	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

11th Meeting: Munich, DE, 15-19 March, 2004
	Document: JVT-K010d3

Filename: JVT-K010d3.doc
Date: 2004-03-08

	Title:
	Corrigendum Status and New Reports

	Status:
	Input Document to JVT

	Purpose:
	Analysis and Proposed Corrections for Existing Standard

	Author(s) or
Contact(s):
	Gary Sullivan
Microsoft Corporation
One Microsoft Way
Redmond, WA 98052 USA
	
Tel:
Fax:
Email:
	
+1 (425) 703-5308
+1 (425) 706-7329
garysull@microsoft.com

	Source:
	Microsoft Corp.

1.0
Introduction

Our prior corrigendum status in ISO/IEC is DCOR based on JVT-J050 with a ballot period ending just prior to this meeting. Our prior corrigendum status in ITU-T is Consent Draft Corrigendum based on JVT-K012 with a last call period ending soon after this meeting.

Problem reports noted since the Geneva meeting of 27 January 2004 follow (each is credited to an approximate discoverer and accompanied by an approximate discovery date). In the next section, proposed exact text changes to correct these issues are provided in the twin-text corrigendum template format used for JVT-J050 and JVT-K012.

A. Gary Sullivan, 29 Jan 2004: When gaps_in_frame_num_value_allowed_flag is equal to 1, erratic unforeseen behaviour of the value of frame_num in non-reference pictures that is not explicitly prohibited could change the status of the DPB for the decoding of subsequent reference pictures. A modified version of item 38 (subclause 7.4.3) of JVT‑K012 is provided below to correct this problem.

B. Sam Narasimhan, 4 Feb 2004: We suggest considering the addition of a note in the text to point out the implication of NAL HRD parameters on VCL HRD operation (for example, the lack of need for a separate Type I conformance check in the VBR case when VCL HRD parameters have not been provided but NAL HRD parameters have been provided and the NAL HRD parameters within the boundaries of the Annex A constraints on VCL HRD capabilities). A modified version of item 93 (subclause C.3) of JVT-K012 is provided below to add this note.

C. Shawn Zhong, 4 Feb 2004: In the weighted prediction subclause 8.4.2.3.2, above Equation 8-224, the text uses the reference indices refIdxL1 and refIdxL0 to directly index the reference picture lists RefPicList0 and RefPicList1. However, it is not proper to use these indexes directly under some circumstances. For example, when the current picture is an AFRM frame and the current MB is a field MB, refIdxL1 and refIdxL0 are field indices, but RefPicList1 and RefPicList0 are lists of frames or field-pairs. A modified version of item 70 (subclause 8.2.4.3.2) of JVT-K012 is provided below to correct this problem.

D. Shinya Kadono, 5 Feb 2004: It is not prohibited to send memory_management_control_operation equal to 6 in a manner that could assign more than one LongTermFrameIdx to the current picture. Such use was not intended. A modified version of item E39

 (subclause 7.4.3.3) of JVT-K012 is provided below to correct this problem (and the problem noted in items and O below).

E. Shinya Kadono, 5 Feb 2004 (extended by Gary Sullivan 16 Feb 2004): It is not prohibited to send memory_management_control_operation equal to 6 followed by memory_management_control_operation equal to 2 with a long-term picture number indicating the current picture, which would result in the current picture being marked as "unused for reference" despite the current picture being a reference picture. This could cause a number of difficulties, including the possibility that all pictures in the DPB might be marked as "unused for reference" without any anticipating specification of how to operate the decoding process in such a situation. Additional observation: A similar strange use would be memory_management_control_operation equal to 3 followed by memory_management_control_operation equal to 2 with a long-term picture number indicating the same reference picture, which would assign a long-term frame index to a picture an then immediately mark it as "unused for reference", which is a useless combination. And yet another strange use would be to send memory_management_control_operation equal to 6 followed by memory_management_control_operation equal to 5. A modified version of item 39 (subclause 7.4.3.3) of JVT-K012 is provided below to correct this problem (and the problem noted in item D above and item O below).

F. Gary Sullivan, 6 Feb 2004: It is hypothetically possible for a reference frame to arrive in which some slices are of type B, P, or SP in a situation where the only previously-decoded data marked as "used for reference" in the DPB are non-paired fields. This would create reference picture lists with no entries, and there is no description of what to do in such a situation (e.g., no prohibition of inter prediction). A modified version of item 47 (subclause 8.2.4.2.3) of JVT-K012 and a new item labelled as item 45.5 (subclause 8.2.4.2.1, necessitating renumbering of the items) are provided below to correct this problem (and the problems noted in items N and X below).

G. Gary Sullivan, 9 Feb 2004: The meaning of "should" is not defined in the text or in clear parent-body specifications. Since that word is used in various places in this standard, it should be defined. It would also be beneficial to add a definition of "shall", so that there would be clear demarcation between the meaning of "shall" and "should", and so that the use of the word "shall" is clarified in the definition section regarding the imposition of a requirement to get the same result without the imposition of a requirement to get that result by exactly the same method. It would also be useful to provide definitions for "can", "informative", "may", "must", and "note", which are closely related terms that are all used in the specification. A modified version of items 15 (subclause 3.55) and 24 (subclause 3.120) of JVT‑K012 and new items 6.1 (subclause 3.19), 18.1 (subclause 3.76), 18.2 (subclause 3.78), and 19.1 (subclause 3.86, necessitating renumbering of the item numbers) are provided below to correct this problem (and the problem noted in item K below).

H. Olivier Deygas, 13 Feb 2004: When computing the POC (either when pic_order_cnt_type = 1 or 2) for the non-existing frames, what is the meaning of the "previous picture in decoding order"? e.g: in subclause 8.2.1.2 (pic_order_cnt_type = 1), prevFrameNum is equal to the frame_num of the previous picture in decoding order. e.g: in subclauses 8.2.1.2 and 8.2.1.3 (pic_order_cnt_type = 2), prevFrameNumOffset is equal to FrameNumOffset of the previous picture in decoding order. In case of consecutive non-existing frames, does the decoder use the frame_num/FrameNumOffset of the last generated non-existing frame as the "previous picture in decoding order"? The phrase "previous picture" in subclauses 8.2.1.2 and 8.2.1.3 should also be clarified as "previous picture in decoding order." New items 45.1 (subclause 8.2.1.2) and 45.2 (subclause 8.2.1.3, necessitating renumbering of the item numbers) are provided below to correct this problem.
I. Barry Haskell and Alexis Tourapis, 13 Feb 2004: Some aspects of direct prediction seem still not yet quite right. A modified version of item 30 is provided below to reduce the scope of a "note"; a modified version of item 42 (subclause 7.4.5.2) of JVT-K012 is provided to add some entries in Table 7-15 and semantics for those entries, and a modified version of item 59 (subclause 8.4) of JVT-K012 is provided to clean up some grammar.
J. Shawn Zhong, 13 Feb 2004: In the specification of weighted prediction, there are some problems: a) the inferred value of luma_weight_l0[i] and chroma_weight_l0[i][j] can violate the specified range of allowable values, b) the range restriction imposed by Equation 8‑242 is more strict than necessary and can interfere with the use of inferred weight values (enabling 16-bit operation is the only goal of that restriction), c) there are some minor grammatical and semi-grammatical issues (such as the lack of a clear definition of what "implicit mode weighted prediction" means, d) the second subscript is missing from chroma_weight_l0 and chroma_offset_l0 in a couple of places and e) it would be beneficial to add a "note" regarding the implication of Equation 8‑242 on inferred weight values. A new item 38.2 (subclause 7.4.3.2, necessitating renumbering of the item numbers) and a modified item 70 (subclause 8.2.4.3.2) of JVT-K012 are provided below to correct these problems.

K. Gary Sullivan, 16 Feb 2004: Italic font should be applied to the phrase "picture parameter set" in item 24 of JVT‑K012 (corrigendum editorial typographical issue only). A modified version of item 24 (subclause 3.120) of JVT‑K012 is provided below to correct this problem (and the problem noted in item G above).

L. Loïc Le Loarer, 16 Feb 2004: Cut/past error in subclause 9.2.1. The phrase "the 4x4 chroma block specified by mbAddrB\iCbCr\luma4x4BlkIdxB is assigned to blkB" should refer to chroma4x4BlkIdxB rather than luma4x4BlkIdxB. A modified version of item 79 (subclause 9.2.1) of JVT-K012 is provided below to correct this problem.

M. Gary Sullivan, 17 Feb 2004: Each reference picture list RefPicListX is a list of pictures. However, in the example in subclause 8.2.4.2.1, entries in RefPicList0 are set equal to numbers rather than pictures. For example, RefPicList0[0] is set equal to PicNum = 303. This can cause confusion, especially in the cases where the same number is used for a PicNum and a LongTermPicNum. Instead of setting entries in the list equal to numbers, we should specify setting entries in the list equal to the pictures that are associated with these numbers. A related issue is that the LongTermEntry() function is currently improperly defined (e.g., a function should not be "set equal to" anything, and the "if/otherwise" convention is not followed in its definition, and the function appears to be a function of a number rather than a picture). New items labelled as item 45.3 (subclause 8.2.4), 45.5 (subclause 8.2.4.2.1), 48.1 (subclause 8.2.4.3.1), and 48.2 (subclause 8.2.4.3.2, necessitating renumbering of the items) are provided below to correct these problems (and the problems noted in item F above and item V below).

N. Gary Sullivan, 17 Feb 2004: The sentence stating that "The resulting long-term picture number derived from long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures marked as "used for long-term reference"." is confusing, because no real derivation is involved – just parsing. A modified version of item 39 (subclause 7.4.3.3) of JVT-K012 is provided below to correct this problem (and the problems noted in items D and E above).

O. Gary Sullivan, 17 Feb 2004: In subclause 7.4.3.1, the phrase "one of the reference frames or complementary reference field pair marked as "used for long-term reference" should be "one of the reference frames or complementary reference field pairs marked as "used for long-term reference" (the word "pair" should be pluralized. A new item labelled as item 38.1 (subclause 7.4.3.1, necessitating the renumbering of the items) is provided below to correct this problem (and the problem noted in item S below).

