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Abstract

This document contains a description of a method of downsampling for chroma format conversion that the author believes to be reasonably appropriate for use where needed for downsampling of content to a reduced-resolution chroma sampling grid for encoding (e.g., for the verification test effort for H.264/AVC).  It is based on Kaiser windowed half-band FIR filtering with adjustments for phase offsets.  For interlaced video, it specifies field-based downsampling.

1.
Introduction

For 4:4:4 to 4:2:2 and 4:2:2 to 4:2:0 chroma format downconversions (including two flavors of 4:2:0), a filter design is suggested as follows.  This design is motivated by the need to define resampling filters for content used in verification testing of H.264/AVC.

2.
Basic Filter Design Structure

First, define a non-scaled filter impulse response by
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where p is a fractional phase offset in units of input samples in the range 0 to 0.5, wL(·) is some windowing function that is symmetric around 0 and has a zero value outside the range of plus or minus L = ND (and is non-zero within that range, except possibly at the extreme boundaries), D is the nominal downsampling factor that controls the pass band width of the filter, N is a parameter that controls the number of lobes of the sinc function to include within the window (i.e., the main lobe and N-1 side lobes), and
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Then, define
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The floating-point filter impulse response is then adjusted to provide a DC gain equal to 1 by using the following impulse response.
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Note that for p equal to 0 or p equal to 0.5 the impulse response will be symmetric, with hp,N,D,w(i) equal to hp,N,D,w(-i) for i>0 with p=0 and hp,N,D,w(i) equal to hp,N,D,w(-(i+1)) for i≥0 with p=0.5. This allows the number of multiplies to be cut approximately in half by switching the order of the multiply and add operations for pairs of values of i in these cases.

If the values of hp,N,D,w(i) are scaled up and rounded to integer approximations for ease of computation, care should be taken to ensure that the resulting filter retains a DC gain equal to 1.  One reasonable way to do this, for two's complement integer representations of tap values using b bits each is to use the integerization method specified as follows.  If p is not equal to 0.5, the rounding specified is given by:
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Otherwise (p is equal to 0.5), symmetry should be maintained as follows:
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The length of the filter impulse response defined in this formulation is 2*floor(ND), with hp,N,D,w(i) being zero for values of i outside the range from –floor(ND) to floor(ND)-1, except in some special cases when p is equal to 0, as follows.

· When p is equal to 0 and D is an integer and N is an integer, hp,N,D,w(‑ND) and hp,N,D,w(ND) will be equal to 0 due to the sinc function term, so in this case the length of the filter impulse response will be 2*ND‑1, with hp,N,D,w(i) being zero for values of i outside the range from –(ND-1) to ND-1.

· Similarly, when p is equal to 0 and the product ND is an integer and wND(ND) is equal to zero, hp,N,D,w(‑ND) and hp,N,D,w(ND) will be equal to 0 due to the window function term, so in this case the length of the filter impulse response will be 2*ND‑1, with hp,N,D,w(i) being zero for values of i outside the range from –(ND-1) to ND-1.

· In the unusual special case when p is equal to zero and wND(ND) is not equal to zero and both N and D are not integers (so the sinc function term in the computation of hp,N,D,w(i) will not be zero at i=ND) but the product ND is an integer, the filter impulse response length will be 2*ND+1, with i ranging from –ND to +ND.

When p is equal to 0 and D is an integer, an additional 2*floor(N-1) impulse response samples will be equal to zero due to zeros of the sinc function, so the total number of non-zero taps within the impulse response will be reduced by that amount in this case.  (There are also likely to be other conditions that produce some additional zero-valued samples within the impulse response in special cases, but this case seems the most typical.)

Typically, the resulting filter will have 6 dB of attenuation at the nominal downsampling critical frequency (/D.  If more attenuation is desired at the actual critical frequency, a value of D that is somewhat (e.g., a few percent) larger than the actual downsampling factor can be used for D.

3.
The Kaiser Window

The Kaiser window is a well-designed adjustable window.  It is defined as
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where I0(x) is the modified zero-th order Bessel function of the first kind, and ( is a window shape tuning parameter that adjusts the trade-off between stop-band attentuation or pass-band ripple and transition band width.

I0(x) can be computed using the approximation
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where K is a sufficiently large number (values of K of about 25 are reported to have been used in the literature for Kaiser-window filter design).

Since the term within the summation is not exactly trivial to compute, note that this term can be computed using logarithms as
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Tuning parameter value ( = 2.12 reportedly gives approximately 30 dB stop-band attenuation - similar to a von Hann window (also known as a raised-cosine window), but with a narrower transition band width. Tuning parameter ( = 4.55 reportedly gives approximately 50 dB stop-band attenuation - close to that of a Hamming window, but with a narrower transition band width.

