
	Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEG

(ISO/IEC JTC1/SC29/WG11 and ITU-T SG16 Q.6)

5th Meeting: Geneva, CH, 9-17 October, 2002
	Document: JVT-Exxx
Filename: JVT-Exxx.doc

	Title:
	Some Improvements to Picture Order Count (POC)

	Status:
	Input Document

	Purpose:
	Proposed Draft

	Author(s) or
Contact(s):
	Toby Walker, Ali Tabatabai (Sony)
	Tel:
Email:
	1-408-955-4081
toby.walker@am.sony.com

	Source:
	Sony

1 Introduction

This contribution proposes improvements to the specification of the picture order count (POC) defined in the FCD. The major proposal is to combine the two POC modes. The other technical changes are to improve the efficiency of coding POC in slice headers.

2 Combining POC Mode 0 and Mode 1

Currently the FCD defines two modes for coding the value of the POC for each picture:

· mode 0: This mode encodes the low order bits of the POC inside each slice header. To decode the full value of the POC for each picture, the decoder maintains the higher order bits of the POC in its decoder state and uses restrictions on changes in the value of POC to correctly handle wrapping over (carry from low into high order bits) or under (borrow from high order bits) of the low order part of the POC.

· mode 1: This mode is based on the observation that the difference of POC values between successive coded pictures is often regular and repeats in a cycle. Coding of POC in this mode predicts the value of the POC for each picture from information stored in the sequence parameter set. Each slice includes a delta value indicating the difference between the predicted value of the POC for the picture and the true value. Like mode 1, the encoder must maintain some state to correctly decode POC values.

An encoder can choose between either of these modes within a sequence. However, rather than requiring support for two different modes we propose combining them into a single mode. The key observations are:

· In both modes, we are encoding the value in the delta POC between the current frame and the last stored frame.

· Mode 1 predicts the value of the delta POC for each frame whereas mode 0 encodes it explicitly. Mode 0 is therefore, in a sense, a degenerate case of mode 1 in which the prediction is null – i.e. the cycle used for prediction is null and every slice header contains an explicit value for the delta POC.

Our suggestion is therefore to combine the two modes as follows:

· Maintain the current POC for stored frames as part of the decoder state (already required anyway).

· Predict the delta POC for the stored frames using the same parameters as currently used in mode 1.

· Indicate the equivalent of mode 0 by having a zero length cycle.

· As an error resilience option, allow the slice to indicate the relative frame number of the stored frame that POC value is coded as a delta from.

To implement this proposal requires only a few minor changes to the syntax and a more significant change to the decoding process for POC.

2.1 Sequence Parameter Set

The following are the changes to the syntax and semantics of the sequence parameter set information related to POC coding.

	sequence_parameter_set_rbsp {
	
	

	 …
	
	

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

offset_for_non_stored_pic
	0
	se(v)

	

num_stored_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_stored_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_stored_frame[i]
	0
	se(v)

	
}
	
	

	
…
	
	

	}
	
	

No changes are needed for the semantics of these fields.

2.2 Slice Header

The following are the changes to the syntax and semantics of the slice header syntax elements related to POC coding.

	slice_header() {
	Category
	Descriptor

	
…
	4
	ue(v)

	
if(pic_order_cnt_type = = 0)
	
	

	

pic_order_cnt
	4
	u(v)

	
else if(pic_order_cnt_type = = 1)
	
	

	

poc_base_ frame_ minus1
	4
	se(v)

	

delta_pic_order_cnt
	4
	se(v)

	

…
	
	

	}
	
	

The

poc_base_ frame_num_delta_minus1 indicates the frame number of the frame in the reference buffer whose POC value is used as the source for calculating this slice's picture order count.

Note: An alternative would be to use the default indexing scheme and send the index of the frame in the buffer whose POC is used to code this picture's POC.

2.3 Decoding Process

The decoder shall maintain a FrameNumOffset that is a 32-bit unsigned integer. The FrameNumOffset of an IDR picture shall be set to zero. For an IDR picture the frame_num and the PicOrderCnt are by definition zero, and the calculations below are not carried out.
If the decoding of a new picture is started, the PicOrderCnt of the picture is calculated. In the following, AbsFrameNum and PicOrderCntCycleCount are 32-bit unsigned integers, and PreviousFrameNum is the frame_num of the previous picture in decoding order. First, the FrameNumOffset is updated as follows. If frame_num is greater than or equal to the PreviousFrameNum, FrameNumOffset is unchanged. Otherwise, when frame_num is smaller than PreviousFrameNum, FrameNumOffset is calculated according to Equation 8-4.