P. Pierre Marty, 18 Feb 2004: In the draft revisions of subclause 8.2.1.1 as found in JVT-K012, the phrase "prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous picture" should be "prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference picture in decoding order." A modified version of item 45 (subclause 8.2.1.1) of JVT-K012 is provided below to correct this problem.

Q. Alan Liu, 19 Feb 2004: Typo correction in item 87 (Annex B) of JVT-K012.

R. Jill Boyce and Frederic Landais, 19 Feb 2004: The range of values specified in subclause 7.4.3.1 for abs_diff_pic_nums_minus1 is insufficient to specify the picNumLXNoWrap of any picture in the DPB. Specifically, picNumLXNoWrap cannot be equal to picNumLXPred due to this restriction. This range restriction can be fixed without affecting the method of deriving picNumLXNoWrap in subclause 8.2.4.3.1. A new item labelled as item 38.1 (subclause 7.4.3.1, necessitating the renumbering of the items) is provided below to correct this problem (and the problem noted in item P above).

S. Gary Sullivan, 24 Feb 2004: In subclause A.3.2, the phrase "as the" should be "is the" (in four places) and there is a strange dangling half-statement at the end of the subclause. A new item labelled as item 86.1 (necessitating the renumbering of the items) is provided below to correct this problem.

T. Gary Sullivan, 1 March 2004: In subclause 8.2.4.2.4 there are four occurrences of the word "shall" inside of NOTEs (which we are not supposed to do). The phrasing of these two NOTEs is also grammatically challenged and contains redundancies and could generally use improvement. And the last sentence of subclause 8.2.4.2.4 would benefit from being made exactly consistent with the wording of the last normative sentence of the preceding subclause. A modified version of item 48 of JVT-K012 is provided below to correct this problem (and the problem noted in item X below).

U. Gunther Zander, 4 March 2004: "sub_mb_type[subMbPartIdx]" should be "sub_mb_type[MbPartIdx]" in subclause 8.4.1. (This error is in one place in the original spec, and is in one additional place just above Equation 8-120 in JVT-K012.) A modified version of item 60 of JVT-K012 is provided below to correct this problem.

V. Richard Shields, 4 March 2004: Subclause 8.2.4 (decoding process for reference picture lists construction) is only invoked for slices that have reference picture lists (P, SP, and B slices). However, subclause 8.2.4.1 (decoding process for picture numbers) needs to also be invoked for I slices of non-IDR reference pictures in order to make the memory_management_control_operation processing in subclause 8.2.5 (decoded reference picture marking process) work properly. Subclause 8.2.5 says that subclause 8.2.4.1 specifies how PicNum and LongTermPicNum are calculated, but it does not explicitly invoke subclause 8.2.4.1. This could hypothetically lead someone to believe that subclause 8.2.5 is stating that the PicNum and LongTermPicNum must have been calculated by some previous invocation of subclause 8.2.4.1 (as a result of a previous invocation of subclause 8.2.4), rather than that subclause 8.2.5 is invoking subclause 8.2.4.1 itself. It would therefore be beneficial for there to be statements that are more clear about when subclause 8.2.4.1 is invoked. There is also a confusing use of the word "frame" in subclause 8.2.4 relating to what is done in subclause 8.2.4.1, and it should be noted that while only PicNum and LongTermPicNum from subclause 8.2.4.1 are mentioned at the beginning of subclause 8.2.5, FrameNumWrap is also used within subclause 8.2.5. New items labelled as items 45.3 (subclause 8.2.4), 45.4 (subclause 8.2.4.1), and 48.3 (subclause 8.2.5, necessitating renumbering of the item numbers) are provided below to correct this problem (and the problem noted in item M above).
W. Steve Gordon, 4 March 2004: Some aspects of "bumping" decoding in Annex C are incorrect/unclear, especially relative to timing decoding. If a reference picture is marked "unused for reference" after it has been output, it will not ever get removed from the DPB (unless an IDR or MMCO=5 picture arrives). If a non-reference picture arrives that has an output order that follows the output order of some other picture in the DPB but has an output time equal to its decoding time, the process insists on sticking the picture in the DPB which can cause a buffer overflow that would not occur in the timed-output HRD. "non-existing" reference pictures are inserted as a batch, which makes the process ambiguous if the batch is very large. In some cases it is not clear whether "non-existing" pictures will be output or not. Some circumstances that cause the "bumping" process to be invoked are not mentioned at the beginning of the description of the "bumping" process. The description of the selection of what picture is considered first for "bumping" is phrased in an imprecise manner. New items labelled as items 94.1 (subclause C.4.2), 94.2 (subclause C.4.4), 94.3 (subclause C.4.5.1), 94.4 (subclause C.4.5.2), and 94.5 (subclause C.4.5.3, necessitating renumbering of the item numbers) are provided below to correct this problem.
X. Gary Sullivan, 5 March 2004: In items 47 (subclause 8.2.4.2.3) and 48 (subclause 8.2.4.2.4) of JVT-K012, the name of the syntax element gaps_in_frame_num_value_allowed_flag is misspelled. Modified versions of items 47 (subclause 8.2.4.2.3) and 48 (subclause 8.2.4.2.4) of JVT-K012 are provided below to correct this problem (and the problems noted in items F and T above).
Y. Jeong-Kwon Kim, 5 March 2004: At the end of subclause 8.2.5.1, JVT-K012 says that "After marking the current decoded reference picture, the total number of frames with at least one field marked as “used for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref_frames, 1).". It is unclear whether this statement is intended to apply exactly at the location in the processing when then current decoded picture is marked or after all four steps of subclause 8.2.5.1 are completed. A new item 52.5 (subclause 8.2.5.4.6, necessitating renumbering of the item numbers) is provided below to correct this problem.
Z. Lowell Winger and Eric Pearson, 8 March 2004: There is still some lack of clarity and correctness in the description of coded block pattern. A modified version of item 40 (subclause 7.4.5) of JVT-K012 is provided below to correct this problem. (Is "8x8 luma block" the right term?)
INTERNATIONAL STANDARD

Draft ISO/IEC 14496-10 : 2003/Cor.1 : 2004 (E)

Draft ITU-T Rec. H.264 (2003)/Cor.1 (2004 E)

ITU-T RECOMMENDATION

6.1)
Subclause 3.19

Insert new subclause 3.19.1 as follows.

3.19.1
can: A term used to refer to behaviour that is allowed, but not necessarily required.
15)
Subclause 3.55

Replace subclause 3.55 with the following:
3.55
I slice: A slice that is not an SI slice that is decoded using prediction only from decoded samples within the same slice.

3.55.1
informative: A term used to refer to content provided in this Recommendation | International Standard that is not an integral part of this Recommendation | International Standard. Informative content does not establish any mandatory requirements for conformance to this Recommendation | International Standard.
18.1)
Subclause 3.76

Insert new subclause 3.76.1 as follows.

3.76.1
may: A term used to refer to behaviour that is allowed, but not necessarily required. In some places where the optional nature of the described behaviour is intended to be emphasized, the phrase "may or may not" is used to provide emphasis.
18.2)
Subclause 3.78

Insert new subclause 3.78.1 as follows.

3.78.1
must: A term used in expressing an observation about a requirement or an implication of a requirement that is specified elsewhere in this Recommendation | International Standard. This term is used exclusively in an informative context.
19.1)
Subclause 3.86

Insert new subclause 3.86.1 as follows.

3.86.1
note: A term used to prefix informative remarks. This term is used exclusively in an informative context.
24)
Subclause 3.120

Insert new subclauses 3.120.1, 3.120.2, and 3.120.3 at the end of subclause 3.120, as follows.
3.120.1
sequence parameter set: A syntax structure containing syntax elements that apply to zero or more entire coded video sequences as determined by the content of a seq_parameter_set_id syntax element found in the picture parameter set referred to by the pic_parameter_set_id syntax element found in each slice header.
3.120.2
shall: A term used to express mandatory requirements for conformance to this Recommendation | International Standard. When used to express a mandatory constraint on the values of syntax elements or on the results obtained by operation of the specified decoding process, it is the responsibility of the encoder to ensure that the constraint is fulfilled. When used in reference to operations performed by the decoding process, any decoding process that produces identical results to the decoding process described herein conforms to the decoding process requirements of this Recommendation | International Standard.
3.120.3
should: A term used to refer to behaviour of an implementation that is encouraged to be followed under anticipated ordinary circumstances, but is not a mandatory requirement for conformance to this Recommendation | International Standard.
30)
Subclause 6.4.7.5

Replace subclause 6.4.7.5 with the following:
6.4.7.5
Derivation process for neighbouring partitions

Inputs to this process are

· a macroblock partition index mbPartIdx

· a current sub-macroblock type currSubMbType
· a sub-macroblock partition index subMbPartIdx

Outputs of this process are

· mbAddrA\mbPartIdxA\subMbPartIdxA: specifying the macroblock or sub-macroblock partition to the left of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

· mbAddrB\mbPartIdxB\subMbPartIdxB: specifying the macroblock or sub-macroblock partition above the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

· mbAddrC\mbPartIdxC\subMbPartIdxC: specifying the macroblock or sub-macroblock partition to the right-above of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status,

· mbAddrD\mbPartIdxD\subMbPartIdxD: specifying the macroblock or sub-macroblock partition to the left-above of the current macroblock and its availability status, or the sub-macroblock partition CurrMbAddr\mbPartIdx\subMbPartIdx and its availability status.

mbAddrN, mbPartIdxN, and subMbPartIdx (with N being A, B, C, or D) are derived as follows.

· The inverse macroblock partition scanning process as described in subclause 6.4.2.1 is invoked with mbPartIdx as the input and (x, y) as the output.

· The location of the upper-left luma sample inside a macroblock partition (xS, yS) is derived as follows.

· If mb_type is equal to P_8x8, P_8x8ref0 or B_8x8, the inverse sub-macroblock partition scanning process as described in subclause 6.4.2.2 is invoked with subMbPartIdx as the input and (xS, yS) as the output.

· Otherwise, (xS, yS) are set to (0, 0).

· The variable predPartWidth in Table 6‑2 is specified as follows.

