Standard or Contribution.

	[image: image11.wmf]
	3.2
The submitter believes third parties may have granted, pending, or planned patents associated with the technical content of the Recommendation | Standard or Contribution.

	For box 3.2, please provide as much information as is known (provide attachments if more space needed) - JVT will attempt to contact third parties to obtain more information:

	3rd party name(s)
	
	

	Mailing address
	
	

	Country
	
	

	Contact person
	
	

	Telephone
	
	

	Fax
	
	

	Email
	
	

	Patent number/status
	
	

	Inventor/Assignee
	
	

	Relevance to JVT
	
	

	
	
	

	Any other comments or remarks:

_1179226723.vsd
Base MB border

Base 8x8 block border

MbBorderX

B8x8BorderX

(XB,YB)

(XC,YC)

High MB