FrameNumOffset = FrameNumOffset + MAX_FN
(8-4)

Second, the AbsFrameNum (the frame number relative to the last IDR picture) is calculated according to Equation 8-5.

AbsFrameNum = FrameNumOffset + frame_num
(8-5)

if(nal_storage_idc = = 0 && AbsFrameNum > 0) AbsFrameNum = AbsFrameNum – 1
Third, the value of BasePOCValue is obtained from the POC value of the picture in the reference buffer whose index specified
by frame_number - poc_base_ frame_index (computer modulo MAX_FN).

Fourth, if AbsFrameNum > 0, the FrameNumInPicOrderCntCycle is calculated as follows.

if(AbsFrameNum > 0){
FrameNumInPicOrderCntCycle = (AbsFrameNum –1)% num_stored_frames_in_pic_order_cnt_cycle

(8-7)

}
Finally, the PicOrderCnt of the picture is computed using the algorithm expressed in Equation 8-8.

if(AbsFrameNum == 0)

PicOrderCnt = 0
else

{

ExpectedPicOrderCntDelta = offset_for_stored_frame[FrameNumInPicOrderCntCycle]

if(nal_storage_idc = = 0)

ExpectedPicOrderCntDelta = ExpectedPicOrderCntDelta + offset_for_non_stored_pic

PicOrderCnt = BasePicOrderCnt + ExpectedPicOrderDelta + delta_pic_order_cnt

}

(8-8)

3 Sequence Initialization Correction.

In this section we show that there is a small problem with the way the prediction scheme for cycles of POC deltas is initialized. To see the problem, consider the example shown in Table 1 where an IPBBPBBP… sequence is used and all pictures are stored in the reference picture buffer.

Table 1: POC Value Coding for Stored B-frames

	FN
	Picture Type
	Stored?
	POC
	Change in POC
	Expected POC
	delta_pic_order_cnt

	0
	I
	Yes
	0
	-
	0
	0

	1
	P
	Yes
	3
	3
	4
	-1

	2
	B
	Yes
	1
	-2
	2
	-1

	3
	B
	Yes
	2
	1
	3
	-1

	4
	P
	Yes
	6
	4
	7
	-1

	5
	B
	Yes
	4
	-2
	5
	-1

	6
	B
	Yes
	5
	1
	6
	-1

	7
	P
	Yes
	9
	4
	10
	-1

	8
	B
	Yes
	7
	-2
	8
	-1

	9
	B
	Yes
	8
	1
	9
	-1

	10
	P
	Yes
	12
	4
	13
	-1

	..
	…
	…
	..
	…
	0
	…

In the table the first column represents the frame number (here assumed not to wrap for simplicity), the second column the picture type, the third column indicates whether the picture is a stored or non-stored frame, the fourth column shows the value of POC that is being coded (not the calculated value), the fifth column has the change in the POC value from the current frame to the previous stored frame, the sixth column the expected value of the POC (computed according to the revised FCD, JVT-E022d7), and final column the value of the delta_pic_cnt_order field that must be coded in the slice header (i.e., the difference between expected POC and the actual POC).

Note that the cycle of POCs increments is regular, has length 3 and is {4 –2 1} except for the increment from frame FN-0 and the first P-frame (FN=1) – it is 3 instead of the value of 4.

In the FCD, it is impossible to code this sequence without the use of small values of delta_pic_order_cnt. The best we can do is to use the following parameters:

offset_for_non_stored_pic = 0
num_stored_frames_in_pic_order_cnt_cycle = 3
offset_for_stored_frame = {4 –2 1}

As shown in Table 1, this results in a delta_pic_order_cnt value of -1 for each FN >= 1 to correct for the initial irregularity in the sequence. The initial irregularity will necessarily continue for the rest of the picture in the sequence.

To fix this problem we propose to add a set of parameters to the sequence parameter set to handle initial irregularities in the pattern of repeating POC increments. These values are used to predict the first num_initial_pic_order_cnt values, after which the prediction process currently in the FCD for repeated POC is applied. When num_initial_pic_order_cnt is zero, then the result is identical to the FCD.