-
If mb_type is equal to P_Skip, B_Skip, or B_Direct_16x16, or mb_type is equal to B_8x8 and currSubMbType is equal to B_Direct_8x8, predPartWidth = 16.

NOTE – When currSubMbType is equal to B_Direct_8x8 and direct_spatial_mv_pred_flag is equal to 1, the predicted motion vector is the predicted motion vector for the complete macroblock.

-
Otherwise, if mb_type is equal to P_8x8, P_8x8ref0, or B_8x8 (and currSubMbType is not equal to B_Direct_8x8), predPartWidth = SubMbPartWidth(sub_mb_type[mbPartIdx]).

-
Otherwise, predPartWidth = MbPartWidth(mb_type).

· The difference of luma location (xD, yD) is set according to Table 6‑2.

· The neighbouring luma location (xN, yN) is specified by

xN = x + xS + xD

(6-21)

yN = y + yS + yD

(6-22)

· The derivation process for neighbouring locations as specified in subclause 6.4.8 is invoked for luma locations with (xN, yN) as the input and the output is assigned to mbAddrN and (xW, yW).

· Depending on mbAddrN, the following applies.

· If mbAddrN is not available, the macroblock or sub-macroblock partition mbAddrN\mbPartIdxN\subMbPartIdxN is marked as not available.

· Otherwise (mbAddrN is available), the following applies.

-
The macroblock partition in the macroblock mbAddrN covering the luma location (xW, yW) shall be assigned to mbPartIdxN and the sub-macroblock partition inside the macroblock partition mbPartIdxN covering the sample (xW, yW) in the macroblock mbAddrN shall be assigned to subMbPartIdxN.

-
When the partition given by mbPartIdxN and subMbPartIdxN is not yet decoded, the macroblock partition mbPartIdxN and the sub-macroblock partition subMbPartIdxN are marked as not available.

NOTE - The latter condition is, for example, the case when mbPartIdx = 2, subMbPartIdx = 3, xD = 4, yD = ‑1, i.e., when neighbour C of the last 4x4 luma block of the third sub-macroblock is requested.

38)
Subclause 7.4.3

In subclause 7.4.3, make the following changes.

Replace the paragraphs after Table 7-3 through the paragraph starting with "frame_num" with the following:
slice_type values in the range 5..9 specify, in addition to the coding type of the current slice, that all other slices of the current coded picture shall have a value of slice_type equal to the current value of slice_type or equal to the current value of slice_type – 5.

When nal_unit_type is equal to 5 (IDR picture), slice_type shall be equal to 2, 4, 7, or 9.
When num_ref_frames is equal to 0, slice_type shall be equal to 2, 4, 7, or 9.
pic_parameter_set_id specifies the picture parameter set in use. The value of pic_parameter_set_id shall be in the range of 0 to 255, inclusive.

frame_num is used as an identifier for pictures and shall be represented by log2_max_frame_num_minus4 + 4 bits in the bitstream. frame_num is constrained as follows:

Replace the section starting with "When gaps_in_frame_num_value_allowed_flag is equal to 0" through the paragraph that follows Equation 7-10 starting with "A picture including" with the following:

When the value of frame_num is not equal to PrevRefFrameNum, the following applies.
–
There shall not be any previous field or frame in decoding order that is currently marked as "used for short-term reference" that has a value of frame_num equal to any value taken on by the variable UnusedShortTermFrameNum in the following:

UnusedShortTermFrameNum = (PrevRefFrameNum + 1) % MaxFrameNum
while(UnusedShortTermFrameNum != frame_num)
(7-10)

UnusedShortTermFrameNum = (UnusedShortTermFrameNum + 1) % MaxFrameNum

–
The value of frame_num is constrained as follows.
–
If gaps_in_frame_num_value_allowed_flag is equal to 0, the value of frame_num for the current picture shall be equal to (PrevRefFrameNum + 1) % MaxFrameNum.

–
Otherwise (gaps_in_frame_num_value_allowed_flag is equal to 1), the following applies.
–
If frame_num is greater than PrevRefFrameNum, there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which either of the following conditions is true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.
–
Otherwise (frame_num is less than PrevRefFrameNum), there shall not be any non-reference pictures in the bitstream that follow the previous reference picture and precede the current picture in decoding order in which both of the following conditions are true.

–
The value of frame_num for the non-reference picture is less than PrevRefFrameNum.

–
The value of frame_num for the non-reference picture is greater than the value of frame_num for the current picture.

A picture including a memory_management_control_operation equal to 5 shall have frame_num constraints as described above and, after the decoding of the current picture and the processing of the memory management control operations, the picture shall be inferred to have had frame_num equal to 0 for all subsequent use in the decoding process, except as specified in subclause 7.4.1.2.4.

Replace the sentence after Equation 7-16 with the following:
The value of slice_qp_delta shall be limited such that SliceQPY is in the range of 0 to 51, inclusive.

38.1)
Subclause 7.4.3.1

In subclause 7.4.3.1, replace the section starting with the paragraph that begins with "abs_diff_pic_nums_minus1" with the following.

abs_diff_pic_num_minus1 plus 1 specifies the absolute difference between the picture number of the picture being moved to the current index in the list and the picture number prediction value. abs_diff_pic_num_minus1 shall be in the range of 0 to MaxPicNum – 1.

·
·
The allowed values of abs_diff_pic_num_minus1 are further restricted as specified in subclause 8.2.4.3.1.

long_term_pic_num specifies the long-term picture number of the picture being moved to the current index in the list. When decoding a coded frame, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference frames or complementary reference field pairs marked as "used for long-term reference". When decoding a coded field, long_term_pic_num shall be equal to a LongTermPicNum assigned to one of the reference fields marked as "used for long-term reference".

38.2)
Subclause 7.4.3.2

In subclause 7.4.3.3, make the following changes.

Change the phrase "The value of luma_weight_l0[i] shall be" to "When luma_weight_l0_flag is equal to 1, the value of luma_weight_l0[i] shall be".

Change the phrase "The value of chroma_weight_l0[i][j] shall be" to "When chroma_weight_l0_flag is equal to 1, the value of chroma_weight_l0[i][j] shall be".

Change the phrase "When chroma_weight_l0_flag is equal to 0, chroma_weight_l0[i] shall be" to "When chroma_weight_l0_flag is equal to 0, chroma_weight_l0[i][j] shall be".

Change the phrase "When chroma_weight_l0_flag is equal to 0, chroma_offset_l0[i] shall be" to "When chroma_weight_l0_flag is equal to 0, chroma_offset_l0[i][j] shall be".

39)
Subclause 7.4.3.3

In subclause 7.4.3.3, make the following changes.

Replace the paragraph starting with "long_term_reference_flag" with the following:

long_term_reference_flag equal to 0 specifies that the MaxLongTermFrameIdx variable is set equal to “no long-term frame indices” and that the IDR picture is marked as “used for short-term reference”. long_term_reference_flag equal to 1 specifies that the MaxLongTermFrameIdx variable is set equal to 0 and that the current IDR picture is marked “used for long-term reference” and is assigned LongTermFrameIdx equal to 0. When num_ref_frames is equal to 0, long_term_reference_flag shall be equal to 0.
Replace the paragraph starting with "adaptive_ref_pic_marking_mode_flag" with the following:

adaptive_ref_pic_marking_mode_flag selects the reference picture marking mode of the currently decoded picture as specified in Table 7‑5. adaptive_ref_pic_marking_mode_flag shall be equal to 1 when the number of frames, complementary field pairs, and non-paired fields that are currently marked as "used for long-term reference" is equal to Max(num_ref_frames, 1).

Add the following two paragraphs prior to the paragraph that states that "No more than one memory_management_control_operation shall be present in a slice header that specifies the same action to be taken."
Not more than one memory_management_control_operation equal to 6 shall be present in a slice header.

A memory_management_control_operation equal to 6 shall not precede memory_management_control_operation equal to 5 in a slice header.

Replace the sentence "The resulting long-term picture number derived from long_term_pic_num shall be equal to a long-term picture number assigned to one of the reference pictures marked as "used for long-term reference"." with the following sentence "long_term_pic_num shall be equal to the long-term picture number assigned to one of the reference pictures marked as "used for long-term reference".".

Add the following sentence at the end of the paragraph that begins with "long_term_pic_num is used":

long_term_pic_num shall not be equal to the long-term picture number of a picture that is assigned to a long-term frame index using memory_management_control_operation equal to 3 or 6 in the same slice header.

When decoding the current picture and a memory_management_control_operation equal to 6 is present, any memory_management_control_operation equal to 2, 4, or 5 that follows the memory_management_control_operation equal to 6 within the same slice header shall not specify the current picture to be marked as "unused for reference".
defer
40)
Subclause 7.4.5

In subclause 7.4.5, make the following changes.

Replace the entries in Table 7-8 for the row with mb_type equal to 0 in the columns for CodedBlockPatternChroma and CodedBlockPatternLuma that contain "na" with "Equation 7-22".

Replace the paragraph starting with "To each Intra_16x16" with the following:
To each Intra_16x16 prediction macroblock, an Intra16x16PredMode is assigned, which specifies the Intra_16x16 prediction mode. CodedBlockPatternChroma contains the coded block pattern value for chroma as specified in Table 7‑12. CodedBlockPatternLuma specifies whether, for the luma component, non-zero AC transform coefficient levels are present. CodedBlockPatternLuma equal to 0 specifies that all AC transform coefficient levels in the luma component of the macroblock are equal to 0. CodedBlockPatternLuma equal to 15 specifies that at least one of the AC transform coefficient levels in the luma component of the macroblock is non-zero, requiring scanning of AC transform coefficient levels for all 16 of the 4x4 blocks in the 16x16 block.

Replace the entries in Table 7-9 for the row with mb_type equal to 0 in the columns for CodedBlockPatternChroma and CodedBlockPatternLuma that contain "na" with "Equation 7-22".