The transition band width is much smaller for smaller ( (for ( = 2.12 it is about half as wide as for ( = 4.55). The transition band width is also inversely proportional to the filter length.  For a relatively short filter, it is therefore necessary to use a relatively low value of ( in order to avoid a wide transition band.

4.
Handling the Edges of the Pictures

Some method needs to be selected for what to do when filtering near the edges of pictures, when some samples that would be used in the filtering process are not available.  I see three basic approaches to this that seem reasonable:

· Repeating the edge sample (i.e., samples -1, -2, -3, etc. are considered identical to sample 0)
· Mirroring with repetition of the edge sample (i.e., sample -1 is considered identical to sample 0, sample -2 is considered identical to sample 1, sample -3 is considered identical to sample 2, etc.)

· Mirroring without repetition of the edge sample (i.e., sample -1 is considered identical to sample 1, sample -2 is considered identical to sample 2, sample -3 is considered identical to sample 3, etc.)

My impression is that it won't much of a difference which of these methods is used.  If it is possible that there is something anomalous about the sample at the extreme edge (e.g., sample number 0), it may be better to deemphasize the use of the value that sample in the filtering process by selecting the third method instead.
5.
Selection of Parameters and Specific Filter Cases

My initial suggestion would be to try D=2, N=4, K=30, ( = 2.75, with edge handling by mirroring of the edges without repetition of the edge sample.  Given sufficient time, it would be advisable to test other values of N and (, and slightly larger values of D.

We can use versions of this with p=0, p=0.25 and p=0.5 for color sampling format conversion.

· p=0.25 is used for field-based downsampling of interlaced 4:2:2 video to 4:2:0.

· p=0.5 is used for vertical downsampling of progressive-scan 4:2:2 video to 4:2:0 and for horizontal downsampling of 4:4:4 to 4:2:2 toward producing the H.261/MPEG-1/H.263 version of 4:2:0.

· p=0 is used for horizontal downsampling of 4:4:4 to 4:2:2 toward producing the MPEG‑2/MPEG-4/H.264 version of 4:2:0.

Using this design with p=0.25, D=2, N=4, K=30, ( = 2.75 results in the following impulse response:
-0.00445795694460

-0.01791576031360

 0.01151115542357

 0.04161622565926

-0.02564764454220

-0.09494574736254

 0.06685644545510

 0.39309582064245

 0.49264512351059

 0.23186713463355

-0.05022611667938

-0.07614778773633

 0.02100334693793

 0.03409681291010

-0.00930071192439

-0.01405033966950

Frequency response curves for this filter are shown in Figure 1 through Figure 3.
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Figure 1 – Overall frequency Response for p=0.25, D=2, N=4, K=30, ( = 2.75
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Figure 2 – Pass band detail for p=0.25, D=2, N=4, K=30, ( = 2.75
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Figure 3 – Stop band detail for p=0.25, D=2, N=4, K=30, ( = 2.75

Using this design with p=0.5, D=2, N=4, K=30, ( = 2.75 results in the following impulse response:

-0.00945406160902

-0.01539537217249

 0.02360533018213

 0.03519540819902

-0.05254456550808

-0.08189331229717

 0.14630826357715

 0.45417830962846

 0.45417830962846

 0.14630826357715

-0.08189331229717

-0.05254456550808

 0.03519540819902

 0.02360533018213

-0.01539537217249

-0.00945406160902
Frequency response curves for this filter are shown in Figure 4 through Figure 6.
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Figure 4 – Overall frequency Response for p=0.5, D=2, N=4, K=30, ( = 2.75
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Figure 5 – Pass band detail for p=0.5, D=2, N=4, K=30, ( = 2.75
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Figure 6 – Stop band detail for p=0.5, D=2, N=4, K=30, ( = 2.75

Using this design with p=0.0, D=2, N=4, K=30, ( = 2.75 results in the following impulse response:

-0.01716352771649

 0.00000000000000

 0.04066666714886

 0.00000000000000

-0.09154810319329

 0.00000000000000

 0.31577823859943

 0.50453345032298

 0.31577823859943

 0.00000000000000

-0.09154810319329

 0.00000000000000

 0.04066666714886

 0.00000000000000
-0.01716352771649

Frequency response curves for this filter are shown in Figure 7 through Figure 9.
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Figure 7 – Overall frequency Response for p=0.0, D=2, N=4, K=30, ( = 2.75
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Figure 8 – Pass band detail for p=0.0, D=2, N=4, K=30, ( = 2.75
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Figure 9 – Stop band detail for p=0.0, D=2, N=4, K=30, ( = 2.75

6.
Spreadsheet for computation of such filters
Accompanying to this contribution is an Excel spreadsheet (JVT-I018.xls) that provides the ability to compute filter tap values and plot frequency responses for various cases of this design for any value of p, D, N, and ( for filters of lengths up to 65 taps.
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