	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

7th Meeting: Pattaya II, Thailand, 7-14 March, 2003
	Document: JVT-G031
Filename: JVT-G031.doc

	Title:
	DPB Implementation

	Status:
	Input Document to JVT

	Purpose:
	Information

	Author(s) or
Contact(s):
	Miska M. Hannuksela
Nokia Mobile Software
P.O. Box 88
33721 Tampere
Finland
	
Tel:
Email:
	
+358 7180 73151
miska.hannuksela@nokia.com

	Source:
	Nokia Corporation

1. summary

This paper presents two memory organization algorithms for Decoded Picture Buffer (DPB) implementations. The first algorithm is targeted for a DPB specification where a maximum of two different frame sizes are present simultaneously in the DPB as proposed in JVT-G011. The second algorithm is targeted for a DPB specification where no limitations on frame sizes take place. The second algorithm reserves a memory pool whose size is the DPB size according to the JVT standard plus a maximum frame size. For both algorithms, it is shown that that the maximum amount of memory that has to be moved for a decoded picture equals to 2 ((frame buffer size for the decoded picture) – 1.

2. Introduction

The memory area of the Decoded Picture Buffer (DPB) may become fragmented as a consequence of the following three facts in the JVT coding standard:

1. The decoding order of pictures is decoupled from the display order. As a consequence, pictures have to be buffered into the Decoded Picture Buffer (DPB) after decoding to recover their correct display order. The time and amount of buffered pictures depends on the bitstream (and can be signaled within the bitstream using the picture timing SEI message and/or the num_reorder_frames syntax element of the VUI parameters).

2. The DPB is also used to store pictures to be used as reference pictures for inter prediction. Means to control which pictures are available as reference pictures are versatile (see subclause 8.2.7. of the draft JVT coding standard). A picture is removed from the DPB when it is no longer used as reference or needed for output.

3. The size of the decoded picture/frame can change at any IDR picture. There are no restrictions on the occurrence frequency of IDR pictures.

The amount of memory required for pictures stored in DPB is specified for each processing level in Annex A of the draft JVT standard. The operation of the DPB is specified in Annex C of the draft JVT standard. However, the draft standard does not specify a practical DPB implementation.

Due to dynamic removal of pictures from the DPB and due to the possibility of having pictures of many sizes in the DPB at the same time, the memory area for the DPB may become fragmented.

Input contribution JVT-G011 proposes a maximum of two different frame sizes present simultaneously in the DPB. This contribution presents a DPB memory compacting algorithm both for the current JVT draft standard and for the draft standard limited as proposed in JVT-G011.

3. Proposed Algorithms

3.1 Examples

The memory compacting algorithm when a maximum of two different frame sizes are present simultaneously in the DPB is based on:

· Frame buffers can be reserved either in ascending memory address order starting from the beginning of the DPB memory pool or in descending memory address order starting from end of the DPB memory.

· The reservation order of frame buffers changes when an IDR picture of a new frame size is decoded.

· The free memory pool is in between allocated frame buffers of different size.

· The reserved memory is packed tightly.

See below for a figure illustrating the idea of the algorithm:

[image: image1.wmf]1.

DPB is

filled

in

ascending

memory address order

2.

Starting from

an IDR

picture

of

different size

, DPB is

filled

in

descending memory address

order

3.

The standard allows filling in

the buffer until no new picture

fits in

4.

a) One frame buffer is emptied

(bumping process or timed

output)

b) A frame buffer is moved to

order free memory between

frame buffers of different size

c) A new frame buffer is

allocated

a)

b)

c)

The memory compacting algorithm when there are no limitations on frame sizes present simultaneously in the DPB is based on:

· The size of the DPB memory pool is one frame size larger than indicated in Annex A of the draft JVT standard.

· Frame buffers can be reserved either in ascending memory address order (with a wrapover from the largest address to the smallest one).

· The free memory pool is in between the earliest and latest IDR period.

· The reserved memory is packed tightly.

See below for a figure illustrating the idea of the algorithm:

[image: image2.wmf]1.

DPB is

filled

in

ascending

memory address order

2.

a)

When

S

(

frame buffers

)

would exceed

DPB

size

(

according

to

Annex

A),

frame

buffers must be emptied

.

b) New

frame buffers are

allocated

in

ascending

memory address order until

max memory address

.