Replace the paragraph starting with "coded_block_pattern" with the following:
coded_block_pattern specifies which of the six 8x8 blocks - luma and chroma – may contain non-zero transform coefficient levels. For macroblocks with prediction mode not equal to Intra_16x16, coded_block_pattern is present in the bitstream and the variables CodedBlockPatternLuma and CodedBlockPatternChroma are derived as follows.
CodedBlockPatternLuma = coded_block_pattern % 16
CodedBlockPatternChroma = coded_block_pattern / 16
(7-22)

When coded_block_pattern is present, CodedBlockPatternLuma specifies, for each of the four 8x8 luma blocks of the macroblock, one of the following cases.

· All transform coefficient levels of the four 4x4 luma blocks in the 8x8 luma block are equal to zero

· One or more transform coefficient levels of one or more of the 4x4 luma blocks in the 8x8 luma block shall be non-zero valued.
The meaning of CodedBlockPatternChroma is specified in Table 7‑12.

Replace Table 7-12 with the following:
Table 7‑12 – Specification of CodedBlockPatternChroma values

	CodedBlockPatternChroma
	Description

	0
	All chroma transform coefficient levels are equal to 0.

	1
	One or more chroma DC transform coefficient levels shall be non-zero valued.
All chroma AC transform coefficient levels are equal to 0.

	2
	Zero or more chroma DC transform coefficient levels are non-zero valued.
One or more chroma AC transform coefficient levels shall be non-zero valued.

42)
Subclause 7.4.5.2

Replace subclause 7.4.5.2 with the following:

7.4.5.2
Sub-macroblock prediction semantics

sub_mb_type[mbPartIdx] specifies the sub-macroblock types.

Tables and semantics are specified for the various sub-macroblock types for P, SP, and B slices. Each table presents the value of sub_mb_type, the name of sub_mb_type, the number of sub-macroblock partitions used (given by the NumSubMbPart(sub_mb_type) function), and the prediction mode of the sub-macroblock (given by the SubMbPredMode(sub_mb_type) function). In the text, the value of sub_mb_type may be referred to by “sub-macroblock type”. In the text, the value of SubMbPredMode() may be referred to by “sub-macroblock prediction mode”.

The sub-macroblock types for P macroblock types are specified in Table 7‑14.

Table 7‑14 – Sub-macroblock types in P macroblocks

	sub_mb_type[mbPartIdx]
	Name of sub_mb_type[mbPartIdx]
	NumSubMbPart
(sub_mb_type[mbPartIdx])
	SubMbPredMode
(sub_mb_type[mbPartIdx])
	SubMbPartWidth
(sub_mb_type[mbPartIdx])
	SubMbPartHeight
(sub_mb_type[mbPartIdx])

	0
	P_L0_8x8
	1
	Pred_L0
	8
	8

	1
	P_L0_8x4
	2
	Pred_L0
	8
	4

	2
	P_L0_4x8
	2
	Pred_L0
	4
	8

	3
	P_L0_4x4
	4
	Pred_L0
	4
	4

The following semantics are assigned to the sub-macroblock types in Table 7‑14.

·
· P_L0_MxN, with MxN being replaced by 8x8, 8x4, 4x8, or 4x4: the samples of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, two luma partitions of size MxN equal to 8x4, or two luma partitions of size MxN equal to 4x8, or four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7‑14.

·
· Pred_L0: see semantics for Table 7‑10.

The sub-macroblock types for B macroblock types are specified in Table 7‑15.

Table 7‑15 – Sub-macroblock types in B macroblocks

	sub_mb_type[mbPartIdx]
	Name of
sub_mb_type[mbPartIdx]
	NumSubMbPart
(sub_mb_type[mbPartIdx])
	SubMbPredMode
(sub_mb_type[mbPartIdx])
	SubMbPartWidth
(sub_mb_type[mbPartIdx])
	SubMbPartHeight
(sub_mb_type[mbPartIdx])

	na
	B_Skip
	na
	Direct
	4
	4

	na
	B_Direct_16x16
	na
	Direct
	4
	4

	0
	B_Direct_8x8
	na
	Direct
	4
	4

	1
	B_L0_8x8
	1
	Pred_L0
	8
	8

	2
	B_L1_8x8
	1
	Pred_L1
	8
	8

	3
	B_Bi_8x8
	1
	BiPred
	8
	8

	4
	B_L0_8x4
	2
	Pred_L0
	8
	4

	5
	B_L0_4x8
	2
	Pred_L0
	4
	8

	6
	B_L1_8x4
	2
	Pred_L1
	8
	4

	7
	B_L1_4x8
	2
	Pred_L1
	4
	8

	8
	B_Bi_8x4
	2
	BiPred
	8
	4

	9
	B_Bi_4x8
	2
	BiPred
	4
	8

	10
	B_L0_4x4
	4
	Pred_L0
	4
	4

	11
	B_L1_4x4
	4
	Pred_L1
	4
	4

	12
	B_Bi_4x4
	4
	BiPred
	4
	4

The following semantics are assigned to the macroblock types in Table 7‑15:

· B_Skip and B_Direct_16x16: no motion vector differences or reference indices are present for the sub-macroblock in the bitstream. The functions SubMbPartWidth() and SubMbPartHeight() are used in the derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

· B_Direct_8x8: no motion vector differences or reference indices are present for the sub-macroblock in the bitstream. The functions SubMbPartWidth(B_Direct_8x8) and SubMbPartHeight(B_Direct_8x8) are used in the derivation process for motion vectors and reference frame indices in subclause 8.4.1 for direct mode prediction.

· B_X_MxN, with X being replaced by L0, L1, or Bi, and MxN being replaced by 8x8, 8x4, 4x8 or 4x4: the samples of the sub-macroblock are predicted using one luma partition of size MxN equal to 8x8, or the samples of the sub-macroblock are predicted using two luma partitions of size MxN equal to 8x4, or the samples of the sub-macroblock are predicted using two luma partitions of size MxN equal to 4x8, or the samples of the sub-macroblock are predicted using four luma partitions of size MxN equal to 4x4, and associated chroma samples, respectively. All sub-macroblock partitions share the same reference index. For an MxN sub-macroblock partition in a sub-macroblock with sub_mb_type being B_X_MxN with X being replaced by either L0 or L1, one motion vector difference is present in the bitstream. For an MxN sub-macroblock partition in a sub-macroblock with sub_mb_type being B_Bi_MxN, two motion vector difference are present in the bitstream.

The following semantics are assigned to the sub-macroblock prediction modes (SubMbPredMode()) in Table 7‑15.

· Direct: see semantics for Table 7‑11.

· Pred_L0: see semantics for Table 7‑10.

· Pred_L1: see semantics for Table 7‑11.

· BiPred: see semantics for Table 7‑11.

ref_idx_l0[mbPartIdx] has the same semantics as ref_idx_l0 in subclause 7.4.5.1.

ref_idx_l1[mbPartIdx] has the same semantics as ref_idx_l1 in subclause 7.4.5.1.

mvd_l0[mbPartIdx][subMbPartIdx][compIdx] has the same semantics as mvd_l0 in subclause 7.4.5.1, except that it is applied to the sub-macroblock partition index with subMbPartIdx. The indices mbPartIdx and subMbPartIdx specify to which macroblock partition and sub-macroblock partition mvd_l0 is assigned.
mvd_l1[mbPartIdx][subMbPartIdx][compIdx] has the same semantics as mvd_l1 in subclause 7.4.5.1.
45)
Subclause 8.2.1.1

In subclause 8.2.1.1, replace the section starting with "The variables prevPicOrderCntMsb and prevPicOrderCntLsb" up to but not including the section starting with "PicOrderCntMsb of the current picture" with the following:
The variables prevPicOrderCntMsb and prevPicOrderCntLsb are derived as follows.

· If the current picture is an IDR picture, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to 0.

· Otherwise (the current picture is not an IDR picture), the following applies.
· If the previous reference picture in decoding order included a memory_management_control_operation equal to 5, the following applies.

· If the previous reference picture in decoding order is not a bottom field, prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to the value of TopFieldOrderCnt for the previous reference picture in decoding order.

· Otherwise (the previous reference picture in decoding order is a bottom field), prevPicOrderCntMsb is set equal to 0 and prevPicOrderCntLsb is set equal to 0.

· Otherwise (the previous reference picture in decoding order did not include a memory_management_control_operation equal to 5), prevPicOrderCntMsb is set equal to PicOrderCntMsb of the previous reference picture in decoding order and prevPicOrderCntLsb is set equal to the value of pic_order_cnt_lsb of the previous reference picture in decoding order.

45.1)
Subclause 8.2.1.2

In subclause 8.2.1.2, replace the bullet item that states "Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture." with the following

· Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non-existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.
45.2)
Subclause 8.2.1.3

In subclause 8.2.1.3, replace the bullet item that states "Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture." with the following

· Otherwise (the previous picture in decoding order did not include a memory_management_control_operation equal to 5), prevFrameNumOffset is set equal to the value of FrameNumOffset of the previous picture in decoding order.

NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, the previous picture in decoding order may be a "non-existing" frame inferred by the decoding process for gaps in frame_num specified in subclause 8.2.5.2.
45.3)
Subclause 8.2.4

Replace subclause 8.2.4 with the following.

8.2.4
Decoding process for reference picture lists construction

This process is invoked at the beginning of decoding of each P, SP, or B slice.

Outputs of this process are a reference picture list RefPicList0 and, when decoding a B slice, a second reference picture list RefPicList1.

Decoded reference pictures are marked as "used for short-term reference" or "used for long-term reference" as specified by the bitstream and specified in subclause 8.2.5. Short-term decoded reference pictures are identified by the value of frame_num. Long-term decoded reference pictures are assigned a long-term frame index as specified by the bitstream and specified in subclause 8.2.5.

Subclause 8.2.4.1 is invoked to specify
·
· the assignment of variables FrameNum, FrameNumWrap, and PicNum to each of the short-term reference pictures, and

· the assignment of variable LongTermPicNum to each of the long-term reference pictures.

Reference pictures are addressed through reference indices as specified in subclause 8.4.2.1. A reference index is an index into a list of variables PicNum and LongTermPicNum, which is called a reference picture list. When decoding a P or SP slice, there is a single reference picture list RefPicList0. When decoding a B slice, there is a second independent reference picture list RefPicList1 in addition to RefPicList0.