For example, when the sequence Table 1is coded with the following parameters, prediction of the POC values is perfect and delta_pic_order_cnt is always zero:

offset_for_non_stored_pic = 0
num_stored_frames_in_pic_order_cnt_cycle = 3
offset_for_stored_frame = {4 –2 1}
num_initial_pic_order_cnt = 1
offset_for_initial_stored_frame[i] = 3
3.1 Sequence Parameter Set Change

To represent the initial POC increments the following changes are made to the sequence parameter set:

	
else if(pic_order_cnt_type = = 1) {
	
	

	

offset_for_non_stored_pic
	0
	se(v)

	

num_initial_pic_order_cnt
	0
	ue(v)

	

for(i = 0; i < num_initial_ pic_order_cnt; i++)
	
	

	

offset_for_initial_stored_frame[i]
	0
	se(v)

	

num_stored_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_stored_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_stored_frame[i]
	0
	se(v)

	
}
	
	

Where the semantics of the new fields are as follows.

num_initial_pic_order_cnt signals the number of frame numbers before the start of the picture order count cycle. The values of the pictures count differences for these initial frames are signaled in offset_for_initial_stored_frame.

offset_for_initial_stored_frame indicates an expected picture order count difference of a non-stored picture compared to a stored picture having the same frame_num as the non-stored picture.

3.2 Decoding of POC Values

The decoding process described in section 8.3.2.2 is altered as follows for equations (8-6) through (8-8):

Third, the PicOrderCntCycleCount is calculated according to Equation 8-6.
if (AbsFrameNum > num_initial_ pic_order_cnt)

PicOrderCntCycleCount = (AbsFrameNum- num_initial_ pic_order_cnt)/ num_stored_frames_in_pic_order_cnt_cycle

else

PicOrderCntCycleCount = 0
(8-6)
Fourth, the FrameNumInPicOrderCntCycle is calculated according to Equation 8-7.

if (AbsFrameNum > num_initial_ pic_order_cnt)
 FrameNumInPicOrderCntCycle = (AbsFrameNum- num_initial_ pic_order_cnt) % num_stored_frames_in_pic_order_cnt_cycle

(8-7)

In the following, the EXPECTED_DELTA_PER_PIC_ORDER_CNT_CYCLE is the sum of offset_for_stored_frame values. EXPECTED_DELTA_PER_INITIAL_PIC_ORDER_CNT is the sum of offset_for_initial_stored_frame. Finally, the PicOrderCnt of the picture is computed using the algorithm expressed in Equation 8-8.

PicOrderCnt = PicOrderCntCycleCount (

EXPECTED_DELTA_PER_PIC_ORDER_CNT_CYCLE

if (AbsFrameNum < num_initial_pic_order_cnt)
{
 for(i=0; i < AbsFrameNum – 1; i++)
 PicOrderCnt = PicOrderCnt + offset_for_initial_stored_frame[i]
}
else
{
 PicOrderCnt = PictOrderCnt +
 EXPECTED_DELTA_PER_INITIAL_PIC_ORDER_CNT
 for(i = 0; i <= FrameNumInPicOrderCntCycle; i++)

PicOrderCnt = PicOrderCnt + offset_for_stored_frame[i]
}

PicOrderCnt = PicOrderCnt + delta_pic_order_cnt

 if(nal_storage_idc = = 0)

PicOrderCnt = PicOrderCnt + offset_for_non_stored_pic
4 Regular POC

When using mode 1, the current syntax requires that every slice header include a value, delta_pic_order_cnt, indicating the difference between the predicted POC value and the actual value for the picture. However, in cases where the POC values within a GOP are always regular, then the there is never any prediction error and, therefore, no need to signal prediction errors in the slice header.

To address this issue, we propose adding a flag to the sequence parameter set that indicates that the POC is regular and make the inclusion of the delta_pic_order_cnt condition on this flag.

The syntax changes in two places to implement this idea:

· Add a new flag, regular_poc, to the sequence parameter set to signal that no with the following syntax and semantics.

	
if(pic_order_cnt_type = = 0)
	
	

	

log2_max_pic_order_cnt_minus4
	0
	ue(v)

	
else if(pic_order_cnt_type = = 1) {
	
	

	

regular_poc
	0
	u(1)

	

offset_for_non_stored_pic
	0
	se(v)

	

num_stored_frames_in_pic_order_cnt_cycle
	0
	ue(v)

	

for(i = 0; i < num_stored_frames_in_pic_order_cnt_cycle; i++)
	
	

	

offset_for_stored_frame[i]
	0
	se(v)

	
}
	
	

· Make the inclusion of the delta_pic_cnt in the slice header conditional on the regular_poc field.

	
if(pic_order_cnt_type = = 0)
	
	

	

pic_order_cnt
	4
	u(v)

	
else if(pic_order_cnt_type = = 1 && !regular_poc)
	
	

	

delta_pic_order_cnt
	4
	se(v)

Finally change the decoding of the picture order code so that the value for delta_pic_order_cnt is zero if regular_poc is one.

5 Conclusion

We recommend that the proposed changes to the picture order be included in the revised specification issued from Geneva.