3.

a) Frame buffer emptied

b) Occupied frame buffer(s)

moved to max free memory

address

c) New frame buffers allocated

in ascending memory address

order starting from min

memory address

DPB

size

(

Annex

A)

max frame size

a)

b)

a)

b)

c)

3.2 Definitions and Assumptions

In the following, an IDR period is defined as the pictures from an IDR picture (inclusive) to the next IDR picture (exclusive) in decoding order. Two pointers characterize the memory pool for the DPB: DPBStart indicating the memory address of the first byte in the pool and DPBEnd indicating the memory address of the last byte in the pool. The memory pool is a continuous piece of memory. Due to cache misses in memory addressing, it is advantageous to allow a block of memory to allocated starting from a memory address that is a certain multiple of bytes, such as a multiple of 8 bytes. Depending on the implementation, each row of samples or each sample array may be aligned to a memory location. Herein, let MinDPBSize be the minimal DPB size required to store pictures of any size, including the memory block alignment requirements of the implementation and taking into account the requirements in Annex A of the draft JVT coding standard.

3.3 Slice Decoding Process

Note that the presented algorithm decodes a picture to a temporary frame buffer from which it is moved to the DPB after completing the decoding of the picture. While this follows the DPB description of Annex C, a similar DPB algorithm that decodes directly onto the memory of the DPB can easily be designed.

The process of decoding slices and reserving frame buffers from the DPB is the following:

1. For a slice and slice data partition to be decoded next in the decoding order, it is checked whether decoding of a new picture started according to subclause 8.2.1 of the draft JVT coding standard.

2. If decoding of a new picture is not started, the slice is decoded to a temporary frame buffer and the decoding process continues from step 1.

3. If the previous decoded picture is an IDR picture and the no_output_of_prior_pics_flag is set, all frame buffers are freed, and SecondPeriodStart is reset to DPBEnd + 1. A new frame buffer is reserved as described later. After that, the slice is decoded and the decoding process continues from step 1.

4. If the previous decoded picture is the second field of a complementary field pair in decoding order, the picture is decoded and the decoded picture is stored to the same frame buffer as the first field of the complementary field pair. After that, the decoding process continues from step 1.

5. The previous decoded picture is moved from the temporary frame buffer into the DPB or onto the display according to Annex C of the draft JVT coding standard. The empty frame buffer is selected as described later.

6. If frame_num of the current picture is not equal to PrecedingRefFrameNum and is not equal to (PrecedingRefFrameNum + 1) % MaxFrameNum, the decoding process for gaps in frame_num is performed according to subclause 8.2.7.2 of the draft JVT coding standard. For each “non-existing” frame according to subclause 8.2.7.2 of the draft JVT coding standard, an empty frame buffer is reserved as described later.

7. The slice is decoded, and the decoding process continues from step 1.

3.4 Memory Compacting Algorithm for Limited Frame Size Changes

This section presents the DPB memory compacting algorithm when a maximum of two different frame sizes are present simultaneously in the DPB.

The size of the DPB equals to MinDPBSize. Two pointers are maintained for the entire DPB: First, FirstPeriodEnd indicates the largest memory address used for the IDR period that allocates the memory from DPBStart to FirstPeriodEnd, inclusive. Second, SecondPeriodStart indicates the smallest memory address used in the IDR period that allocates memory from SecondPeriodStart to DPBEnd, inclusive. If no frame buffer is reserved, FirstPeriodEnd equals to DPBStart – 1 and SecondPeriodStart equals to DPBEnd + 1. The free memory pool consists of addresses from FirstPeriodEnd to SecondPeriodStart, exclusive. A memory pool for a first IDR period ranges from DPBStart to FirstPeriodEnd, inclusive. A memory pool for a second IDR period ranges from SecondPeriodStart to DPBEnd, inclusive. A variable CurrentIDRPeriod is initially set to 0.

The process of selecting an empty frame buffer is the following:

1. If an IDR picture whose frame size is different from the one of the previous picture in decoding order is about to be stored in the DPB, CurrentIDRPeriod = CurrentIDRPeriod XOR 1.

2. If there is free memory for a new frame buffer within the memory pool for the current IDR period, a frame buffer is reserved within that pool.

3. If CurrentIDRPeriod equals to 0 and there is a continuous and large enough piece of free memory starting from the next correctly aligned memory address after FirstPeriodEnd, that piece of free memory is reserved. FirstPeriodEnd is updated accordingly.

4. If CurrentIDRPeriod equals to 1 and there is a continuous and large enough piece of free memory preceding SecondPeriodStart, that piece of free memory is reserved. SecondPeriodStart is updated accordingly.

5. If CurrentIDRPeriod equals to 0, the frame buffer starting at SecondPeriodStart is moved to a free location having a start address as large as possible and SecondPeriodStart is updated accordingly. The step is repeated until there is a continuous and large enough piece of free memory starting from the next correctly aligned memory address after FirstPeriodEnd. Then, that piece of piece of free memory is reserved, and FirstPeriodEnd is updated accordingly.