At the beginning of decoding of each slice, reference picture list RefPicList0, and for B slices RefPicList1, are derived as follows.

· An initial reference picture list RefPicList0 and for B slices RefPicList1 are derived as specified in subclause 8.2.4.2.

· The initial reference picture list RefPicList0 and for B slices RefPicList1 are modified as specified in subclause 8.2.4.3.

The number of entries in the modified reference picture list RefPicList0 is num_ref_idx_l0_active_minus1 + 1, and for B slices the number of entries in the modified reference picture list RefPicList1 is num_ref_idx_l1_active_minus1 + 1. A reference picture may appear at more than one index in the modified reference picture lists RefPicList0 or RefPicList1.

45.4)
Subclause 8.2.4.1

In subclause 8.2.4.1, add the following new paragraph at the beginning of the subclause.

This process is invoked when the decoding process for reference picture lists construction specified in subclause 8.2.4 or the decoded reference picture marking process specified in subclause 8.2.5 is invoked.

45.5)
Subclause 8.2.4.2.1

Replace subclause 8.2.4.2.1 with the following:

8.2.4.2.1
Initialisation process for the reference picture list for P and SP slices in frames

This initialisation process is invoked when decoding a P or SP slice in a coded frame.

Output of this process is the initial reference picture list RefPicList0.

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".
The reference picture list RefPicList0 is ordered so that short-term reference frames and short-term complementary reference field pairs have lower indices than long-term reference frames and long-term complementary reference field pairs.

The short-term reference frames and complementary reference field pairs are ordered starting with the frame or complementary field pair with the highest PicNum value and proceeding through in descending order to the frame or complementary field pair with the lowest PicNum value.

The long-term reference frames and complementary reference field pairs are ordered starting with the frame or complementary field pair with the lowest LongTermPicNum value and proceeding through in ascending order to the frame or complementary field pair with the highest LongTermPicNum value.

NOTE – A non-paired reference field is not used for inter prediction for decoding a frame, regardless of the value of MbaffFrameFlag.

For example, when three reference frames are marked as "used for short-term reference" with PicNum equal to 300, 302, and 303 and two reference frames are marked as "used for long-term reference" with LongTermPicNum equal to 0 and 3, the initial index order is:

· RefPicList0[0] is set equal to the short-term reference picture with PicNum = 303,

· RefPicList0[1] is set equal to the short-term reference picture with PicNum = 302,

· RefPicList0[2] is set equal to the short-term reference picture with PicNum = 300,

· RefPicList0[3] is set equal to the long-term reference picture with LongTermPicNum = 0, and

· RefPicList0[4] is set equal to the long-term reference picture with LongTermPicNum = 3.

47)
Subclause 8.2.4.2.3

In subclause 8.2.4.2.3, make the following changes.

Add the following new paragraph after the paragraph that states "Outputs of this process are the initial reference picture lists RefPicList0 and RefPicList1.".

When this process is invoked, there shall be at least one reference frame or complementary reference field pair that is currently marked as "used for short-term reference" or "used for long-term reference".
Replace the paragraph starting with "For B slices" with the following:
For B slices, the order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList1 depends on output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as "non-existing" as specified in subclause 8.2.5.2 are not included in RefPicList0 and RefPicList1.
NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list reordering to ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case PicOrderCnt() is not inferred for "non-existing" frames).
Change the phrase "It is derived as follows" to "It is ordered as follows" (in two places).
48)
Subclause 8.2.4.2.4

Replace subclause 8.2.4.2.4 with the following:
8.2.4.2.4
Initialisation process for reference picture lists for B slices in fields

This initialisation process is invoked when decoding a B slice in a coded field.

Outputs of this process are the initial reference picture lists RefPicList0 and RefPicList1.

When decoding a field, each field of a stored reference frame is identified as a separate reference picture with a unique index. The order of short-term reference pictures in the reference picture lists RefPicList0 and RefPicList1 depend on output order, as given by PicOrderCnt(). When pic_order_cnt_type is equal to 0, reference pictures that are marked as "non-existing" as specified in subclause 8.2.5.2 are not included in RefPicList0 and RefPicList1.
NOTE – When gaps_in_frame_num_value_allowed_flag is equal to 1, encoders should use reference picture list reordering to ensure proper operation of the decoding process (particularly when pic_order_cnt_type is equal to 0, in which case PicOrderCnt() is not inferred for "non-existing" frames).

NOTE – When decoding a field, there are effectively at least twice as many pictures available for referencing as there would be when decoding a frame at the same position in decoding order.

Three ordered lists of reference frames, refFrameList0ShortTerm, refFrameList1ShortTerm and refFrameListLongTerm, are derived as follows. For purposes of the formation of these lists of frames the term reference entry refers in the following to decoded reference frames, complementary reference field pairs, or non-paired reference fields. When pic_order_cnt_type is equal to 0, the term reference entry does not refer to frames that are marked as "non-existing" as specified in subclause 8.2.5.2.
-
refFrameList0ShortTerm is ordered starting with the reference entry f0 with the largest value of PicOrderCnt(f0) less than or equal to the value of PicOrderCnt(CurrPic) of the current field and proceeding through in descending order to the short-term reference entry f1 that has the smallest value of PicOrderCnt(f1), and then continuing with the reference entry f2 with the smallest value of PicOrderCnt(f2) greater than the value of PicOrderCnt(CurrPic) of the current field and proceeding through in ascending order to the short-term reference entry f3 that has the largest value of PicOrderCnt(f3).

NOTE - When the current field follows in decoding order a coded field fldPrev with which together it forms a complementary reference field pair, fldPrev is included into the list refFrameList0ShortTerm using PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.
-
refFrameList1ShortTerm is ordered starting with the reference entry f4 with the smallest value of PicOrderCnt(f4) greater than the value of PicOrderCnt(CurrPic) of the current field and proceeding through in ascending order to the short-term reference entry f5 that has the largest value of PicOrderCnt(f5), and then continuing with the reference entry f6 with the largest value of PicOrderCnt(f6) less than or equal to the value of PicOrderCnt(CurrPic) of the current field and proceeding through in descending order to the short-term reference entry f7 that has the smallest value of PicOrderCnt(f7).

NOTE - When the current field follows in decoding order a coded field fldPrev with which together it forms a complementary reference field pair, fldPrev is included into the list refFrameList1ShortTerm using PicOrderCnt(fldPrev) and the ordering method described in the previous sentence is applied.
-
refFrameListLongTerm is ordered starting with the reference entry having the lowest LongTermFrameIdx value and proceeding through in ascending order to the reference entry having highest LongTermFrameIdx value.

NOTE - When the complementary field of the current picture is marked "used for long-term reference" it is included into the list refFrameListLongTerm. A reference entry in which only one field is marked as “used for long-term reference” is included into the list refFrameListLongTerm.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList0ShortTerm and refFrameListLongTerm given as input and the output is assigned to RefPicList0.

The process specified in subclause 8.2.4.2.5 is invoked with refFrameList1ShortTerm and refFrameListLongTerm given as input and the output is assigned to RefPicList1.

When the reference picture list RefPicList1 has more than one entry and RefPicList1 is identical to the reference picture list RefPicList0, the first two entries RefPicList1[0] and RefPicList1[1] are switched.

48.1)
Subclause 8.2.4.3.1

In subclause 8.2.4.3.1, make the following changes.

Change the sentence "picNumLX shall specify a reference picture that is marked as “used for short-term reference” and shall not specify a short-term reference picture that is marked as "non-existing"." to "picNumLX shall be equal to the PicNum of a referenc e picture that is marked as “used for short-term reference” and shall not be equal to the PicNum of a short-term reference picture that is marked as "non-existing".

Replace Equation 8-38 with the following:

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx--)

RefPicListX[cIdx] = RefPicListX[cIdx – 1]
RefPicListX[refIdxLX++] = short-term reference picture with PicNum equal to picNumLX
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++)
(8-38)

if(PicNumF(RefPicListX[cIdx]) != picNumLX)

RefPicListX[nIdx++] = RefPicListX[cIdx]

where the function PicNumF(RefPicListX[cIdx]) is derived as follows:

–
If the picture RefPicListX[cIdx] is marked as "used for short-term reference", PicNumF(RefPicListX[cIdx]) is the PicNum of the picture RefPicListX[cIdx].
–
Otherwise (the picture RefPicListX[cIdx] is not marked as "used for short-term reference"), PicNumF(RefPicListX[cIdx]) is equal to MaxPicNum.
NOTE – A value of MaxPicNum can never be equal to picNumLX.
48.2)
Subclause 8.2.4.3.2

Replace subclause 8.2.4.3.2 with the following:

8.2.4.3.2
Reordering process of reference picture lists for long-term pictures

Inputs to this process are reference picture list RefPicListX (with X being 0 or 1) and an index refIdxLX into this list.

Outputs of this process are a possibly modified reference picture list RefPicListX and the incremented index refIdxLX.

The following procedure shall be conducted to place the picture with long-term picture number long_term_pic_num into the index position refIdxLX, shift the position of any other remaining pictures to later in the list, and increment the value of refIdxLX.

for(cIdx = num_ref_idx_lX_active_minus1 + 1; cIdx > refIdxLX; cIdx--)

RefPicListX[cIdx] = RefPicListX[cIdx – 1]
RefPicListX[refIdxLX++] = long-term reference picture with LongTermPicNum equal to long_term_pic_num
nIdx = refIdxLX
for(cIdx = refIdxLX; cIdx <= num_ref_idx_lX_active_minus1 + 1; cIdx++)
(8-39)

if(LongTermPicNumF(RefPicListX[cIdx]) != long_term_pic_num)

RefPicListX[nIdx++] = RefPicListX[cIdx]

where the function LongTermPicNumF(RefPicListX[cIdx]) is derived as follows:
–
If the picture RefPicListX[cIdx] is marked as "used for long-term reference", LongTermPicNumF(RefPicListX[cIdx]) is the LongTermPicNum of the picture RefPicListX[cIdx].

–
Otherwise (the picture RefPicListX[cIdx] is not marked as "used for long-term reference"), LongTermPicNumF(RefPicListX[cIdx]) is equal to 2 * (MaxLongTermFrameIdx + 1).