6. If CurrentIDRPeriod equals to 1, the frame buffer ending at FirstPeriodEnd is moved to a free location having a start address as small as possible and FirstPeriodEnd is updated accordingly. The step is repeated until there is a continuous and large enough piece of free memory preceding SecondPeriodStart. Then, that piece of piece of free memory is reserved, and SecondPeriodStart is updated accordingly.

The process of outputting decoded picture from the DPB and freeing frame buffers is the following:

1. A picture is output at its output timestamp carried in the picture timing SEI message or externally (e.g. in the RTP timestamp). If no output timestamps are in use, the decoder can output pictures according to the “bumping process” of subclause C.6.4.3 of the draft JVT coding standard or according to a DPB process described in document JVT-F047.

2. If both fields of a frame are output, and the frame is a non-reference frame or marked as “unused for reference” according to subclause 8.2.7 of the draft JVT coding standard, the corresponding frame buffer is freed.

3. If the freed frame buffer ended at FirstPeriodEnd, FirstPeriodEnd is updated accordingly. If the freed frame buffer was the last reserved frame buffer of a first IDR period, FirstPeriodEnd is set to DPBStart – 1.

4. If the freed frame buffer started at SecondPeriodStart, SecondPeriodStart is updated accordingly. If the freed frame buffer was the last reserved frame buffer of a second IDR period, SecondPeriodStart is set to DPBEnd + 1.

3.5 Memory Compacting Algorithm for Unlimited Frame Size Changes

Let MaxFrameSize be the maximum size required to store one frame or complementary field pair. The size of the DPB is MinDPBSize + MaxFrameSize (which is equal to DPBEnd – DPBStart + 1 provided that byte-based addressing is used). Two pointers are maintained for the entire DPB: First, DeallocPointer indicates the start of the first frame buffer in memory address order for the oldest IDR period in decoding order. Second, AllocPointer indicates the end of the last frame buffer in memory address order for the latest IDR period in decoding order. If no frame buffer is reserved, DeallocPointer and AllocPointer equal to DPBStart and the free memory pool contains the entire memory pool for the DPB. If AllocPointer is smaller than DeallocPointer, the free memory pool consists of addresses from AllocPointer to DeallocPointer, exclusive. If AllocPointer is greater than DeallocPointer, the free memory pool consists of addresses from AllocPointer (exclusive) to DPBEnd (inclusive) and from DPBStart (inclusive) to DeallocPointer (exclusive). Two pointers are maintained for each IDR period: IDRStart indicates the start of the first frame buffer in memory address order for the IDR period, and IDREnd indicates the end of the last frame buffer in memory address order for the IDR period. If IDRStart is smaller than IDREnd, then the memory pool for the IDR period consists of addresses between IDRStart and IDREnd, inclusive. If IDRStart is greater than IDREnd, then the memory pool for the IDR period consists of addresses from IDRStart to DPBEnd, inclusive, and from DPBStart to IDREnd, inclusive.

The process of selecting an empty frame buffer is the following:

1. If there is free memory for a new frame buffer within the memory pool for the IDR period, a frame buffer is reserved within that pool.

2. If there is a continuous piece of free memory starting from the next correctly aligned memory address after AllocPointer and large enough for the frame buffer, that piece of free memory is reserved. IDREnd and AllocPointer are updated accordingly.

3. If there is a continuous piece of free memory starting from DPBStart and large enough for the frame buffer, that piece of free memory is reserved. IDREnd and AllocPointer are updated accordingly.

4. The memory pool for oldest IDR period is organized so that the frame buffer starting at IDRStart is moved to a free location having a start address as large as possible within the memory pool for the IDR period. Then, IDRStart and DeallocPointer are updated accordingly. This memory moving process is continued until there is a large enough continuous piece of memory in the free memory pool.

The process of outputting decoded picture from the DPB and freeing frame buffers is the following:

1. A picture is output at its output timestamp carried in the picture timing SEI message or externally (e.g. in the RTP timestamp). If no output timestamps are in use, the decoder can output pictures according to the “bumping process” of subclause C.6.4.3 of the draft JVT coding standard or according to a DPB process described in document JVT-F047.

2. If both fields of a frame are output, and the frame is a non-reference frame or marked as “unused for reference” according to subclause 8.2.7 of the draft JVT coding standard, the corresponding frame buffer is freed.

3. If the freed frame buffer started at IDRStart for the corresponding IDR period, IDRStart and DeallocPointer are updated to point to the beginning of the next frame buffer of the IDR period in memory address order.

4. If the freed frame buffer was the last reserved frame buffer for an IDR period, IDRStart and IDREnd for that IDR period are no longer maintained and DeallocPointer is set to IDRStart of the next IDR period in decoding (and memory address) order.

File:Document5
Page: 1
Date Saved: 0000-00-00