NOTE – A value of 2 * (MaxLongTermFrameIdx + 1) can never be equal to long_term_pic_num.

NOTE – Within this pseudo-code procedure, the length of the list RefPicListX is temporarily made one element longer than the length needed for the final list. After the execution of this procedure, only elements 0 through num_ref_idx_lX_active_minus1 of the list need to be retained.

48.3)
Subclause 8.2.5

In subclause 8.2.5, replace the last paragraph of subclause 8.2.5 with the following.

A short-term reference picture is identified for use in the decoding process by its variables FrameNum and FrameNumWrap and its picture number PicNum, and a long-term reference picture is identified for use in the decoding process by its long-term picture number LongTermPicNum. When the current picture is not an IDR picture, subclause 8.2.4.1 is invoked to specify the assignment of the variables FrameNum, FrameNumWrap, PicNum and LongTermPicNum.
52.5)
Subclause 8.2.5.4.6

Add the following paragraphs at the end of the subclause.

After marking the current decoded reference picture, the total number of frames with at least one field marked as “used for reference”, plus the number of complementary field pairs with at least one field marked as “used for reference”, plus the number of non-paired fields marked as “used for reference” shall not be greater than Max(num_ref_frames, 1).

NOTE – Under some circumstances, the above statement may impose a constraint on the order in which a memory_management_control_operation syntax element equal to 6 can appear in the decoded reference picture marking syntax relative to a memory_management_control_operation syntax element equal to 1, 2, or 4.

59)
Subclause 8.4

In subclause 8.4, replace the section starting with "with mbPartIdx proceeding over values 0..3" up to but not including the section starting with "For use in derivation processes of variables invoked later in the decoding process" with the following:
with mbPartIdx proceeding over values 0..3. For each sub-macroblock indexed by mbPartIdx, subMbPartIdx proceeds over values 0..3.

Let the variable MvCnt be initially set equal to 0 before any invocation of subclause 8.4.1 for the macroblock.

The Inter prediction process for a macroblock partition mbPartIdx and a sub-macroblock partition subMbPartIdx consists of the following ordered steps

1. Derivation process for motion vector components and reference indices as specified in subclause 8.4.1.

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

· the sub-macroblock partition motion vector count subMvCnt.

2. The variable MvCnt is incremented by subMvCnt.
3. Decoding process for Inter prediction samples as specified in subclause 8.4.2.

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

· variables specifying partition width and height, partWidth, and partHeight

· luma motion vectors mvL0 and mvL1 and the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

Outputs of this process are

· inter prediction samples (pred); which are a (partWidth)x(partHeight) array predPartL of prediction luma samples and two (partWidth/2)x(partHeight/2) arrays predPartCr, and predPartCb of prediction chroma samples, one for each of the chroma components Cb and Cr.

60)
Subclause 8.4.1

Replace subclause 8.4.1 with the following:

8.4.1
Derivation process for motion vector components and reference indices

Inputs to this process are

· a macroblock partition mbPartIdx,

· a sub-macroblock partition subMbPartIdx.

Outputs of this process are

· luma motion vectors mvL0 and mvL1 as well as the chroma motion vectors mvCL0 and mvCL1

· reference indices refIdxL0 and refIdxL1

· prediction list utilization flags predFlagL0 and predFlagL1

· a sub-partition macroblock motion vector count variable subMvCnt

For the derivation of the variables mvL0 and mvL1 as well as refIdxL0 and refIdxL1, the following applies.

· If mb_type is equal to P_Skip, the derivation process for luma motion vectors for skipped macroblocks in P and SP slices in subclause 8.4.1.1 is invoked with the output being the luma motion vectors mvL0 and reference indices refIdxL0, and predFlagL0 is set equal to 1. mvL1 and refIdxL1 are marked as not available and predFlagL1 is set equal to 0. The sub-partition motion vector count variable subMvCnt is set equal to 1.
· Otherwise, if mb_type is equal to B_Skip, or B_Direct_16x16 or sub_mb_type[mbPartIdx] is equal to B_Direct_8x8, the derivation process for luma motion vectors for B_Skip, B_Direct_16x16, and B_Direct_8x8 in B slices in subclause 8.4.1.2 is invoked with mbPartIdx and subMbPartIdx as the input and the output being the luma motion vectors mvL0, mvL1, the reference indices refIdxL0, refIdxL1, the sub-partition motion vector count subMvCnt, and the prediction utilization flags predFlagL0 and predFlagL1.

· Otherwise, for X being replaced by either 0 or 1 in the variables predFlagLX, mvLX, refIdxLX, and in Pred_LX and in the syntax elements ref_idx_lX and mvd_lX, and the following applies.

· The variables refIdxLX and predFlagLX are derived as follows.

· If MbPartPredMode(mb_type, mbPartIdx) or SubMbPredMode(sub_mb_type[mbPartIdx]) is equal to Pred_LX or to BiPred,

refIdxLX = ref_idx_lX[mbPartIdx]

(8-120)

predFlagLX = 1

(8-121)

· Otherwise, the
· variables refIdxLX and predFlagLX are specified by

refIdxLX = -1

(8-122)

predFlagLX = 0

(8-123)

· The sub-partition motion vector count subMvCnt is set equal to predFlagL0 + predFlagL1.

· The derivation process for luma motion vector prediction in subclause 8.4.1.3 is invoked with mbPartIdx subMbPartIdx, refIdxLX, and list suffix LX as the input and the output being mvpLX. The luma motion vectors are derived by
mvLX[0] = mvpLX[0] + mvd_lX[mbPartIdx][subMbPartIdx][0]
(8-124)

mvLX[1] = mvpLX[1] + mvd_lX[mbPartIdx][subMbPartIdx][1]
(8-125)

For the derivation of the variables for the chroma motion vectors, the following applies. When predFlagLX (with X being either 0 or 1) is equal to 1, the derivation process for chroma motion vectors in subclause 8.4.1.4 is invoked with mvLX and refIdxLX as input and the output being mvCLX.

Defer
70)
Subclause 8.4.2.3.2

In subclause 8.4.2.3.2, make the following changes.

In the phrase "Otherwise (the chroma Cr component sample prediction values predPartCr[x, y] are derived), the following applies with C set equal to Cb, x set equal to 0 .. partWidth / 2 ‑ 1, and y set equal to 0 .. partHeight / 2 ‑ 1" change "Cb" to "Cr".

Replace the bullet item "If DiffPicOrderCnt(picA, picB) is equal to 0 with picA being the picture referred by RefPicList1[refIdxL1] and picB being the picture referred by RefPicList0[refIdxL0] or one or both reference pictures is a long-term reference picture or (DistScaleFactor >> 2) < -64 or (DistScaleFactor >> 2) > 128 where DistScaleFactor is specified in subclause 8.4.1.2.3" with the following:

· The variables currPicOrField, pic0, and pic1 are derived as follows:
–
If field_pic_flag is equal to 0 and the current macroblock is a field macroblock, the following applies.

–
Let currPicOrField be the field of the current picture CurrPic that has the same parity as the current macroblock. Let frame0 be the frame or complementary field pair that is referred to by RefPicList0[refIdxL0 / 2]. Let frame1 be the frame or complementary field pair that is referred to by RefPicList1[refIdxL1 / 2].

–
If refIdxL0 % 2 is equal to 0, pic0 is the field of frame0 that has the same parity as the current macroblock.

–
Otherwise (refIdxL0 % 2 is not equal to 0), pic0 is the field of frame0 that has the opposite parity of the current macroblock.

–
If refIdxL1 % 2 is equal to 0, pic1 is the field of frame1 that has the same parity as the current macroblock.

–
Otherwise (refIdxL1 % 2 is not equal to 0), pic1 is the field of frame1 that has the opposite parity of the current macroblock.

–
Otherwise (field_pic_flag is equal to 1 or the current macroblock is a frame macroblock), currPicOrField is the current picture CurrPic, pic1 is the decoded reference picture referred to by RefPicList1[refIdxL1], and pic0 is the decoded reference picture referred to by RefPicList0[refIdxL0].
· If DiffPicOrderCnt(pic1, pic0) is equal to 0 or one or both of pic1 and pic0 is a long-term reference picture or (DistScaleFactor >> 2) < -64 or (DistScaleFactor >> 2) > 128 where DistScaleFactor is specified in subclause 8.4.1.2.3, w0 and w0 are derived as
Replace the phrase "If weighted_bipred_idc is equal to 2 and the slice_type is equal to B," with "If weighted_bipred_idc is equal to 2 and slice_type is equal to B, implicit mode weighted prediction is used as follows.".

Replace the section starting with "When in explicit mode weighted prediction mode" through the end of the subclause with the following:

When explicit mode weighted prediction is used and the partition mbPartIdx\subMbPartIdx has both predFlagL0 and predFlagL1 equal to 1, the following constraint shall be obeyed

-128 <= w0 + w1 <= ((logWD = = 7) ? 127 : 128)

(8‑242)

NOTE –For implicit mode weighted prediction, weights w0 and w1 are each guaranteed to be in the range of -64..128 and the constraint expressed in Equation 8‑242, although not explicitly imposed, will always be met. For explicit mode weighted prediction with logWD equal to 7, when one of the two weights w0 or w1 is inferred to be equal to 128 (as a consequence of luma_weight_l0_flag, luma_weight_l1_flag, chroma_weight_l0_flag, or chroma_weight_l1_flag equal to 0), the other weight (w1 or w0) must have a negative value in order for the constraint expressed in Equation 8‑242 to hold (and therefore the other flag luma_weight_l0_flag, luma_weight_l1_flag, chroma_weight_l0_flag, or chroma_weight_l1_flag must be equal to 1).
Defer
79)
Subclause 9.2.1

In subclause 9.2.1, make the following changes.

In the "NOTE, replace the two occurrences of "Intra 16x16" with "Intra_16x16" (replacing the space with an underline character).

Replace the phrase "the 4x4 chroma block specified by mbAddrB\iCbCr\luma4x4BlkIdxB is assigned to blkB" with "the 4x4 chroma block specified by mbAddrB\iCbCr\chroma4x4BlkIdxB is assigned to blkB".

86.1)
Subclause A.3.2

In subclause A.3.2, make the following changes.

In the list of bullet items for item "f)", change the phrase "as the" to "is the" (in four places).

Remove the sentence fragment at the end of the subclause, which states "For each level at which a numerical value of MaxSubMbRectSize is specified in Table A‑2 for the Baseline profile and in Table A‑4 for the Extended profile, the following constraint shall be true for each 8x8 sub-macroblock:".

87)
Annex B

Replace entirety of Annex B with the following:

Annex B
Byte stream format

(This annex forms an integral part of this Recommendation | International Standard)

This annex specifies syntax and semantics of a byte stream format specified for use by applications that deliver some or all of the NAL unit stream as an ordered stream of bytes or bits within which the locations of NAL unit boundaries need to be identifiable from patterns in the data, such as ITU-T Recommendation H.222.0 | ISO/IEC 13818-1 systems or ITU‑T Recommendation H.320 systems. For bit-oriented delivery, the bit order for the byte stream format is specified to start with the MSB of the first byte, proceed to the LSB of the first byte, followed by the MSB of the second byte, etc.

The byte stream format consists of a sequence of byte stream NAL unit syntax structures. Each byte stream NAL unit syntax structure contains one start code prefix followed by one nal_unit(NumBytesInNALunit) syntax structure. It may (and under some circumstances, it shall) also contain an additional zero_byte syntax element. It may also contain one or more additional trailing_zero_8bits syntax elements. When it is the first byte stream NAL unit in the bitstream, it may also contain one or more additional leading_zero_8bits syntax elements.
B.1
Byte stream NAL unit syntax and semantics

B.1.1
Byte stream NAL unit syntax

	byte_stream_nal_unit(NumBytesInNALunit) {
	C
	Descriptor

	
while(next_bits(24) != 0x000001 &&

next_bits(32) != 0x00000001)
	
	

	

leading_zero_8bits /* equal to 0x00 */
	
	f(8)

	
if(next_bits(24) != 0x000001)
	
	f(8)

	

zero_byte /* equal to 0x00 */
	
	f(8)

	
if(more_data_in_byte_stream()) {
	
	

	

start_code_prefix_one_3bytes /* equal to 0x000001 */
	
	f(24)

	

nal_unit(NumBytesInNALunit)
	
	

	
}
	
	

	
while(more_data_in_byte_stream &&

next_bits(32) != 0x00000001)
	
	

	

trailing_zero_8bits /* equal to 0x00 */
	
	f(8)

	}
	
	

B.1.2
Byte stream NAL unit semantics

The order of byte stream NAL units in the byte stream shall follow the decoding order of the NAL units contained in the byte stream NAL units (see subclause 7.4.1.2). The content of each byte stream NAL unit is associated with the same access unit as the NAL unit contained in the byte stream NAL unit (see subclause 7.4.1.2.3).

leading_zero_8bits is a byte equal to 0x00.
NOTE – The leading_zero_8bits syntax element can only be present in the first byte stream NAL unit of the bitstream, because (as shown in the syntax diagram of subclause B.1.1) any bytes equal to 0x00 that follow a NAL unit syntax structure and precede the four-byte sequence 0x00000001 (which is to be interpreted as a zero_byte followed by a start_code_prefix_3bytes) will be considered to be trailing_zero_8bits syntax elements that are part of the preceding byte stream NAL unit.
zero_byte is a single byte equal to 0x00.

When any of the following conditions are fulfilled, the zero_byte syntax element shall be present.

· the nal_unit_type within the nal_unit() is equal to 7 (sequence parameter set) or 8 (picture parameter set)

· the byte stream NAL unit syntax structure contains the first NAL unit of an access unit in decoding order, as specified by subclause 7.4.1.2.3.

start_code_prefix_one_3bytes is a fixed-value sequence of 3 bytes equal to 0x000001. This syntax element is called a start code prefix.

trailing_zero_8bits is a byte equal to 0x00.

B.2
Byte stream NAL unit decoding process

Input to this process consists of an ordered stream of bytes consisting of a sequence of byte stream NAL unit syntax structures.

Output of this process consists of a sequence of NAL unit syntax structures.

At the beginning of the decoding process, the decoder initialises its current position in the byte stream to the beginning of the byte stream. It then extracts and discards each leading_zero_8bits syntax element (if present), moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next four bytes in the bitstream form the four-byte sequence 0x00000001.
The decoder then performs the following step-wise process repeatedly to extract and decode each NAL unit syntax structure in the byte stream until the end of the byte stream has been encountered (as determined by unspecified means) and the last NAL unit in the byte stream has been decoded:

1. When the next four bytes in the bitstream form the four-byte sequence 0x00000001, the next byte in the byte stream (which is a zero_byte syntax element) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this discarded byte.

2.
3. The next three-byte sequence in the byte stream (which is a start_code_prefix_3bytes) is extracted and discarded and the current position in the byte stream is set equal to the position of the byte following this three-byte sequence.

4. NumBytesInNALunit is set equal to the number of bytes starting with the byte at the current position in the byte stream up to and including the last byte that precedes the location of any of the following conditions:

a. A subsequent byte-aligned three-byte sequence equal to 0x000000, or

b. A subsequent byte-aligned three-byte sequence equal to 0x000001, or

c. The end of the byte stream, as determined by unspecified means.

5. NumBytesInNALunit bytes are removed from the bitstream and the current position in the byte stream is advanced by NumBytesInNALunit bytes. This sequence of bytes is nal_unit(NumBytesInNALunit) and is decoded using the NAL unit decoding process.

6. When the current position in the byte stream is not at the end of the byte stream (as determined by unspecified means) and the next bytes in the byte stream do not start with a three-byte sequence equal to 0x000001 and the next bytes in the byte stream do not start with a four byte sequence equal to 0x00000001, the decoder extracts and discards each trailing_zero_8bits syntax element, moving the current position in the byte stream forward one byte at a time, until the current position in the byte stream is such that the next bytes in the byte stream form the four-byte sequence 0x00000001 or the end of the byte stream has been encountered (as determined by unspecified means).

B.3
Decoder byte-alignment recovery (informative)

This subclause does not form an integral part of this Recommendation | International Standard.

Many applications provide data to a decoder in a manner that is inherently byte aligned, and thus have no need for the bit-oriented byte alignment detection procedure described in this subclause.

A decoder is said to have byte-alignment with a bitstream when the decoder is able to determine whether or not the positions of data in the bitstream are byte-aligned. When a decoder does not have byte alignment with the encoder’s byte stream, the decoder may examine the incoming bitstream for the binary pattern '00000000 00000000 00000000 00000001' (31 consecutive bits equal to 0 followed by a bit equal to 1). The bit immediately following this pattern is the first bit of an aligned byte following a start code prefix. Upon detecting this pattern, the decoder will be byte aligned with the encoder and positioned at the start of a NAL unit in the byte stream.

Once byte aligned with the encoder, the decoder can examine the incoming byte stream for subsequent three-byte sequences 0x000001 and 0x000003.

When the three-byte sequence 0x000001 is detected, this is a start code prefix.

When the three-byte sequence 0x000003 is detected, the third byte (0x03) is an emulation_prevention_three_byte to be discarded as specified in subclause 7.4.1.

The byte alignment detection procedure described in this subclause is functionally equivalent to searching a byte sequence for three consecutive zero-valued bytes (0x000000), starting at any alignment position. Detection of this pattern indicates that the next non-zero byte contains the end of a start code prefix (as a conforming byte stream cannot contain more than 23 consecutive zero-valued bits without containing 31 or more consecutive zero-valued bits, allowing detection of 0x000000 relative to any starting alignment position), and the first non-zero bit in that next non-zero byte is the last bit of an aligned byte and is the last bit of a start code prefix.

93)
Subclause C.3

Replace subclause C.3 with the following:

C.3
Bitstream conformance

A bitstream of coded data conforming to this Recommendation | International Standard fulfils the following requirements.

The bitstream is constructed according to the syntax, semantics, and constraints specified in this Recommendation | International Standard outside of this Annex.

The bitstream is tested by the HRD as specified below:

For Type I bitstreams, the number of tests carried out is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters() following the vcl_hrd_parameters_present_flag or is determined by the application by other means not specified in this Recommendation | International Standard. One test is carried out for each bit rate and CPB size combination specified by hrd_parameters() following the vcl_hrd_parameters_present_flag. Each of these tests is conducted at the Type I conformance point shown in Figure C‑1.
For Type II bitstreams there are two sets of tests. The number of tests of the first set is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters() following the vcl_hrd_parameters_present_flag or is determined by the application by other means not specified in this Recommendation | International Standard. One test is carried out for each bit rate and CPB size combination. Each of these tests is conducted at the Type I conformance point shown in Figure C‑1. For these tests, only VCL and filler data NAL units are counted for the input bit rate and CPB storage.

The number of tests of the second set, for Type II bitstreams, is equal to cpb_cnt_minus1 + 1 where cpb_cnt_minus1 is either the syntax element of hrd_parameters() following the nal_hrd_parameters_present_flag or is determined by the application by other means not specified in this Recommendation | International Standard. One test is carried out for each bit rate and CPB size combination specified by hrd_parameters() following the nal_hrd_parameters_present_flag. Each of these tests is conducted at the Type II conformance point shown in Figure C‑1. For these tests, all NAL units (of a Type II NAL unit stream) or all bytes (of a byte stream) are counted for the input bit rate and CPB storage.
NOTE – NAL HRD parameters established by a value of SchedSelIdx for the Type II conformance point shown in Figure C‑1 are sufficient to also establish VCL HRD conformance for the Type I conformance point shown in Figure C‑1 for the same values of initial_cpb_removal_delay[SchedSelIdx], BitRate[SchedSelIdx], and CpbSize[SchedSelIdx] for the VBR case (cbr_flag[SchedSelIdx] equal to 0). This is because the data flow into the Type I conformance point is a subset of the data flow into the Type II conformance point and because, for the VBR case, the CPB is allowed to become empty and stay empty until the time a next picture is scheduled to begin to arrive. For example, when NAL HRD parameters are provided for the Type II conformance point that not only fall within the bounds set for NAL HRD parameters for profile conformance in item j of subclause A.3.1 but also fall within the bounds set for VCL HRD parameters for profile conformance in item i of subclause A.3.1, conformance of the VCL HRD for the Type I conformance point is also assured to fall within the bounds of item i of subclause A.3.1.
For conforming bitstreams, all of the following conditions shall be fulfilled for each of the tests.

-
For each access unit n, with n>0, associated with a buffering period SEI message, with (tg,90(n) specified by

(tg,90(n) = 90000 * (tr,n(n) - taf(n - 1))

(C-14)

The value of initial_cpb_removal_delay[SchedSelIdx] shall be constrained as follows.

-
If cbr_flag[SchedSelIdx] is equal to 0,

initial_cpb_removal_delay[SchedSelIdx] <= Ceil((tg,90(n))
(C-15)

-
Otherwise (cbr_flag[SchedSelIdx] is equal to 1),

Floor((tg,90(n)) <=
initial_cpb_removal_delay[SchedSelIdx] <= Ceil((tg,90(n))
(C-16)

NOTE – The exact number of bits in the CPB at the removal time of each picture may depend on which buffering period SEI message is selected to initialize the HRD. Encoders must take this into account to ensure that all specified constraints must be obeyed regardless of which buffering period SEI message is selected to initialize the HRD, as the HRD may be initialised at any one of the buffering period SEI messages.

· A CPB overflow is specified as the condition in which the total number of bits in the CPB is larger than the CPB size. The CPB shall never overflow.
·
·
·
·
· A CPB underflow is specified as the condition in which tr,n(n) is less then taf(n). When low_delay_hrd_flag is equal to 0, the CPB shall never underflow.
· The nominal removal times of pictures from the CPB (starting from the second picture in decoding order), shall satisfy the constraints on tr,n(n) and tr(n) expressed in subclauses A.3.1 and A.3.2 for the profile and level specified in the bitstream.

· Immediately after any decoded picture is added to the DPB, the fullness of the DPB shall be less than or equal to the DPB size as constrained by Annexes A, D, and E for the profile and level specified in the bitstream.

· All reference pictures shall be present in the DPB when needed for prediction. Each picture shall be present in the DPB at its DPB output time unless it is not stored in the DPB at all, or is removed from the DPB before its output time by one of the processes specified in subclause C.2.

· The value of (to,dpb(n) as given by Equation C-13, which is the difference between the output time of a picture and that of the picture immediately following it in output order, shall satisfy the constraint expressed in subclause A.3.1 for the profile and level specified in the bitstream.

94.1)
Subclause C.4.2

Replace subclause C.4.2 with the following:

C.4.2
Decoding of gaps in frame_num value and storage of "non-existing" frames
If applicable, gaps in frame_num value are detected by the decoding process and the generated frames are marked and inserted into the DPB as specified below.

Gaps in frame_num value are detected by the decoding process and the necessary number of "non-existing" frames are inferred in the order specified by the generation of values of UnusedShortTermFrameNum in Equation 7-10 and are marked as specified in subclause 8.2.5.2. Each "non-existing" frame is stored in the DPB as follows.

–
When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the "non-existing" frame.
–
The "non-existing" frame is stored in an empty frame buffer and is marked as "not needed for output", and the DPB fullness is incremented by one.

94.2)
Subclause C.4.4

Replace subclause C.4.4 with the following:

C.4.4
Removal of pictures from the DPB before possible insertion of the current picture

The removal of pictures from the DPB before possible insertion of the current picture proceeds as follows .

· If the decoded picture is an IDR picture the following applies.

-
All reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5.

-
When the IDR picture is not the first IDR picture decoded and the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the active sequence parameter set is different from the value of PicWidthInMbs or FrameHeightInMbs or max_dec_frame_buffering derived from the sequence parameter set that was active for the preceding sequence, respectively, no_output_of_prior_pics_flag is inferred to be equal to 1 by the HRD, regardless of the actual value of no_output_of_prior_pics_flag.

NOTE - Decoder implementations should try to handle frame or DPB size changes more gracefully than the HRD in regard to changes in PicWidthInMbs or FrameHeightInMbs.

-
When no_output_of_prior_pics_flag is equal to 1 or is inferred to be equal to 1, all frame buffers in the DPB are emptied without output of the pictures they contain, and DPB fullness is set to 0.

· Otherwise (the decoded picture is not an IDR picture), the following applies.

· If the slice header of the current picture includes memory_management_control_operation equal to 5, all reference pictures in the DPB are marked as "unused for reference" as specified in subclause 8.2.5.

· Otherwise (the slice header of the current picture does not include memory_management_control_operation equal to 5), the decoded reference picture marking process is invoked as specified in subclause 8.2.5.
When the current picture is an IDR picture and no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, or the current picture has memory_management_control_operation equal to 5, all non-empty frame buffers in the DPB are emptied by repeatedly invoking the “bumping” process specified in subclause C.4.5.3, and the DPB fullness is set to 0.

94.3)
Subclause C.4.5.1

Replace subclause C.4.5.1 with the following:

C.4.5.1
Storage and marking of a reference decoded picture into the DPB

When the current picture is a reference picture, it is stored in the DPB as follows.

· If the current decoded picture is the second field (in decoding order) of a complementary reference field pair, and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field of the pair.

· Otherwise, the following operations are performed:

–
When there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the "bumping" process specified in subclause C.4.5.3 is invoked repeatedly until there is an empty frame buffer in which to store the current decoded picture.

–
The current decoded picture is stored in an empty frame buffer and is marked as "needed for output", and the DPB fullness is incremented by one.

94.4)
Subclause C.4.5.2

Replace subclause C.4.5.2 with the following:

C.4.5.2
Storage and marking of a non-reference decoded picture into the DPB

When the current picture is a non-reference picture, the following operations are performed.

–
If the current decoded picture is the second field (in decoding order) of a complementary non-reference field pair and the first field of the pair is still in the DPB, the current picture is stored in the same frame buffer as the first field of the pair.

–
Otherwise, the following operations are performed repeatedly until the current decoded picture has been cropped and output or has been stored in the DPB:

–
If there is no empty frame buffer (i.e., DPB fullness is equal to DPB size), the following applies.
–
If the current picture does not have a lower value of PicOrderCnt() than all pictures in the DPB that are marked as "needed for output", the "bumping" process described in subclause C.4.5.3 is performed.

–
Otherwise (the current picture has a lower value of PicOrderCnt() than all pictures in the DPB that are marked as "needed for output"), the current picture is cropped, using the cropping rectangle specified in the sequence parameter set for the sequence and the cropped picture is output.
–
Otherwise (there is an empty frame buffer, i.e., DPB fullness is less than DPB size) the current decoded picture is stored in an empty frame buffer and is marked as "needed for output", and the DPB fullness is incremented by one.

94.5)
Subclause C.4.5.3

Replace subclause C.4.5.3 with the following:

C.4.5.3
"Bumping" process

The "bumping" process is invoked in the following cases.

–
there is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and a empty frame buffer is needed for storage of an inferred "non-existing" frame, as specified in subclause C.4.2.

–
the current picture is an IDR picture and no_output_of_prior_pics_flag is not equal to 1 and is not inferred to be equal to 1, as specified in subclause C.4.4.

–
the current picture has memory_management_control_operation equal to 5, as specified in subclause C.4.4.

–
there is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and an empty frame buffer is needed for storage of a decoded (non-IDR) reference picture, as specified in subclause C.4.5.1.
–
there is no empty frame buffer (i.e., DPB fullness is equal to DPB size) and the current picture is a non-reference picture that is not the second field of a complementary non-reference field pair and there are pictures in the DPB that are marked as "needed for output" that precede the current non-reference picture in output order, as specified in subclause C.4.5.2.
The "bumping" process consists of the following:
–
If there is one or more frame buffer in the DPB that contains any of the following, these frame buffers are emptied and the DPB fullness is decremented by the number of these frame buffers.
–
a reference frame that is marked as "not needed for output" and that has both fields marked as "unused for reference".
–
a complementary reference field pair in which both fields are marked as "not needed for output" and "unused fore reference".
–
a non-paired reference field that is marked as "not needed for output" and "unused for reference".
–
Otherwise, the following applies:
–
The picture or complementary reference field pair that is first for output is selected as follows.
–
The frame buffer is selected that contains the picture having the smallest value of PicOrderCnt() of all pictures in the DPB marked as "needed for output".

–
If this frame buffer contains a complementary non-reference field pair with both fields marked as "needed for output" and both fields have the same PicOrderCnt(), the first of these two fields in decoding order is considered first for output.
–
Otherwise, if this frame buffer contains a complementary reference field pair with both fields marked as "needed for output" and both fields have the same PicOrderCnt(), the entire complementary reference field pair is considered first for output.
–
Otherwise, the picture in this frame buffer that has the smallest value of PicOrderCnt() is considered first for output.
–
If a single picture is considered first for output, this picture is cropped, using the cropping rectangle specified in the sequence parameter set for the sequence, the cropped picture is output, and the picture is marked as "not needed for output".
–
Otherwise (a complementary reference field pair is considered first for output), the two fields of the complementary reference field pair are both cropped, using the cropping rectangle specified in the sequence parameter set for the sequence, the two fields of the complementary reference field pair are output together, and both fields of the complementary reference field pair are marked as "not needed for output".

–
The frame buffer that included the picture or complementary reference field pair that was cropped and output is checked, and when any of the following conditions is satisfied, the frame buffer is emptied and the DPB fullness is decremented by 1.

· –

The frame buffer contains a non-reference non-paired field.
–
The frame buffer contains a non-reference frame.
–
The frame buffer contains a complementary non-reference field pair with both fields marked as "not needed for output".
–
The frame buffer contains a non-paired reference field marked as "unused for reference".

–
The frame buffer contains a reference frame with both fields marked as "unused for reference".

–
The frame buffer contains a complementary reference field pair with both fields marked as "unused for reference" and "not needed for output".

·
[– End –]

ii
Draft ITU-T Rec. H.264 (2003)/Cor.1 (2004 E)

i

